Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение в виде металла

    Электрогравиметрический анализ относится к физико-химическим методам анализа. В то же время он представляет собой разновидность гравиметрического анализа. Характерной особенностью его является осаждение определяемого элемента путем электролиза на взвешенном электро,це. Электрогравиметрический анализ применяется почти исключительно для определения металлов. Обычно они присутствуют в растворах в виде катионов, которые при электролизе перемещаются к катоду и, разряжаясь, осаждаются на нем в виде металлов. О количестве выделенного металла судят по увеличению массы катода. [c.421]


    Если в масле имеется вода, содержащиеся в нем коррозионно-активные вещества (органические кислоты, сернистые соединения и т. п.) диссоциируют в водном растворе на ионы, и тогда коррозия носит электрохимический характер. Электрохимическая коррозия, в отличие от химической, протекает в виде двух одновременных самостоятельных процессов — анодного и катодного, каждый 3 которых локализуется на определенных участках металла, контактирующего с маслом. Электрохимическая коррозия особенно интенсивна, когда обводненное масло контактирует с металлами, имеющими разный электрохимический потенциал, однако даже у одного металла всегда имеются химически неодно родные участки с различными потенциалами между ними при взаимодействии с электролитом и возникает гальванический ток. Разрушение металла при электрохимической коррозии происходит только на анодных участках, причем количество прокорродировавшего металла (Зм (в г) можйо определить из выражения [8]  [c.15]

    При установившемся равновесии обменного процесса поверхность ионита и раствор приобретают электрические заряды противоположного знака, на границе раздела ионит — раствор возникает двойной электрический слой, которому соответствует скачок потенциала. Поскольку иониты обладают повышенной избирательной способностью по отношению к определенному виду ионов, находящихся в растворе, ионообменные электроды называются также ионоселективными. Стеклянный электрод является важнейшим среди этой группы электродов. Он представляет собой тонкую мембрану из специального стекла, в котором повышено содержание щелочных составляющих — соединений натрия, лития и др. Согласно теории Б. П. Никольского потенциалопределяющий процесс на границе раствор — стекло заключается в обмене между ионами щелочного металла, например Ма+, содержащимися в стекле, и ионами Н+, находящимися в растворе  [c.484]

    При определении ионов серебра в разбавленных растворах (до М) серебро предварительно накапливают на поверхности графитового электрода в виде металла и затем анодно растворяют при изменении потенциала. Максимальный ток электрорастворения серебра является линейной функцией объемной концентрации ионов Ag+. Определению не мешают значительные количества Си +, поэтому метод можно применять для определения серебра в меди и медных сплавах. При полярографировании следует использовать выносной каломельный электрод во избежание попадания ионов С в анализируемый раствор. [c.152]


    Электрогравиметрический метод анализа заключается в выделении определяемого элемента в виде металла на предварительно взвешенном катоде, после чего электрод с осадком взвешивают и по разности массы находят массу металла. Некоторые вещества могут окисляться на платиновом аноде с образованием плотного осадка оксида, например РЬ + до РЬОг. Электролиз можно использовать также для разделения ионов. Методы анализа, основанные на электроосаждении как и другие гравиметрические методы, должны удовлетворять определенным требованиям определяемое вещество должно выделяться количественно, полученный осадок должен быть чистым (соосажде-ние примесей должно быть минимальным), мелкозернистым и плотно сцепленным с поверхностью электрода (чтобы последующие операции промывания, высушивания и взвешивания не вызвали потери осадка). Для получения осадков, удовлетворяющих этим требованиям, необходимо регулировать плотность [c.180]

    Специальные стеллажи используются для хранения определенных видов изделий металла, труб, бочек. Поперечный многоярусный стеллаж для хранения бочек показан на рис. У1П. 4. Укладка и снятие бочек со стеллажей осуществляются подвесным штабеле-ром. Такие стеллажи на НПЗ целесообразно применять в складах тарного хранения реагентов, смазочных масел и консистентных смазок. [c.223]

    Определенное количество металла теряется в виде металлического тумана — золя металла, который образуется в результате реакций диспропорционирования или диспергирования катодного металла в электролите. [c.471]

    Электроанализ применяется главным образом для очень точного определения некоторых металлов. Наиболее важно применение электроанализа для определения меди, никеля, цинка, кадмия, а также свинца путем осаждения последнего на аноде в виде РЬО,. [c.190]

