Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Неорганические элементы и ионы

    Б неорганическом фотометрическом анализе наиболее часто используют реакции комплексообразования ионов определяемых элементов с неорганическими и особенно с органическими реагентами, реже реакции окисления-восстановления, синтеза и других типов. В органическом фотометрическом анализе чаще применяют реакции синтеза окрашенных соединений, которыми могут быть азосоединения, полиметиновые и хинониминовые красители, ациформы нитросоединений и др. Иногда используют собственную окраску веществ. [c.53]


    Наибольшее число работ по неорганической ТСХ посвящена разделению и идентификации катионов. Первые работы в области анализа неорганических солей методом ТСХ были связаны с систематическим ходом анализа неорганических элементов, входящих в органические соединения предварительное разделение исследуемой смеси неорганических ионов на аналитические группы классическим методом анализа и последующее разделение с помощью ТСХ катионов групп меди, сульфида аммония, карбоната аммония, щелочной группы, смеси анионов на отдельные компоненты [90,, стр. 467—474]. [c.44]

    Количественный анализ — раздел аналитической химии, в задачу которого входит определение количества (содержания) элементов (ионов), радикалов, функциональных групп, соединений или фаз в анализируемом объекте. К.а. позволяет установить элементный и молекулярный состав исследуемого объекта или содержание отдельных его компонентов. В зависимости от объекта исследования различают неорганический и органический анализ. В свою очередь их разделяют на элементарный анализ, задача которого установить, в каком количестве содержатся элементы (ионы) в анализируемом объекте, на молекулярный и функциональный анализы, дающие ответ о количественном содержании радикалов, соединений, а также функциональных групп атомов в анализируемом объекте.Классическими методами К. а. являются гравиметрический (весовой) анализ и титриметрический (объемный) анализ. [c.68]

    Из спектров поглощения неорганических атомных ионов известно, что слабо связанные электроны, поглощение которых сильно смещено в длинноволновую область спектра,появляются у всех тех ионов, у которых электронные оболочки не имеют законченной конфигурации благородных газов. Сюда относятся в первую очередь ионы переходных элементов, как, например. Ре, Ре, Си, Си, Ни и ионы редких земель. Наоборот, ионы с заполненными оболочками благородного газа, как, например. К, Na, М , Са, Р, СГ, поглощают, только начиная с границы кварцевой ультрафиолетовой области наибольшая прозрачность наблюдается у самих благородных газов. [c.258]

    Возможность образования разнообразных соединений на электроде в результате катодных и анодных реакций создает условия для осуществления анализа многокомпонентных систем без предварительных операций разделения и выделения определяемого элемента. В зависимости от химической природы элементов их концентрируют в виде гидроокисей, неорганических солей, ионных ассоциатов или внутрикомплексных соединений с органическими реагентами. [c.164]


    НЕОРГАНИЧЕСКИЕ ЭЛЕМЕНТЫ И ИОНЫ [c.343]

    Известно, что только фториды РЗЭ и различные соли серебра имеют ионную проводимость при комнатной температуре. Поэтому большой интерес представляют исследования по искусственному увеличению электропроводности кристаллических веществ за счет введения в структуру кристалла определенного количества примесей, которые увеличивают число дислокаций в кристаллической решетке и тем самым повышают концентрацию переносчиков тока. Отсутствие соединений с ионным характером проводимости заставило исследователей использовать в качестве чувствительных элементов ион-селективных электродов более сложные композиции, состоящие из смеси веществ с ионной проводимостью и труднорастворимого неорганического соединения, содержащего ион, одноименный с ионом активного компонента. Обычно в качестве активного компонента используют сульфид серебра. Механизм работы такого электрода основан на введении в осадок сульфида серебра сульфида другого металла с большим значением произведения растворимости, чем для сульфида серебра. В электропроводном слое в этом случае должны протекать реакции  [c.143]

    Органические соединения — это углеводороды и их многочисленные производные, в состав которых могут входить многие элементы периодической системы. Органические соединения обладают рядом характерных особенностей, которые отличают их от неорганических. Почти все они (за редким исключением) горючи, большинство из них не диссоциируют на ионы, что обусловлено природой ковалентной связи — основной химической связи в органических веществах. [c.52]

