Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Строение атома Атомы

    Но, согласно новым представлениям о строении атома, атом имеет ядро, состоящее из протонов (и нейтронов). Протоны и нейтроны примерно равны по массе, и, следовательно, массы всех атомов должны быть кратными массе атома водорода (состоящего из одного протона). Гипотеза Праута возродилась, зато вновь возникли сомнения относительно того, какими должны быть атомные массы. [c.167]


    Олефины нормального строения с концевой двойной связью при реакции оксосинтеза дают смесь альдегидов, состоящую приблизительно из 40—60 % альдегидов нормального строения и б0—40 % альдегидов с разветвленной цепью. Олефиновые углеводороды нормального строения с двойной связью не на конце цепи дают практически такую же смесь, как и изомерные им олефиновые углеводороды с концевой двойной связью. Так, например, нентен-1 дает около 45 % альдегида нормального строения, около 45 % альдегида с разветвленной цепью, образующегося в результате присоединения углеродного атома к предпоследнему в цепи атому углерода, и 10 % разветвленного альдегида, образующегося присоединением углерода к центральному углеродному атому. Практически такая же смесь [c.293]

    Самозатухающие ненасыщенные полиэфиры готовят из тетра-галогензамещенных ди-О-алкилпроизводных дифенилолпропана такого строения (Н — атом водорода или алкил Сх—Сз) - [c.53]

    Исходя из строения ато.ма водорода а) указать возможные валентные состояния и степени окисленности водорода б) описать строение молекулы Hj с позиций методов ВС и МО в) обосновать невозможность образования молекулы Нз. [c.219]

    Десятый ряд, составляющий седьмой, — пока незаконченный,— период, содержит девятнадцать элементов, из которых первый н последние тринадцать получе]1ы лишь сравнительно недавно искусственным путем. Следующие за актинием четырнадцать элементов сходны по строению их ато.моа с актинием поэтому их под названием актиноиды (или актиниды) помещают, подобно лантаноидам, вне общей таблицы. [c.51]

    Г лава III. Строение ато.т. Развитие периодического закона [c.90]

    Строение ато.тых ядер. Изотопы 105 [c.105]

    Подобная близость свойств объясняется тем, что в высшей степени окисленности атомы элементов главных и побочных подгрупп приобретают сходное электронное строение. Например, атом хрома имеет электронную структуру Когда [c.647]

    В. И. Ленин указывал, что диалектический материализм настаивает на приблизительном, относительном характере всякого научного положения о строении материи и свойствах ее, на отсутствии абсолютных граней в природе... з. Далее он писал Сущность вещей или субстанция тоже относительны они выражают только углубление человеческого познания объектов, и если вчера это углубление не шло дальше атома, сегодня — дальше электрона и эфира, то диалектический материализм настаивает на временном, относительном, приблизительном характере всех этих вех познания природы прогрессирующей наукой человека. Электрон так же неисчерпаем, как и атом, природа бесконечна, но она бесконечно существует, и вот это-то единственно категорическое, единственно безусловное признание ее существования вне сознания и ощущения человека и отличает диалектический материализм от релятивистского агностицизма и идеализма  [c.21]


    Делокализованная л-связь. Рассмотрим химические связи в карбонат-ионе С0 Этот ион имеет треугольное строение. Атом углерода за счет электронов р -гибридных орбиталей образует три связи, лежащие в плоскости под углом 120°, Четвертый электрон углерода образует л-связь. Валентное насыщение одного атома кислорода достигается за счет образования л-связи, двух других -за счет присоединения электрона. Строение такого иона изображают формулой [c.71]

