Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Качественный анализ смеси ионов Си

    Если слить подкисленные эквимолярные растворы перманганата калия, имеющего красно-фиолетовую окраску, и нитрита натрия, то через некоторое время реакционная смесь обесцвечивается. Качественный анализ образовавшейся смеси показывает, что в ней содержится ничтожно мало ионов N02 и МпО  [c.324]

    Приступая к работе по качественному анализу, студент вначале практически знакомится с наиболее важными и типичными реакциями катионов первой группы. Когда свойства ионов и образуемых ими соединений будут хорошо изучены, студент сам готовит смесь ионов этой группы и производит их осаждение групповым реактивом, а затем производит их разделение и обнаружение по приводимой ниже схеме. [c.57]


    Чтобы проанализировать смесь нескольких веществ, близких по своим химическим свойствам, приходится их предварительно разделять и только затем проводить характерные реакции на отдельные вещества. Качественный анализ охватывает не только отдельные реакции обнаружения ионов, но и методы их разделения. [c.16]

    Систематический ход качественного анализа заключается в том, что смесь ионов с помощью особых групповых реактивов предварительно разделяют на отдельные группы. Затем из этих аналитических групп каждый ион выделяют в определенной последовательности, а потом уже открывают характерной для него аналитической реакцией. [c.58]

    Если в колонке пермутита или окиси алюминия разделяют смесь сернокислых хлористых солей марганца, железа, кобальта, никеля и меди, то все эти катионы будут задерживаться на колонке в определенной последовательности в виде отдельных окрашенных полос, а в фильтрат перейдет эквивалентное этим катионам количество катионов натрия и все количество сульфат- и хлорид-ионов. Таким путем можно отделить фосфат-ионы от катионов III аналитической группы перед началом систематического анализа и вообще любые другие ионы, мешающие по ходу качественного анализа. [c.154]

    Систематический метод качественного анализа основан на том, что вначале с помощью групповых реагентов разделяют смесь ионов на группы и подгруппы, а затем уже в пределах этих подгрупп обнаруживают каждый ион характерными реакциями. [c.7]

    Задача качественного анализа — изучение методов обнаружения, или открытия , элементов или их групп (ионов), из которых состоит анализируемое вещество или смесь веществ, с установлением приблизительных их количеств — много, мало, очень мало (следы). Задача количественного-анализа — изучение методов определения точных абсолютных или относительных количеств элементов и их групп, входящих в анализируемое вещество. [c.3]

    Аналитическая химия — наука о методах и приемах определения качественного и количественного химического состава веществ или их смесей. Поэтому она распадается на две части — качественный анализ и количественный анализ. Качественный анализ позволяет установить, из каких химических элементов, групп атомов, ионов или молекул состоит анализируемое вещество или смесь веществ. Задача количественного анализа — установить количественные соотношения составных частей данного соединения или смеси веществ. Исследование химического состава вещества всегда начинается с качественного анализа, так как правильный выбор методов количественных определений находится в зависимости от состава анализируемого вещества. Следовательно, количественному анализу вещества предшествует качественный анализ. [c.5]


    Систематический ход качественного анализа в отличие от дробного анализа заключается в том, что смесь ионов с помощью особых реактивов предварительно разделяют на отдельные группы. Из этих групп каждый ион выделяют в определенной последовательности, а потом уже открывают характерной для него аналитической реакцией. Следовательно, в систематическом ходе анализа применяют не только реакции открытия отдельных ионов, но также и реакции отделения их друг от друга. Другими словами, при выполнении систематического хода анализа к открытию ионов приступают главным образом лишь после удаления из анализируемого раствора в результате последовательных операций всех других ионов, мешающих открытию искомых ионов. [c.68]

    Принципиальная возможность хроматографического качественного анализа ионов несомненна и уже опубликован ряд работ по этому вопросу. Совсем недавно у нас в Советском Союзе Ольшановой и Чмутовым начата систематическая разработка хроматографического качественного анализа, в их же статье проведена сводка литературы. Однако до последнего времени в качественном анализе использовалась главным образом возможность группового отделения катионов от анионов. Так, например, для удаления катионов, которые мешают открытию многих анионов, рекомендуют пропустить анализируемый раствор через какой-нибудь Н-катионит. При этом, как указывают, в фильтрат переходит смесь кислот, соответствующая анионному составу анализируемого раствора. [c.251]