    Благодаря высокому сродству тех или иных ионов к ионообменнику их можно сорбировать на нем из большого объема разбавленного раствора путем пропускания пробы через колонку, заполненную этим ионо-обменником. Сорбированные ионы можно затем выделить в небольшом объеме элюата, содержащего ионы, имеющие более высокое сродство к ионообменнику или более высокую концентрацию. Таким способом выделяют для анализа обычные и редкие неорганические элементы, а также радиоизотопы и следовые количества органических соединений. [c.194]

    Такое исследование может бт>1ть проведено на окислительно-восстановительных элементах, электроды которых содержат неорганические ионы переменной зарядности, нанример Ре Ре Ы0з Ы02 [Ре ( N),i [Ре (СЫ)ц1 Сг Ст , а также элементы, одним из электродов которых является каломельный электрод, другим — любая окнслительно-восстановительная система нанример [c.317]

    Степень окисления. Одним из основных понятий в неорганической химии является понятие о степени окисления . Под степенью окисления понимают заряд атома элемента в соединении, вычисленный исходя из предположения, что соединение состоит из ионов. [c.44]

    Ниже приводится страницы, содержащие сведения по определению данного элемента или неорганических соединений и ионов, в состав которых входит этот элемент. Данные по определению [c.910]

    В процессах окисления органических веществ в жидкой фазе часто используются не специально приготовленные катализаторы, а обычные неорганические соединения, в их состав обычно входят элементы, атомы которых легко меняют свою валентность, например Со, Си, Мо. Эти ионы, как правило, соединены с достаточно большими органическими фрагментами и образуют соли или хелаты, растворимые в окисляющемся органическом веществе. Некоторые из таких реакций окисления имеют радикальный характер, и добавление бром-иона может инициировать реакцию преимущественно вследствие образования атома брома - носителя цепи. [c.284]

    Ионный обмен используют в кожевенной, гидролизной, фармацевтической промышленности для очистки растворов, а также для удаления солей из сахарных сиропов, молока, вин. С помощью ионитов улавливают ионы ценных элементов из природных растворов и отработанных вод различных производств. Промышленное производство многих продуктов жизнедеятельности микроорганизмов (антибиотиков, аминокислот) оказалось возможным или было значительно удешевлено благодаря использованию ионитов. Применение ионного обмена позволило усовершенствовать методы качественного и количественного анализа многих неорганических и органических веществ. [c.304]

    Наибольшее распространение получил ионный обмен. Для концентрирования элементов ионообменным методом чаще всего используют органические иониты и неорганические ионообменные материалы. Активированный уголь является эффективным сорбентом для молекулярной сорбции. На нем можно концентрировать хелатные комплексы металлов. [c.316]

    Приведены физико-химические константы и реакционная способность более чем 3500 неорганических веществ, выпускаемых химической промышленностью и обычно используемых в лабораториях, свойства и строение атомов элементов, природных и радиоактивных изотопов. молекул, радикалов и ионов. Изложены номенклатурные правила составления химических формул и названий, даны тривиальные, устаревшие и минералогические названия веществ. [c.375]


    ХИМИЧЕСКИЙ АНАЛИЗ — анализ материалов с целью установления качественного и количественного состава их. На научной основе используется с 17 в. Осн. разделы X. а,— качественный и количественный анализьь Цель качественного анализа обнаружить, какие элементы, ионы или хим. соединения содержатся в анализируемом веществе. Качественный X. а. неорганических веществ основан на проведении хим. реакций, сопровождающихся каким-либо эффектом, непосредственно воспринимаемым экспериментатором — образованием труднорастворимых или окрашенных соединении, выделением газообразных веществ и др. Обычно анализируемое вещество сначала растворяют в воде или в к-тах, а затем проводят т. н. систематический анализ, к-рый заключается в последовательном выделении из раствора под действием спец. групповых реагентов малорастворимых соединений нескольких хим. элементов. Так, раствор соляной к ты выделяет хлориды серебра, свинца и одновалентной ртути. При действии сероводорода в кислом растворе осаждаются сульфиды мышьяка, олова, сурьмы, ртути, меди, висмута и кадмия. Раствор сернистого аммония выделяет из нейтрального раствора сульфиды и гидроокиси никеля, кобальта, алюминия, железа, марганца, хрома, цинка и некоторых др. элементов. При действии карбоната аммония [c.686]