    Если вещество может выделяться в твердом виде на электрод де, например в виде металла, оксида или нерастворимой соли, то существует возможность кулонометрического определения количества тока, необходимого для полного выделения определяемого вещества из раствора. Конечную точку устанавливают при этом по резкому возрастанию потенциала рабочего электрода, которое связано с тем, что из-за необходимости поддержания постоянного значения силы тока по окончании основной реакции должен протекать другой окислительно-восстановительный процесс (обычно разложение воды), сопровождаемый соответствующим увеличением потенциала. Этот метод-можно успешно применять для определения тонких слоев покрытий на проводниках. [c.273]

    В лаборатории имеются металлы в следующем виде цинк — гранулы, медь — стружки, железо — опилки, алюминий— тонкая фольга и т. п. Предложите методику определения плотности металла, размеры куска которого измерением линейкой найти невозможно. Для изученных металлов рассчитайте межъядерные расстояния, как об этом говорилось выше, и сформулируйте выводы об изменении их по периоду и подгруппе периодической системы. [c.443]

    В дополнение к термическому анализу часто проводят микроскопическое исследование. Суть этого метода состоит в том, что механическим шлифованием и полированием готовится зеркальная поверхность образца, которая изучается под микроскопом после обработки травителем. Травитель выбирается так, чтобы он растворял преимущественно только один компонент сплава. Выявленная таким образом структура сплава имеет определенный вид для каждого взаимодействия металлов между собой. [c.277]

    Многообразие аналитической химии находит свое выражение в широте областей ее применения. Поэтому аналитическую химию часто называют фронтальной дисциплиной. В соответствии с разнообразием областей применения аналитической химии были разработаны ее специальные разделы, ориентирующиеся на определенные виды веществ (анализ металлов, силикатов) либо отражающие в самом названии область применения (анализ пищевых продуктов, медицинский химический анализ, судебный анализ). Четко выраженную целевую направленность анализа указывают также в названии вида аналитической работы (методы производственного контроля, арбитражный анализ). Все эти столь различающиеся области работы и аналитические проблемы приводят к рассмотренным выше основным характерным особенностям аналитической химии. По этой причине единая сущность аналитической химии как науки особенно четко выражается именно в многообразии решаемых задач и проблем. [c.13]

    Электроанализ применяют главным образом для очень точного определения некоторых металлов меди, никеля, цинка, кадмия, а также свинца путем осаждения последнего на аноде в виде РЬОг. [c.215]

    Рис. 8. Прибор для определения эквивалента металла по водороду а — общий вид б — отсчет уровня жидкости в, бюретке [c.21]


    Ионообменные мембраны. Их свойства. Процесс электролиза растворов хлоридов щелочных металлов с использованием ионообменной мембраны основан на способности мембраны пропускать в заданном направлении ионы определенного вида— в данном случае катионы (Na+, К+, Li+ и др.), т. е. в процессе мембранного электролиза электроды (анод и катод) отделены друг от друга мембраной, не проницаемой для газов, почти не проницаемой для жидкостей, пропускающей преимущественно катионы. [c.109]

    Химические коррозионные испытания иначе называют испытаниями при полном погружении образцов в коррозионную среду. В отличие от других специфических методов коррозионных испытаний (например, на щелевую межкристаллитную коррозию и т.д.) химические коррозионные испытания не ставят своей целью ускоренную проверку восприимчивости металла какому-то отдельно взятому виду коррозионных разрушений. Как правило, стендовые химические коррозионные испытания проводятся для определения общей коррозионной стойкости металла в данной среде. При таких коррозионных испытаниях легко контролируются основные факторы, влияющие на результаты определения стойкости металла. [c.160]

    Для установления производительности обкатки при непрерывном повышении числа оборотов надо исходить из следующих положений. Чтобы приработать поверхности друг к другу и создать на шероховатостях необходимую опорную площадь, надо снять некоторое, вполне определенное количество металла. Это количество может быть снято с поверхностей при каком-то идеальном процессе обкатки, который едва ли может быть осуществлен. Разумеется, это количество металла должно быть минимальным по сравнению с тем, которое может быть снято при практически выполнимых видах обкатки. Царапины, риски, образующиеся во время обкатки на поверхностях трения, снимают с них дополнительное количество металла. Таким образом, мы можем допустить, что при идеальной обкатке с поверхностей трения для случая, разобранного на фиг. 18 (линия Б), будет снято не более 2 г металла. Судя по линии Б, видим, что приводимые соображения близки к действительному положению вещей. Все это дает возможность с некоторой обоснованностью подойти к расчету времени, в течение которого надо провести обкатку. Для этого при непрерывном повышении числа оборотов надо выбрать Такое время обкатки, за которое будет снято металла не- [c.43]