    Как мы знаем, все твердые вещества как кристаллического, так и непериодического строения имеют остов, вид и мерность которого определяют строение вещества. Атом представляет собой систему, состоящую из валентных электронов и атомного остова. Атомное ядро отклоняется от положения равновесия весьма незначительно и практически локализовано внутри атома, тогда как валентные электроны совершают колебания с амплитудой, равной междуатомным расстояниям. Поэтому по местонахождению ядер можно определить, какое положение занимают данные атомы в молекулах и кристаллах. Зная, что степень перекрывания волновых функций достигает максимума при сближении атомов на определенное расстояние (речь идет о средних межатомных расстояниях в твердом теле, которые могут быть найдены, например, рентгеноструктурным методом) и резко уменьшается на несколько большем расстоянии, можно точно установить, какие атомы связаны между собой химическими связями. Химические связи между атомами в формулах химических соединений принято обозначать черточками. Например, хотя в молекуле дело- [c.60]

    Естественно, что фундаментальный закон химии, открытый Д. И. Менделеевым, — периодический закон—должен найти себе объяснение в закономерности строения атоМов, вскрываемой квантовой механикой. Периодичность в изменении химических свойств элементов при возрастании заряда ядра определяется периодическим повторением у определенных атомов строения внешних электронных оболочек. Легко заметить, что число электронов в последовательности от 5 до ближайшей конфигурации (первый период) или (остальные периоды) равно 2, 8, 8, 18, 32 (табл. 3), т. е. совпадает с числом элементов в периодах системы Д. И. Менделеева и объясняет, почему именно столько элементов содержится в данном периоде. Период начинается элементом, у которого впервые в системе возникает новый квантовый слой, содержащий один л-электрон (щелочной металл), и оканчивается элементом, у которого впервые в этом квантовом слое достраивается шестью электронами -подоболочка (благородные газы). Очевидно, что номер периода )авен главному квантовому числу электронов внешнего слоя. Например, атом натрия, открывающий третий период, и атом аргона, заканчивающий его, имеют конфигурации К 13л и К соответст- [c.60]

    Первые данные о строении силикатов были получены с помощью химических методов. На основании исследований учеными из школ И. И. Лемберга и В. И. Вернадского удалось сделать важные выводы о строении силикатов и выявить связь между строением и реакционной способностью отдельных групп силикатов. В алюмосиликатах удалось установить наличие стойких комплексов, переходящих при химических превращениях без изменения от одного соединения к другому. Однако в изучении силикатов наибольшие успехи были достигнуты в результате применения рентгеноструктурного и электронографического анализов, а также электронной микроскопии. К настоящему времени можно считать установленным, что основным элементом пространственной группировки кристаллических силикатов является группа 8104 в форме тетраэдра, в которой каждый атом кремния связан с четырьмя атомами кислорода. Связи 51 — О, играющие главную роль в силикатах, можно считать ковалентными. Однако полярность таких связей значительна. Как в 5102, так и в силикатах атомы кислорода располагаются вокруг атома кремния в вершинах тетраэдра, используя свою вторую валентность большей частью или на связь с другим атомом кремния или на связь с атомом металла. В последнем случае атомы кислорода переходят в состояние однозарядных отрицательных ионов. [c.59]

    Строение атома. Атом состоит из положительно заряженного ядра, в котором сосредоточена практически вся его масса, и вращающихся вокруг ядра электронов. Атом в целом нейтрален, поэтому заряд ядра и общий заряд всех электронов равны между собой. Число электронов меняется у атомов разных элементов. Порядковый номер элемента в периодической системе Д. И. Менделеева показывает, каков заряд ядра и сколько электронов содержится в нейтральном атоме этс- [c.32]

    Таким образом, общие и специфические свойства определяются схожестью электронного строения атомов ( в свободном или связанном состоянии), проявляемой в близости радиусов, величин электроотрицательности атомов, в изоморфизме соединений, равенстве и однотипности валентных возможностей атомов и т. д. Индивидуальные свойства — это свойства, присущие только данному атому это результат проявления всех особенностей его электронной структуры, его заряда ядра и всех вытекающих особенностей (энергии, геометрии атомных орбиталей). Электронная структура атома в свободном состоянии индивидуальна, неповторима. Атом занимает определенное место в непрерывном ряду элементов и обладает физической индивидуальностью спектром, атомной массой, набором изотопов и т. д. и т. п. [c.48]