    Органические и неорганические осадители при соответствующих условиях могут реагировать не с одним, а со многими ионами. Реактивов, которые осаждали бы только один ион из любой сложной смеси, нет. При анализе сложных смесей выбор возможно более специфического реактива имеет существенное значение, однако наиболее важен выбор наилучших условий для проведения реакции. Иногда разделение элементов, образующих осадки с одним и тем же реактивом, удается выполнить наиболее простым способом —созданием определенной кислотности. Однако этот способ не всегда достигает цели, а иногда неудобен. Очень часто поэтому применяют другой способ вводят вещество, связывающее в комплекс ионы других элементов, мешающих осаждению данного иона. Ион мешающего элемента хотя и остается в растворе, но связывается в комплексное соединение. При таком способе удаления мешающих ионов не требуется фильтрование и не возникает осложнений в связи с соосаждением. [c.106]

    Неорганические соединения, у которых возможен переход возбужденных электронов на основной уровень только с определенных энергетических уровней, обладают флуоресценцией. Этим требованиям удовлетворяют соединения редкоземельных элементов и урана (III, IV, VI). Флуоресценция свойственна, в основном, органическим соединениям. Поэтому в анализе неорганических веществ используют флуорогенные органические аналитические реагенты, образующие флуоресцирующие комплексы с ионами металлов. Чем сильнее поглощает органическое соединение в ультрафиолетовой области спектра, тем интенсивней его флуоресценция. Этому условию удовлетворяют алифатические, насыщенные циклические соединения, соединения с системой сопряженных двойных связей, и в меньшей степени ароматические соединения с гетероатомами. Введение электро-нодонорны х заместителей в молекулу органического соединения [c.95]

    В четвертой и пятой главах были рассмотрены электродные процессы в растворах органических соединений, в ходе которых органическое вещество не претерпевает электрохимических превращений, а, адсорбируясь на электроде, влияет на скорость электродного процесса с участием неорганических ионов или молекул. Последующие главы посвящены изложению современных представлений об электродных превращениях самих органических соединений. Такие процессы лежат в основе электросинтеза органических веществ и работы электрохимических генераторов электрической энергии — топливных элементов с органическим горючим. [c.188]

    Чувствительные потенциометрические устройства состоят из основного чувствительного элемента (ион-селективного электрода) н модифицирующего мембранного слоя, который ведет себя как дополнительная селективная граница раздела. Природа модифицирующего слоя (химически активного или неактивного) повышает селективность сигнала, и чувствительность основного элемента увеличивается при определении различньос неорганических газовых и органических молекул. Эти устройства рассмотрены в разд. 7.7. [c.407]

    Элементы подгруппы калия — калий К, рубидий Rb, цезий s и франций Fr — наиболее типичные металлические элементы — катио-ногены. При этом с повышением порядкового номера этот признак у элементов усиливается. Для них наиболее характерны соединения с преимущественно ионным типом связи. Вследствие незначительного поляризующего действия ионов (малый заряд, устойчивость электронной структуры, большие размеры), комплексообразование с неорганическими лигандами для К , Rb , s , Fr" нехарактерно, даже кристаллогидраты для них почти не известны. [c.490]

    Электронным парамагнитным поглощением обладают вещества, имеющие неспаренные электроны. К ним относятся 1) ионы с частично заполненной внутренней электронной оболочкой, например ионы переходных элементов Ы-, 4й-, 5(1-, 4/-, 5/-) 2) органические и неорганические свободные радикалы, среди них многие неорганические радикалы, образующиеся при облучении (РОз , АзО з , N03 , 50з ), а также ряд неорганических молекул (СЬО, СЮг, СЮз, N0 и др.) с нечетным числом электронов 3) атомы с нечетным числом электронов (галогены, водород) 4) центры окраски, которые представляют собой электроны или дырки, захваченные в различных местах кристаллической решетки 5) металлы и полупроводники вследствие наличия в них свободных электронов. [c.204]

    Из атомов элементов главных подгрупп обычно получаются ионы, имеющие электронную конфигурацию атомов благородных газов. Химическая связь, образованная за счет кулоновских сил притяжения между противоположно заряженными ионами, на-зывается ионной. Ионная связь характерна для неорганических солей, которые в твердом состоянии существуют в виде кристаллов (ионные кристаллы). Типичными представителями ионных соединений являются галогениды щелочных металлов. Далее будет показано, что полный переход электронов от одного атома к другому никогда не происходит и 100%-ной ионной связи не бывает. [c.72]