    Электрогравиметрию применяют для определения таких металлов, как медь, никель, кадмий, а также для определения свинца в виде диоксида, осажденного на платиновом аноде, и хлорид-ионов в виде хлорида серебра, осажденного на серебряном аноде. В качестве материала для электродов, на которых происходит электроосаждение определяемых компонентов, чаще всего применяют платину (обычно в виде сетки) или ртуть (слой ртути на дне ячейки). Потенциал рабочего электрода устанавливают вручную или с помощью потенциостата. В этом случае применяют трехэлектродную ячейку. Для ускорения электролиза раствор перемешивают с помощью магнитной мешалки или вращением электрода. [c.543]

    При электролизе химические процессы осуществляют, пропуская электрический ток через жидкий проводник. При этом происходят окислительновосстановительные процессы, которые иногда сопровождаются сложными вторичными реакциями, особенно при электролизе органических веществ. В лаборатории электролиз применяется для аналитического определения некоторых металлов, для получения и очистки металлов, для нанесения электролитических покрытий, для восстановления и окисления органических веш,еств и при синтезе Кольбе. Ниже подробнее рассмотрены последние два вида электролиза. [c.75]

    Впервые проведен синтез карбоксилатов двухвалентных металлов в псевдоожиженном слое взаимодействующих реагентов. Кипящий слой создается двумя лопастными смесителями в герметичном реакционном устройстве. Исследована кинетика реакции стеариновой кислоты с СаО в твердой фазе в псевдоожиженном слое взаимодействующих реагентов. Установлено, что скорость реакции лимитируется диффузией реагентов. Энергия активации процесса 16,9 Дж/моль Определен вид кинетического уравнения. [c.22]

    Определение рения в виде металла [c.78]

    В тех случаях, когда характер наружного дефекта сомнителен или требуется проверить глубину его залегания, послойно снимают металл в месте дефекта. Например, такие дефекты, как риски, волосовинные трещины и закаты, по внешнему виду и характеру расположения (вдоль прокатки) сходны между собой. Для определения вида дефекта нужно в этом месте подрубить зубилом поверхностный слой металла в продольном направлении. Риски, имеющие глубину 0,1—0,3 мм, браковочным признаком не служат. [c.232]

    Важной частью любого исследования чистой культуры является состав среды, в которой происходит рост организмов. Сложная питательная среда типа питательного бульона, часто используемая в бактериологических лабораториях, непригодна для проведения работ с битумами. Такие среды состоят из органических материалов типа пептонов или мясных экстрактов и углеводов в качестве источника углерода и энергии для роста микроорганизмов. В такой среде организмы, которые могут разрушать битум или углеводород, как правило, отдают предпочтение углеводу, а не углеводороду. Поэтому для исследования действия микроорганизмов на битумы нужно получить химически определенную среду, содержащую азот, фосфор, серу и ионы металлов, необходимые для роста, но не содержащую углеводов или каких-либо других легко ассимилирующихся форм углерода. Такой средой является состав, предложенный Филлипсом и Трекслером [20]. Выбор правильного сочетания ингредиентов усложняется тем, что у различных организмов требования к пище неодинаковы. В табл. 5.1 приводится состав среды, использованной для роста организмов класса Pseudomonas на углеводородах. Часто такие среды способствуют также росту организмов других видов. Чтобы установить, будет ли эта среда поддерживать рост организмов определенного вида, следует ввести глюкозу и привить организм. Если будет наблюдаться рост, то среда,, вероятно, может быть пригодна для роста микроорганизмов данного вида при использовании углеводорода или битума в качестве источника углерода вместо глюкозы. [c.179]

    При действии на растворы полисахаридов бактериями определенного вида протекают процессы, направленность которых приводит к получению новых сложных по химическому строению веществ — биополимеров. В зависимости от синтеза (температуры, концентрации растворов, содержания примесей и т. д.) при использовании различных видов и штаммов бактерий, свойства получаемых препаратов колеблются в широких пределах. В зарубежной практике бурения испытан ряд биополимеров ХЗ, ХР8 и др. По литературным данным, биополимеры обладают достаточно высокой стабилизирующей способностью в присутствии большого количества поваренной соли и водорастворимых солей двух-и поливалентных металлов. Некоторые из биополимеров обладают особыми свойствами селективного взаимодействия с выбуренными горными породами, флокулируя последние. При этом они не взаимодействуют или слабо взаимодействуют с другими компонентами промывочных жидкостей. Биополимеры с флокулирующими горные породы свойствами особенно перспективны при применении безглинистых промывочных жидкостей с низкой водоотдачей (водные растворы защитных коллоидов). Благодаря применению биополимеров такие системы в процессе бурения не обогащаются твердой фазой за счет выбуриваемых пород, т. е. не переходяг в естественные суспензии. Водные растворы биополимеров находят применение в качестве промывочных жидкостей при бурении [c.153]