    Изучая качественный анализ на отделении лаборантов, учащиеся должны ознакомиться с теорией электролитической диссоциации, с аналитическими группами катионов и анионов, с групповыми реакциями и с характерными частными реакциями на катионы и анионы. Им дается только одна контрольная задача на смесь анионов и катионов I и П групп, а при изучении остальных групп они должны открыть только один из ионов данной группы. Такие теоретические понятия, как амфотерность, гидролиз, окислительно-восстановительный процесс, освещаются при изучении П1 группы катионов. [c.3]

    Изучая качественный анализ на отделении лаборантов, учащиеся должны ознакомиться с теорией электролитической диссоциации, с аналитическими группами катионов и анионов, с групповыми реакциями и с характерными частными реакциями на катионы и анионы. Им дается только одна контрольная задача на смесь анионов и катионов I и II групп, а при изучении остальных групп они должны открыть только один из ионов данной группы. Такие теоретические понятия, как амфотерность, гидролиз, окислительно-восстановительный процесс, освещаются при изучении III группы катионов. В количественном анализе учащиеся отделения лаборантов знакомятся, собственно, только с введением в весовой и объемный анализы. Более подробно разбирается метод нейтрализации. [c.3]

    Занимаясь качественным анализом,, студент изучает сначала характерные реакции катионов той или иной группы, а затем ход анализа смеси этих ионов. По мере накопления знаний он получает от преподавателя контрольные задачи, т. е. растворы, содержащие смесь катионов нескольких групп (например, 1-й и 2-й или 1-й, 2-й и 3-й вместе). Точно также изучают анионы. Наконец, завершается качественный анализ исследованием сухого вещества, в котором нужно открыть все присутствующие катионы и анионы. Выдаваемое студенту сухое вещество представляет собой смесь солей. [c.41]

    Анализ хроматограмм. Качественный анализ. При качественном анализе хроматограмм бумажную полоску извлекают из камеры,, высушивают и, если образуются видимые зоны, проводят визуальное наблюдение. Но зачастую зоны невидимы, и хроматограммы требуется проявлять соответствующим раствором специфического реактива. По характерной окраске образующихся цветных пятен судят о составе анализируемой смеси. Например, смесь, состоящую из ионов железа (П1), меди (П) и цинка, после разделения на бумаге проявляют раствором гексацианоферрата (И) калия. Образуются окрашенные пятна железо (И1) дает синее пятно, медь (П) — коричневое, цинк проявляется в виде белого пятна на красноватом фоне. [c.112]

    Лабораторные работы по качественному анализу состоят из проведения частных реакций ионов каждой аналитической группы, анализа раствора, состав которого известен (смесь всех катионов или анионов определенной группы), и контрольных аналитических задач. [c.229]

    В качественном анализе неорганических веществ анализ катионов и анализ анионов проводят раздельно. При систематическом анализе смесей предварительно разделяют смесь катионов на аналитические группы, включающие ионы с наиболее сходными свойствами. Осадки, которые содержат катионы разных групп, подвергают дальнейшей обработке, чтобы отделить друг от друга катионы, входящие в данную группу. Присутствие данного катиона устанавливают особой, характерной для него реакцией. [c.64]


    К качественным реакциям сухим путем относится также метод растирания, предложенный Ф. М. Флавицким и основанный на образовании окрашенных соединений в результате реакции между твердыми веществами. Техника и методика проведения реакции способом растирания состоит в следующем. Небольшой кусочек исследуемого вещества вместе с одним или несколькими кристалликами реактива, дающего с открываемым элементом окрашенное соединение, мелко растирают в ступке. Если в исследуемом веществе есть открываемый ион, растертая смесь приобретает характерную окраску. Так, для открытия трехвалентного железа анализируемый образец не растворяют, а растирают с кристалликом роданида аммония или калия. В присутствии железа образец сразу окрашивается в красный цвет. Этот метод применяют главным образом в качественном анализе руд и минералов в полевых условиях.  [c.62]