    В настоящее время наблюдается мощный интеллектуальный подъем в неорганической химии, который сильнее всего затронул те ее области, которые лежат на стыке с соседними дисциплинами химию металлоорганических и бионеорганических соединений, химию твердого тела, биогеохимию и др. Возрастает, в частности, уверенность ученых в том, что неорганические элементы играют важную роль в живых системах. Живые существа вовсе не являются чисто органическими. Они весьма чувствительны к ионам металлов почти всей Периодической системы Д.И. Менделеева. Некоторые ионы играют важнейшую роль в таких жизненно важных процессах, как связывание и транспорт кислорода (железо в гемоглобине), поглощение и конверсия солнечной энергии (магний в хлорофилле, марганец в фотосистеме II, железо в ферродоксине, медь во фта-лоцианине), передача электрических импульсов между клетками (кальций, калий в нервных клетках), мышечное сокращение (кальций), ферментативный катализ (кобальт в витамине В12). Это привело к взрыву творческой активности ученых в области неорганической химии биосистем. Мы начинаем изучать строение ближайшего и дальнего окружения атомов металлов в биосистемах и учимся понимать, как это окружение позволяет атому металла с такой высокой чувствительностью реагировать на изменение pH, давление кислорода, присутствие доноров или акцепторов электронов. [c.158]

    Определение термодинамических характеристик реакций, протекающих в обратимых гальванических элементах, можно проводить как на системах, состоящих из органических соединений хи-нон-гидрохинон, так и на ряде окислительно-восстановительных систем, содержащих неорганические ионы в различных степенях окисления. В качестве примера обратимой реакции, используемой для определения термодинамических функций и протекающей в гальваническом элементе, состоящем из водородного и хингидронного электродов, рассмотрим восстановление хинона в гидрохинон. Реакция протекает в две стадии с образованием в качестве промежуточного продукта хингидрона  [c.310]

    Такое же исследование может быть проведено на окислительновосстановительных элементах, электроды которых содержат неорганические ионы с различной степенью окисления, например [c.311]

    Выделение п-ксилола с помощью клатратных соединений. В последние годы был открыт класс неорганических комплексных соединений, которые способны образовывать молекулярные соединения с углеводородами [105]. Они получили название клатратных соединений [106]. Наиболее пригодны для образования клатратных соединений с углеводородами комплексы общей формулы МР4Х2, где М — элемент переменной валентности Р — пиридиновый остаток X — анион. Из ионов металлов наилучпше результаты дают двухвалентные никель, кобальт, марганец и железо. Наиболее пригодные азотистые основания — замещенные в 3- или 4-положении пиридины, а также хинолины. Анионом может быть простой одноатомный ион — хлор или бром, или многоатомный ион — тиоцианат, формиат, цианат, или нитрат [76, с. 235—298, 107]. [c.129]

    В работе [1] значение этой константы равно 10" , в другой [21 — 4,2 10 . Расхождение на шесть порядков в значении этой константы объясняется исключительно тем, что авторы по-разному представляли себе уравнение реакции и не учитывали состояния в растворах галлия и кверцетина. Совершенно очевидно, что для понимания химизма взаимодействия органического реактива, как, впрочем, и неорганического, с ионами металла необходимо знать состояние их в растворе. Это особенно важно прп рассмотрении химизма реакций многовалентных элементов, которые в растворе могут присутствовать в виде различных ионов, а также тех органических реактивов, которые проявляют двойственную реакционную способность. [c.22]

    Кгльций Са, стронций Sr, барий Ва и радий Ra в отличие от ранее рассмотренных элементов имеют относительно большие атомные радиусы и низкие значения потенциалов ионизации (см. с. 470). Поэтому в условиях химического взаимодействия кальций и его аналоги легко терякт валентные электроны и образуют простые ионы Поскольку ионы имеют электронную конфигурацию и большие размеры (т. е. слабо поляризуют), комплексные ионы с неорганическими ли-гандали у элементов подгруппы кальция неустойчивы. [c.479]