    В силу ряда причин в научной и технической литературе остается недостаточно изученной пробле.ма создания эффективных ингибиторов для защиты металлов в условиях коррозии под напряжением (механохимическая коррозия [8]), а также исследования их защитных свойств и механизмов действия. Испытания ингибиторов проводятся либо в статических условиях, либо (значительно реже) при действии определенного вида усилий (например, изгибающих, растягивающих, сжимаюспих и т.п.). В результате при сложном напряженно-деформированном состоянии металла, характерном для действующего оборудования различного профиля, эффективность ингибиторов может существенно снижаться вплоть до инверсии в действии. Игнорирование механохимического фактора негативно сказывается и на изучении механизмов их защиты, в значительной степени снижая корректность интерпретаций. [c.179]

    Прнборы и реактивы прибор для определения эквивалента металла, аналитические весы, термометр, барометр шкаф сушильный, металлы в виде ленты или стружки, бюретка емкостью 50 мл - [c.22]

    Изменение концентрации точечных Д. используется для управления физ.-хим. св-вами твердых в-в и хим. процессами с их участием. Так, допируя галогениды серебра ионами кадмия и увеличивая тем самым в них концентрацию катионных вакансий, удается понизить адсорбцию на них додециламина-коллектора в процессе флотации. Точно так же допирование прир. сульфида свинца (галенита) ионами серебра и висмута изменяет заряд пов-сти н ее способность к адсорбции заряженных молекул коллектора при флотации. Допируя TiOj ионами тантала, можно существенно изменять скорость заполнения межгрануляр-ного пространства при спекании методом горячего прессования. Ионную проводимость ZrOj. возникающую вследствие допирования СаО, связывают с образованием вакансий и своб. ионов 0 . Точечные Д. изменяют скорость полиморфных превращений, коррозии металлов и сплавов, процессов спекания и рекристаллизации керамич. материалов. Т. наз. вакансионные состояния часто предшествуют образованию частиц продукта в виде самостоят. твердой фазы при гетерог хим. р-циях. В ряде случаев получение кристаллов с заданной концентрацией точечных Д. определенного вида необходимо при создании материалов для микроэлектроники, лазерной техники, люминофоров и др. [c.30]

    Первоначально К а возник как вид органолептич восприятия продуктов потребления и произ-ва для оценки их качества В первую очередь это относилось к лек в-вам, для анализа к-рых был разработан т наз мокрый путь, т е анализ жидкостей и р-ров С переходом к произ-ву и применению металлов возник пробирныи анализ, первоначально как К а для определения подлинности благородных металлов В дальнейшем он стал методом приближенного количеств анализа Одновременно развивались разл варианты пирохим К а для определения цветных металлов, железа, а также для анализа содержаишх металлы минералов и руд Качеств аналит сигналом при этом служили внеш вид королька восстановленного металла, окраска конденсатов выделяющихся летучих прю-дуктов, образование характерно окрашенных стекол ( перлов ) при сплавлении анализируемых в-в с содой, бурой или селитрой [c.359]

    Определение. Качественно Р. обнаруживают в виде HgjNH2 l, HgS, а также атомно-абсорбционным, эмиссионным спектральным, фотометрич. и др. методами. Гравиметрически Р. определяют в виде металла, HgS, Hg2 l2, перйодата Hg5(IOg)2. Пробу руды разлагают при нагр., Р. отгоняется в присут. восстановителя (порошок Fe илн Си) под шубой из ZnO. Образующуюся Р. собирают на холодной золотой пластинке, к-рую по окончании анализа промывают и взвешивают. При низком содержании Р. в рудах используют кислотное разложение руд с добавлением фторида для растворения кварца и силикатов, содержащих Р. в высокодисперсном состоянии затем проводят концентрирование путем отделения примесей др. элементов экстракцией разл. комплексных соединений Р. (галогенидов, роданидов, дитиокарбаматов и др.). При прокаливании и сплав-ле.нии рудных концентратов и соединений Р. с содой Р. полностью удаляется в виде металла. Для подготовки аналит. пробы используют сочетание экстракции с термич. восстановлением и отгонкой Р. подготовленную пробу можно анализировать любым из перечисленных выше методов. Термич. восстановление используют также для качеств, обнаружения Р. даже при низких ее концентрациях. При фотометрич. определении Р. в качестве реактива используют 1-(2-пиридилазо)-2-нафтол, позволяющий определять микрограммовые кол-ва. Следы Р. также м. б. определены при помощи дитизона, используемого как гри фотометрич., так и при титриметрич. определении. [c.279]