    Диоксид углерода (углекислый газ ) СОз. Молекула СО имеет линейное строение. Каждый атом кислорода присоединен к атому углерода двой- [c.468]

    Способность стекол и многих полимеров затвердевать в аморфном состоянии связана с особенностями их химического строения. Для стекол (силикатных, боратных и др.) характерно образование пространственной сетки связей. В случае силикатных стекол определяющим структуру фактором является способность оксида 5102 создавать простирающуюся по всему объему сетку связей, в которой каждый атом кремния соединен с четырьмя атомами кислорода, расположенными в вершинах тетраэдра (атом кремния в центре), а каждый атом кислорода соединен с двумя атомами кремния (мостиковый кислород). Тетраэдры имеют общие вершины. В кристаллическом кварце тетраэдры образуют регулярную периодическую структуру, а в стеклообразном сохраняется локальная упорядоченность, но периодичность и регулярность структуры пропадают. [c.195]

    При описании электронного строения многоэлектронных атомов пользуются представлениями об орбиталях в соответствии с теми понятиями и характеристиками, о которых говорилось выше. Очень важно при этом знать закономерности застройки электронами энергетических уровней атомов. Необходимо учитывать всегда, что если атом находится в основном (невозбужденном) состоянии, то электроны расселены на самых низких по энергии орбиталях. Это называется принципом наименьшей энергии. [c.35]

    Альдегиды и кетоны относятся к карбонильным соединениям. Карбонильная группа С=0 характеризуется высокой реакционной способностью, что объясняется ее строением. Атом углерода р -гибридизован с кислородом он связан одной а- и одной я-связями, как в этилене. Но в отличие от этиленовой двойной связи в карбониле [c.338]

    Причина такого различия строения двуокисей углерода и кремния заключается в неодинаковости радиусов атомов этих элементов. Атом углерода настолько мал, что может разместить около себя только два атома кислорода, предоставляя каждому по две единицы валентности, т. е. образуя молекулу 0 = = С = 0. Атом же кремния размещает 4 атома кислорода, предоставляя каждому по одной единице валентности, вторая же единица валентности атомов кислорода затрачивается на присоединение следующих атомов кремния. Поэтому и образуется вместо молекулярной атомная решетка. Каждый атом кремния оказывается заключенным в тетраэдр из 4 атомов кислорода не только Б кремнеземе, но и во всех других кислородных соединениях кремния — кремниевых кислотах и их солях. [c.108]

    Вследствие такого электронного строения атом азота в соединениях может образовать четыре химические связи три за счет неспаренных электронов 2/7-подуровня и одну по донорно-акцепторному механизму за счет электронной пары 2а , которую азот предоставляет в качестве донора. [c.84]

    Разница строения цитохромов различных животных состоит в том, что меняется порядок и специфика аминокислот в полипептидных цепях. В клетках растений дрожжей и бактерий найдено около 25 различных цитохромов. Важно то, что в центре молекулы находится атом железа, который [c.338]

    Если удлинение пептидной цепи на два остатка (АТ I) понижает охно сительную энергию конформаций группы А, то укорочение на два остатка по сравнению с АТ II (АТ П-(1-6)-пептид) действует в противоположную сторону две из четырех конформаций группы В имеют самую низкую энергию, не превышающую 1,0 ккал/моль. Изменения, однако, не так резки, как в случае АТ I, и конформационные возможности гексапептидного аналога ангиотензина, лишенного с потерей двух остатков ряда стабилизирующих взаимодействий, естественно, возрастают. Реальными при определенных внешних условиях становятся не только конформации группы А, но даже j-F), особенно D,. Замены в молекуле АТ II остатков Val в третьем и пятом положениях на остатки Pro ([Рго ]-АТ II и [Pr ij-AT II) и Ala ([А1а ]-АТ II и [А1а ]-АТ II) преследовали цель внести определенные, заранее известные стерические затруднения и запретить реализацию большого числа конформаций (первые два пептида) и, напротив, сделать аминокислотную последовательность АТ II более лабильной, а также оценить ограничительный эффект на формирование пространственного строения молекулы достаточно объемных и разветвленных при атоме СР остатков Val (вторая пара пептидов). [c.574]