    Соотношения (I. 7) — (I. 9) применимы только для растворов симметричных бинарных электролитов, когда одна молекула электролита дает один катион и один анион. Если же электролит имеет несимметричный валентный тип или имеется смесь электролитов, то математические соотношения, описываюш,ие закон действия масс, согласно теории Аррениуса, и вытекаюш,ие из них следствия усложняются. Теория Аррениуса позволила легко трактовать любые явления, связанные с ионными равновесиями, и легла, таким образом, в основу качественного и количественного анализа. [c.11]

    Общую схему производства цеолитов можно представить в следующем виде (рис. 8). В смесительную емкость загружают в определенных соотношениях, зависящих от типа производимых молекулярных сит, едкий натр, силикат (или золь кремниевой кислоты) и алюминат натрия. Смесь перемешивают до получения гомогенной среды. Полученный гель перекачивают в кристаллизатор, где его выдерживают при температуре около 100° С в течение нескольких часов в зависимости от требуемой кристаллической структуры цеолита. Процесс кристаллизации контролируют качественными испытаниями, включающими и рентгеноструктурный анализ. После завершения кристаллизации кристаллы отфильтровывают, промывают водой и направляют на формование и обжиг. Если требуется провести обмен натрия в кристалле на ионы кальция или другие катионы, то с помощью винтового транспортера кристаллическую массу с фильтра подают в емкость, где ее смешивают с раствором соли соответствующего металла. Ионообменные формы (подобно натриевой форме) подлежат фильтрации и отмывке. Степень ионного обмена регулируется временем контакта и температурой раствора. [c.21]

    Для приготовления раствора 1 расчетное количество хлористого палладия тщательно растирают в фарфоровой ступке, переносят в сосуд с дистиллированной водой, предварительно подкисленной соляной кислотой в соответствии с рецептурой, и нагревают до температуры 50—80 °С до полного растворения хлористого палладия. Приготовленный раствор переносят в рабочую ванну. Для качественной оценки пригодности раствора активирования одну часть указанного раствора смешивают с равным объемом свежеприготовленного раствора сенсибилизирования. Раствор пригоден к работе, если полученная смесь окрашивается в красный или коричнево-красный цвет. Бурый осадок, выпадающий при попадании ионов олова из раствора сенсибилизирования вследствие плохой промывки, удаляют периодическим фильтрованием. Корректирование раствора по содержанию хлористого палладия производят по данным химического анализа. [c.39]

    Перспективным направлением для качественного анализа является комбинированное использование осадочной хроматографии в сочетании с распределительной. Идея такого рода комбинации в хроматографическом методе разделения смесей заключается в следующем. Вначале получают первичную осадочную хроматограмму ионов на бумаге, пропитанной органическим осадителем, а затем промывают ее не водой, а органическим растворителем, способным частично растворять осадки и переносить их с различной скоростью. Например, можно получить осадочную хроматограмму путем нанесения раствора, содержащего смесь катионов меди, кобальта и никеля (двухвалентных) на бумагу, предварительно обработанную рубеановодород-ной кислотой и парами аммиака, а потом разогнать образовавшиеся зоны осадков водно-бутаноловым и водно-про-паноловым растворителями [161]. [c.209]

    Изучение аналитических реакций ионов создает возможнс для проведения анализа неизвестных веществ или их сме Качественный анализ неизвестных веществ можно вести следующей схеме 1) предварительные испытания 2) растворе образца 3) анализ катионов 4) анализ анионов. [c.194]

    Для качественного анализа и установления структуры сме сеи ХМС дает различные возможности Во первых это полные масс спектры компонентов, являющиеся как бы отпечаткамп пальцев молекулярной структуры и характеризующие молеку лярную массу и массы основных структурных фрагментов, по которым можно установить их состав и наличие определенных функциональных групп Масс спектры высокого разрешения позволяют с большой точностью установить элементный состав молекулярного и осколочных ионов а значит, и структур исходной молекулы Во вторых, масс хроматограммы дают воз можность определить времена удерживания (или индексы удер живания) дтя всех разделенных компонентов, причем благода ря селективному ионному детектированию и специальным мето дам обработки данных степень разделения масс хроматограмм как правило, значительно выше, чем обычных хроматограмм регистрируемых другими хроматографическими детекторами Селективный характер детектирования с помощью масс спект рометра позволяет выделить определенные классы веществ из сложной и даже неразделенной хроматограммы В третьих, разные методы ионизации обладают селективностью по отно шению к некоторым структурным или функциональным особен ностям анализируемых молекул Выбирая соответствующий способ ионизации, можно осуществить селективный анализ оп ределенных типов структур или удостовериться в наличии опре деленных функциональных групп [c.89]