    За небольшим исключением здесь представлены только вещества, для которых имеются данные для высоких температур, причем преимущественно те, которые более интересны в практическом или теоретическом отношении. Так, из неорганических галогенидов представлены почти исключительно фториды и хлориды, из халь-когенидов — окислы и сульфиды и т. д. Не были включены группы веществ, представляющих более узкий интерес, например соединения индивидуальных изотопов водорода (кроме воды), моногидриды и моногалогениды элементов 2, 4 и последующих групп периодической системы, некоторые сложные соединения, (смешанные галогениды и оксигалогениды металлов, алюмосиликаты, кристаллогидраты солен, комплексные соединения). Однако в таблицах приведены данные для некоторых молекулярных ионов, радикалов и частиц, неустойчивых в рассматриваемых условиях. Из органических веществ здесь представлены только углеводороды, спирты, тиолы, тиоэфиры и отдельные представители других классов. При этом из всех классов органических веществ исключены высшие нормальные гомологи, для которых данные получены на основе допу- [c.312]

    В ЭТОЙ главе будут изложены основные представления о функционировании биологических систем с участием ионов металлов. Хотя N, S, О, Р, С н Н — это основные элементы, участвующие в формировании строительных блоков биологических соединений, живым организмам необходимы также некоторые ионы металлов. Далее мы увидим, что взаимодействия ионов металлов с молекулами природных соединений имеют, как правило, координационную природу, и в иервую очередь роль ионов состоит в поддержании нейтральности зарядов. Кроме того, эти ионы нередко участвуют в каталитических ироцессах. Таким образом, предмет обсуждения данной главы находится на грани органической и неорганической химии. [c.342]

    Для приготовления окислительно-восстановительного гальванического элемента с неорганическими ионами типа (а), (б), (в) рабочий электролит составить из растворов, содержащих ионы различных степеней окисления, в равных объемных соотношениях (10 мл 0,1 н. ЫаЫОз и 10 мл 0,1 н. ЫаНОг). Если потенциал окисли- [c.312]

    Основные механизмы выведения тяжелых металлов из атмосферы -вымывание с атмосферньп<и осадками и осаждение иа подстилающую поверхность В осадках эти элементы присутствуют в растворимой (соли, комплексные ионы) и малорастворимой формах. Соединения ртуги в атмосферных осадках классифицируются на две фуппы Первая группа п]эедставлена ее элементной формой и органическими соединениями (например, Hg( Hз)2), а вторая - неорганическими производными (например, Hg2 l2). Основное количество ртути в осадках содержится в виде металлорганических соединений. Следует заметить, что в атмосферных осадках, как правило, преобладают водорастворимые формы тяжелых металлов, что, вероятно, обусловлено наличием в атмосфере кислых оксидов серы и азота, способствующих образованию растворимых соединений. По степени обогащения атмосферных осадков металлы располагаются в следующем порядке 7п > РЬ > Сё > N1 В работе [197] показано, что средние уровни свинца в осадках составляют 12 мкг/л, адя сельских районов (не подверженных урбанизации) 0,09 мкг/л для полярных областей и акваторий океанов 44 мкг/л для урбанизированных районов. [c.105]

    Рассмотренные в данной главе модели среднестатистических молекул-относительно грубое приближение к молекулярной структуре нефтяных остатков, карбонизующихся масс, пеков и их групповых компонентов, коксов и углеродных волокон, поскольку реальные системы содержат, кроме углерода и водорода, множество других элементов от микроколичеств до нескольких процентов с соответствующими им химическими внутри- и межмолекулярными связями, структурами молекулярных фрагментов и т.д., состоят не только из нейтральных молекул, ко и из органических и неорганических свободных радикалов, ионов и радикал-ионов. Сотообразные ароматические фрагменты молекул могут быть незавершенными из-за образования внутренних и краевых дырок (см. табл. 1.9), относиться к различным гомологическим рядам и отличаться типом связи меж- [c.59]