    Пентафториды. IP5, т. пл. —93°С, т. кип. —13 С BrPs —ц= = 0,5 10- Кл-м, т. пл. —61 °С, т. кип. 41 °С, разл. при 400°С IP5 —ц = = 0,73-10-2 Кл-м, т. пл. 9°С, т. кип. 100 °С, разл. при 400 °С. Молекулы TPj имеют пирамидальное строение, причем атом Г находится в центре основания пирамиды аксиальные межатомные расстояния d( l — Р) = 158 пм d(Br- F) = = 178 nft, d(l — F) = I75 пм экваториальные d( l — Р) = 167 пм (Вг—Р) => = 168 пм (1 — Р) = 187 пм. [c.485]

    Ион водорода и водородная связь. В 1887 г. М. А. Ильинский высказал и ооосновал утверждение, что хотя водородный атом может соединяться валентной связью лишь с одним атомом, но в случаях связи с кислородом или азотом тяготеть может к двум таким атомам . Близкие к этому взгляды высказал примерно в то же время Н. И. Бекетов. Развитие наших знаний о строении и свойствах молекул подтвердило это и привело к открытию еще одной своеобразной формы связи как между атомами, принадлежащими различным молекулам, так и между атомами одной и той же молекулы. Это — связь через водородный атом. [c.82]

    Другие возможные типы гибридизации характерны для молекул фторида бора и фторида бериллия. При взаимодействии атома бора в возбужденном состоянии (1з=2а 2р=) с атомами фтора происходит sp -гибpидизaция. При этом образуются три равноценные орбитали, которые в результате взаимного отталкивания располагаются под углом 120°, и молекула ВГз имеет плоское строение (2). Атом бериллия в возбужденном состоянии имеет конфигурацию 18 28 2р. При взаимодействии этого атома с атомами фтора одна 2з- и одна 2р-орбиталь превращаются в две одинаковые гибридные орбитали [c.36]

    В других отношениях находятся изомеры HI и IV. В иих средний углеродный атом соедкмсн с двумя остатками А, которые хотя структурно и одинаковы, но различны в стереохимическом отношении один имеет ( + )-. другой (—)-конфигурацию. Отсюда возникает возможность существования двух изомерных форм, которые различаются конфигурацией среднего углеродного атома. Обе оптически недеятельны, так как их молекулы имеют симметричное строение. Углеродный атом, который соединен со структурно одинаковыми, но стереохимически различными остатками, называют псевдоасим метрическим. [c.405]

    Ион Н9О4+ имеет пирамидальное строение. Центральный атом кислорода связан тремя сильными водородными связями с тремя молекулами воды. Прочность водородных связей может быть количественно охарактеризована высокой энтальпией реакции гидратации протона (АЯ° = —1185 кДж/моль). По данным ИК-спектроскопических исследований в кристаллическом тетрагидрате бромоводорода присутствуют ионы Н9О4+ и Вг . [c.355]