    Осаждение. В качественном анализе осаждение — одна из наиболее важных и часто применяемых операций. Вещества переводят в осадок в пробирках или стаканах с добавлением по каплям осаждающего реактива. Во время прилипания реактива смесь перемешивают стеклянной палочкой или круговым движением. Реактива берут в 1,5—2 раза больше теоретически необходимого количества, чтобы полнее осадить обнарулашаемые или отделяемые ионы. Однако следует иметь в виду, что при большом избытке осаждающего реактива осадки некоторых веществ растворяются вследствие образования растворимых соединений. [c.24]

    Подавляющее большинство реакций, применяемых в качественном анализе, проводится мокрым путем. Поэтому если анализу подлежит твордое вещество, то большая часть его переводится в раствор. Растворителями могут быть вода, соляная и азотная кислоты, смесь этих кислот (царская водка) и некоторые другие растворители. Иногда перед растворением испытуемое твердое вещество приходится предварительно сплавлять с некоторыми веществами (плавнями) при высокой температуре. Растворение вещества в воде чаще всего ограничивается распадом его на ионы и их гидратацией, например [c.13]

    В учебном курсе качественного анализа, включающем огра- диченное число ионов, для осаждения гидроокисей обычно используют раствор NHg, содержащий NHI-hoh, систему ВаСОз + НаО, ацетатную буферную смесь, но почти никогда не применяют [c.318]

    При анализе раствора, содержащего смесь ионов AF, Сг , Zv , обнаружению катионов алюминия дробным методом мешают ионы цинка и хрома (П1). Поэтому на первом этапе дробного анализа необходимо удалить мешающие ионы, в данном случае, связать в комплекс ионы цинка, добавив в раствор гексацианоферрат (П) калия KJFe( N)g], а катионы Сг окислить до СгО " действием пероксида водорода HjOj в щелочной среде. Затем, на втором этапе, уже можно обнаружить ионы алюминия качественной реакцией с ализарином. [c.157]

    Преимущества качественного масс-спектрометрического анализа значительно возрастают при условии, что один из исследуемых продуктов реакции получен из исходных веществ известного состава. Рассмотрим, например, реакцию циклопентанона с н-бутиламином в газовой фазе при 300—350° в присутствии катализатора и без него. Эта и другие аналогичные реакции являются частью исследования термического распада найлона 6,6 [566]. Не касаясь в настоящем разделе подробно вопроса относительно химизма этого процесса, остановимся лишь на масс-спектрометрической идентификации двух продуктов реакции. Циклопентанон имеет формулу sHgO и номинальный молекулярный вес 84 молекулярный вес бутиламина — 73, а формула — 4HiiN. Многие продукты реакции могут быть идентифицированы без выделения их из смеси и благодаря тому, что известна формула исходного соединения идентификацию можно осуществить только по пикам молекулярных ионов. Ранее упоминалось, что масс-спектрометрия позволяет устанавливать точную молекулярную формулу неизвестного соединения или каждого из соединений, присутствующих в смеси. Результаты можно сопоставить с данными элементарного химического анализа по соотношению С N Н О. Благодаря этому устанавливают, все ли присутствующие компоненты обнаружены. Другими словами, при исследовании одного типа молекул не обязательно исследовать всю смесь. Так, например, один из компонентов смеси дает большой молекулярный пик с массой 150, который может быть идентифицирован даже без точного измерения масс следз ющим образом. Рассматриваемое соединение не образовано двумя молекулами бутиламина, поскольку молекулярный вес его больше, чем 2 X 73 = 146 оно также не могло образоваться в результате взаимодействия молекулы циклопентанона и бутиламина (масса 157), поскольку для этого в процессе реакции оно должно было бы потерять семь атомов водорода и поскольку продукт имеет четный молекулярный вес, так что в молекуле должно присутствовать четное число атомов азота. Возможный путь образования такого соединения — взаимодействие двух молекул циклопентанона (масса 168) с выделением массы 18. Известно, что при дегидрировании паров циклопентанона при повышенной температуре над активированной окисью алюминия образуется 2-циклопентилиденциклопентанон [c.447]