    Выделение органической химии в самостоятельный раздел химической науки вызвано многими причинами. Во-первых, это связано с многочисленностью органических соединений (в настоящее время известно свыше трех миллионов органических Еси еств, а неорганических— около 150 тыс.). Вл дряя причина состоит в сложности и своеобразии органических веществ по сравнению с неорганическими. Например, их температуры плавления и кипения имеют более низкие значения они легко разрушаются при воздействии на них даже сравнительно невысоких температур (часто не превышающих 100°С), в то время как неорганические вещества свободно выдерживают очень высокие температуры. Большинство химических реакций с участием органических соединений протекает гораздо медленнее, чем ионные реакции неорганических веществ, что обусловлено природой основной химической связи в органических веществах — ковалентной связью. Углерод, входящий в состав органических веществ, обладает особой способностью соединяться не только с несколькими другими углеродными атомами, но и почти со всеми элементами периодической системы (кроме инертных газов). Следует подчеркнуть, что выход продукта в органической реакции, как правило, ниже, чем при реакции неорганических веществ. Кроме того, в области органической химии приходится сталкиваться с новыми понятиями и явлениями органический радикал, функциональная группа, изомерия и гомология, а также взаимное влияние атомов и атомных групп в молекуле. [c.5]

    Следует еще раз подчеркнуть, что схема Косселя — это чрезвычайно грубое упрощение. Связь О—Н не является ионной, и расстояние между центрами атомов кислорода и водорода никогда не равно 1,32 А, ион водорода утоплен в электронных оболочках кислорода (см. стр. 209). Кроме того, в случае высоких степеней окисления связь между-элементом Э и кислородом также не является ионной, и степень окисления, как указывалось выше, не соответствует заряду иона элемента. Однако несмотря на все это, схема Косселя в большинстве случаев приводит к совершенно правильным качественным выводам при сопеставлении сходных соединений, Скажем, гидроксидов элементов, принадлежащих к одной и той же группе периодической системы. Эта неожиданная применимость столь грубого построения обусловлена тем, что даже в случае связей, сильно отличающихся от ионных, их прочность растет с уменьшением межатомных расстояний (а следовательно, и вычисляемых из ни радиусов ионов ) и с увеличением степени окисления. Часто степень окисления приблизительно показывает число электронов данного атома, принимающих участие в образовании химической связи. Чем больше электронов участвует в образований связей, тем прочнее связи. Поэтому схема Косселя полезна для первоначальной общей ориентировки в многообразном материале неорганической химии. [c.89]

    Структура неорганических веществ отличается большим многообразием в зависимости от природы и числа частиц, входящих в кристаллическую решетку. При этом частицы одного вида соединяются друг с другом посредством металлической связи (элементы левой части таблицы Д. И. Менделеева), ковалентной связи с образованием полимерного каркаса (элементы середины таблицы), связи частично ионной и частично ковалентной (некоторые элементы П1, IV и V групп таблицы Д. И. Менделеева), ковалентной связи с образованием отдельных молекул и ван-дер-ваальсовых сил между этими молекулами. При наличии в составе соединения частиц двух видов связь между ними может быть ионной или близкой к ней при значительной разности электроотрицательностей между элементами (фториды, хлориды, ряд оксидов) при малой разности электроотрицательностей — преимущественно ковалентной (SO2, СО т. д.), а также связью, сочетающей признаки и ионной, и ковалентной (большинство оксидов, карбиды, нитриды, бо-риды, силициды). При наличии же в составе соединения трех и более элементов картина может быть еще более сложной. Отдельные элементы за счет преимущественно ковалентной связи между ними могут образовать самостоятельные структурные группировки — радикалы типа SO42-, Si04 -, А104 и т. д., остальные же элементы вследствие передачи своих электронов этим радикалам могут связываться с ними посредством преимущественно ионной связи (Na+, Са2+, АР+ и т. д.). Более того, могут возникать группировки в виде цепей, лент, слоев и даже каркасов, имеющих заряды, равномерно локализованные по фрагментам этих группировок, связанных друг с другом через катионы металлов. Б случае же незаряженных структурных единиц, например слоев у некоторых глинистых минералов, связь между слоями является ван-дер-ваальсо-вой, или водородной. [c.25]


Смотреть страницы где упоминается термин Неорганические элементы и ионы: [c.131]    [c.277]    [c.139]    [c.309]    [c.281]    [c.84]    [c.295]   
Смотреть главы в:

Фотосинтез 1951 -> Неорганические элементы и ионы




ПОИСК





Смотрите так же термины и статьи:

Неорганические иониты. Иониты

Неорганические иониты. Иониты неорганические



© 2025 chem21.info Реклама на сайте