    Определение с оксихинолином. Ден и др. [678] предложили метод одновременного определения А1 и Ре, а также А1, Ре и Т1 полярографированием раствора оксихинолина-тов в диметилформамиде. Осаждени в виде оксихинолинатов позволяет отделить эти металлы от щелочных и щелочноземельных металлов, а также от ионов МН4 , которые при высоких концентрациях мешают определению алюминия. Одновременное определение указанных металлов возможно благодаря большой разнице между величинами их Раствор оксихинолината алюминия в диметилформамиде дает три волны с /, = — 1,75 —2,10 и —2,37 в. Из них наиболее выражена первая. Вода при содержании до 1% [c.145]

    По числу определяемых элементов и по своим возможнбстям вариант электрохимического концентрирования определяемого компонента в виде металла является самым распространенным и самым изученным. Независимо от состояния в растворе определяемый компонент восстанавливается на электроде до элементного состояния, образуя амальгаму M(Hg) на ртутном электроде или твердофазный концентрат (Мтв) на поверхности твердого электрода. Однако, если образование концентрата на твердых электродах осуществимо гфактически для всех перечисленных элементов, то возможности ртутных электродов ограничены. Во-первых, их нельзя применять для металлов, потенциалы ионизации которых положительнее ртути (Ag, Ли, Рс1 и др.), и для самой ртути. Во-вторых, применение ртутных электродов для определения Ре, N1, Со сопряжено с большими трудностями из-за их крайне малой растворимости в ртути. В табл. 11.1 и 11.2 приведены основные характеристики вольтамперограмм при определении металлов на ртутном и графитовом электродах в различных фоновых электролитах. [c.419]

    Благодаря чувствительности, воспроизводимости и простоте, спектроскопия в УФ/вид.-области применяется для количественного определения микроколичеств металлов, в анализе лекарственных препаратов, биологических жидкостей и пищевых продуктов. Пределы обнаружения обычно лежат в диапазоне 10 -10 моль/л (при использовании экстракщгонного концентрирования), погрешность воспроизводимости метода в обычных случаях не превышает несколько десятых процента. Подробнее см. разд. 9.1.6 (определение микроколичеств металлов, холестерина, ферментов, ВИЧ и др.). [c.156]

    Определение щелочных металлов в минералах и горнык породах 10—30 мг анализируемого материала разлагают в платиновом тигле фтористоводородной кислотой и выпаривают Остаток выпаривают с щавелевой кислотой и прокаливают Из охлаждеиноро остатка вода извлекает образовавшиеся при прокаливании карбонаты щелочных металлов, а также немного гищроокиси магния и карбонатов щелочноземельных металлов После осаждения 8-оксихинолином в фильтрате находятся только щелочные металлы (и избыток 8-оксихинолина) Фильтрат обрабатывают серной кислотой и т д, как указано выше [16] Можно после разложения фтористоводородной кислотой раствор выпарить досуха и остаток обработать раствором Са(0Н)2, который осаждает посторонние катионы в виде гидроокисей Фильтрат, содержащий калий, натрий и избыток гидроокиси кальция, обрабатывают карбонатом а М Мония для осаждения кальция В фильтрате определяют суммарное количество калия и натрия в виде сульфата описанным выше способом [35, 311] [c.25]

    Определение щелочных металлов в солях Из раствора солей удаляют катион в виде соответствующего малорастворимого соединения, например, из раствора нитрата бария осаждают сульфат бария, из раствора нитрата свинца осаждают сульфид свинца и т. п. Фильтрат выпаривают досуха, остаток прокаливают и извлекают водой. К отфильтрованному раствору добавляют несколько капель H2SO4 и т. д. [425, 540] Можно также удалять катионы меди, кобальта, никеля и других элементов электролизом, и в оставшемся растворе определять сумму щелочных металлов в виде сульфатов [347]. [c.26]