    Приведенные примеры показывают, что соотношение концентраций в состоянии химического равновесия, т. е. положение равновесия, не зависит от пути его достижения. С другой стороны, легко показать, что соотношение концентраций изменится под действием некоторых факторов, например при изменении температуры, давления (если реагирующее вещество или продукт реакции — газ) или общей концентрации одного из компонентов. Эти изменения МОЖАО качественно предсказать на основе принципа Ле-Ша-телье химическое равновесие всегда смещается в сторону, противоположную приложенному воздействию. Например, при повышении температуры произойдет такое изменение соотношения концентраций, при котором поглощается тепло увеличение давления приводит к образованию веществ, занимающих меньший общий объем. При анализе особенно важен эффект, вызываемый введением в реакционную смесь дополнительного количества одного из реагирующих веществ в этом случае равновесие сдвигается в направлении, при котором добавленное вещество частично расходуется. Например, для рассматриваемого равновесия добавление железа (III) вызвало бы увеличение интенсивности окраски трииодид-иона и образование железа(II) добавление железа(II), напротив, вызвало бы обратный эффект. Сдвиг равновесия при изменении количества одного из участников реакции называется эффектом действия масс. [c.34]

    Наша задача заключалась в выборе метода, который, обеспечивая быстроту выполнения и надежность результатов анализа, вместе с тем не требовал бы применения специальных приборов. Исходя пз этих соображений, мы остановились на методе, идея которого дана в работе Гана и Леймбаха. Метод основан на использовании каталитически ускоряющего действия даже малых количеств меди в реакции восстановления иона трехвалентного железа тиосульфатом. Конец реакции можно наблюдать по помутнению реакционной смеси от выделяющейся при реакцип серы. Для большей четкости в реакционную смесь вводят ро-дан-ион и наблюдают за течением реакции по исчезновению кроваво-красной окраски раствора. Упомянутые авторы предложили этот метод для качественного открытия малых содержаний медп, указывая, однако, на возможность применения его для количественных определений. В литературе имеются указания на то, что этот способ был использован для количественного определения небольших концентраций меди в алюминии и в водах рек и родников. [c.318]

    Восстановление ионами железа(П). Чувствительное качественное определение перекиси основывается на появлении интенсивного красного окрашивания при добавлении к исследуемому раствору железа (II). Эта реакция была использована для количественного анализа Юлом и Вильсоном Анализируемый образец вносят в колбу, добавляют известное количество роданида железа(II), закрывают колбу пробкой и энергично встряхивают. Затем реакционную смесь титруют раствором сульфата титана(III) до исчезновения красного окрашивания. Вагнер, Смит и Питерс сообщают, что получаемые этим методом результаты всегда были заниженными и что продолжительность встряхивания и навеска образца оказывали существенное влияние на результаты анализа. Поэтому применение такого метода для анализа в микромасштабе не рекомендуется. [c.195]


Смотреть страницы где упоминается термин Качественный анализ смеси ионов Си: [c.421]    [c.56]    [c.589]    [c.346]    [c.11]    [c.10]    [c.36]    [c.109]    [c.318]    [c.232]   
Смотреть главы в:

Физико-химичемкие методы анализа -> Качественный анализ смеси ионов Си

Физико-химические методы анализа Издание 2 -> Качественный анализ смеси ионов Си

Физико-химические методы анализа -> Качественный анализ смеси ионов Си

Физико-химические методы анализа 1988 -> Качественный анализ смеси ионов Си

Физико-химические методы анализа -> Качественный анализ смеси ионов Си




ПОИСК





Смотрите так же термины и статьи:

Анализ ионов

Анализ качественный

Смеси ПАВ качественный анализ



© 2025 chem21.info Реклама на сайте