    Газометрическое определение. Из раствора выделяют таллий электролизом в виде металла (стр. 83). Если электрод с таллием обработать кислотой, то выделяется водород, объем которого при прочих равных условиях пропорционален количеству таллия, что и дает возможность газо-хметрического определения этого металла 696]. Метод требует специальной аппаратуры и не дает точных результатов, особенно при малых количествах таллия, так как при промывании осадок частично окисляется [2]. [c.125]

    Осаждение в виде металлической сурьмы. От Sn, d и ряда других эломентов Sb можно отделить осаждением в виде металла в среде 0,4 М НС1 восстановлением железным порошком. Вместе с Sb осаждаются Си, Bi и частично РЬ и As [1362]. Для выделения Sb в элементном виде в качестве восстановителя применяют также другие металлы, в том числе губчатый свинец [714], кадмий в виде порошка [660] и алюминий в виде опилок [587]. С применением губчатого свинца одновременно с Sb выделяются Си и Bi. При выделении Sb с использованием порошка кадмия цементацию проводят в среде 6 М НС1 при нагревании. Из растворов с концентрацией Sb > 1,5 г-ион л она выделяется количественно. С применением алюминия можно количественно выделять Sb, проводя цементацию при 60° С в 3%-ном растворе тартрата натрия. В этих условиях As(III) не выделяется. Однако в присутствии даже небольших количеств As(III) сурьма выделяется уже не полностью присутствие равных или больших количеств As подавляет цементацию Sb. В 0,5 М НС1 происходит количественная цементация Sb, в то время как As остается в растворе. Если же в растворе присутствует Си, то алюминий восстанавливает As до арсина [587]. При определении Sb в галлии и сплавах индия с галлием и индия с цинком выделяют Sb цементацией ее на оловянном электроде из раствора, 0,5 М по НС1 [662]. [c.100]

    При высоких температурах (1100—1200° С) ReSj разлагается на элементы [936]. При нагревании около 450° С в вакууме гептасуль-фнд такн е разлагается на дисульфид рения и серу. При нагревании в токе водорода при температуре красного каления удаляется вся сера и остается свободный рений. Этот прием может быть использован для определения рения в виде металла. При этом достигается отделение рения от Se, Ge и As. [c.77]

    Для определения рения в виде металла осадок гептасульфида рения или двуокись рения восстанавливают до металлического рения водородом при 900—1000°С [807, 1064, 1093].При этом должны отсутствовать нелетучие элементы. Определению рения не мешает соосажденная с Re S, сера, а также As, Ge, Se, которые при восстановлении улетучиваются. [c.78]

    Существует ряд методов определения рения, основанных на его электрохимическом осанадении при постоянном токе на Pt-катоде [94, 1178, 1210, 1243]. Недостатком этих методов является осаждение наряду с металлом окислов рения и довольно легкое окисление влажного осадка металлического рения кислородом воздуха, что затрудняет последующее прямое гравиметрическое определение рения в виде металла и ухудшает точность метода. [c.80]

    Для определения висмута кислый раствор висмутовой соли разбавляют до 75—100 мл, добавляют некоторое количество формалина и 10%-ный раствор едког" натра до образования мути основной соли после Этого добавляют еще 5 мл 10%-ного едкого натра и нагревают на водяной бане при непрерывном иеремешивании. Когда весь висмут выделится в виде металла, fi раствор над осадком станет совсем про-.чрачным и на стенках сосуда выше уровня жидкости не будет заметно основной соли висмута, нагревают на нлитке до кипения, и черея [c.277]


Смотреть страницы где упоминается термин Определение в виде металла: [c.235]    [c.283]    [c.19]    [c.269]    [c.461]    [c.370]   
Смотреть главы в:

Химико-технические методы исследования -> Определение в виде металла

Химико-технические методы исследования -> Определение в виде металла




ПОИСК





Смотрите так же термины и статьи:

Газохроматографическое определение металлов в виде летучих соединений

Определение в виде малорастворимых неорганических соединений или в форме металла

Определение в виде солей металлов

Определение металлов в виде оксидов

Определение ртути в виде металла (метод

Посторонние ионы допустимые концентрации при определении металлов в виде

Уран определение в виде фосфорнокислого марганца, цинка, бериллия, щелочноземельных металлов

Уран определение в виде фосфорнокислого металлов сероводородной группы



© 2024 chem21.info Реклама на сайте