    Подобная близость свойств объясняется тем, что в высшей степени окисления атом элемента, находящегося в третьем периоде (в главной подгруппе) и атомы элементов побочной подгруппы приобретают сходное электронное строение. Например, атом хрома имеет электронную конфигурацию 1з Когда хром находится в степени окисления 4-6 (например, в оксиде СгОз), шесть электронов его атома (пять М- и один 4б-электрон) вместе с валентными электронами соседних атомов (в случае СгОз — атомов кислорода) образуют общие электронные пары, осуществляющие химические связи. Остальные электроны, непосредственно не участвующие в образовании связей, имеют конфигурацию отвечающую электронной структуре благородного газа. Аналогично у атома серы, находящегося в степени окисления -Ьб (например, в триокси-де серы ЗОз), шесть электронов участвуют в образовании ковалентных связей, а конфигурация остальных (1з 28 р ) также соответствует электронной структуре благородного газа. Короче говоря, сходство в свойствах соединений элементов побочной подгруппы и элемента третьего периода той же группы обусловлено тем, что их ионы, отвечающие высшим степеням окисления, являются электронными анапогами. Это легко видеть из данных табл. 21.1. [c.497]

    П e H T а ф T OJ) и д ы. IF3, т. пл. -93 С. т. кип. -13 С BrFj-/1-0.5-10" Кл-м, т пл. -61 С. т. кип. 41 С, разл. при 400 ° С IFj-/4-0,73-10" Кл-м, т. пл. 9 С. т. кип. 100 С, разл. при 400 С. Молекулы FFs имеют пирамидальное строение, атом Г находится в центре основания пирамиды аксиальные межатомные расстояния i/( I-F) - 158 пм, i/(Br F)-178 пм, (1-F)-I75 пм экваториальные расстояния rf( I-F) - 167 пм, rf(Br-F) - 168 пм, rf(l-F) - 187 пм. [c.471]

    Вспомним, что связь образуется за счет перекрывания орбита-лей при сближении атомов. Поскольку для гибридных орбиталей электронная плотность сосредоточена в одном направлении (в отличие от симметричного относительно ядра распределения электронной плотности 5-, р- и -орбиталей), в этом случае обеспечивается более эффективное перекрывание атомных орбиталей, и именно система гибридных орбиталей должна использоваться для образования связей. В соответствии с этим (см. рис. 16) атом Mg, имеющий гибридные 5р-орбитали, дает молекулы линейного строения атом В — плоские молекулы (например, ВРз) с тремя связями, на-правленнрлми под углом 120° друг к другу атом С — молекулы, в которых оп находится в центре тетраэдра, образуемого четырьмя связанными с ним атомами. В молекуле РСЬ атом Р находится в центре трехгранной бипирамиды, образуемой пятью атомами хлора, а в 5Р б атом 5 находится в центре октаэдра с шестью атомами Р в его вершинах. [c.77]

    Так как атомы электронейтральны, то, следовательно, в них должны содержаться и какие-то частицы, заряженные положительно. При изучении внутреннего строения атомов очень важное значение имели опыты по рассеянию а-частиц при прохождении их в газе и через металлическую фольгу (а-частицы заряжены положительно). В камере Вильсона наблюдаются прямолинейные пути а-частиц в газе. Следовательно, а-частица проходит сквозь атомы. Однако она, хотя и редко, но резко отклоняется от прямолинейного пути, что указывает на столкновение ее с положительно заряженной частицей. Эти наблюдения привели к выводу, что атом состоит из положительно заряженного ядра весьма малого объема (г = = Ю- з см), в котором сосредоточена почти вся масса атома, и электронов, находящихся на значительном расстоянии от ядра. На основании обобщения экспериментальных данных, Резерфорд в 1911 г. предложил планетарную модель атома, согласно которой атом в целом дейтраден. а положительно заряженное ядро его окружено эле1 омм п ичем ч заряду ядра (порядковому [c.15]

    Альдегиды и кетоны относятся к карбонильным соединениям. Карбонильная группа С = О характеризуется высокой реакционной способностью, что объясняется ее строением. Атом углерода. у/)--гибридизрван с кислородом он связан одной [c.379]

    Таким образом, в отличие от других элемеитов периодической системы у водорода иет нстиппых элементов-аналогов вследствие исключительности строения его ато.ма. Не случайно только для соединений водорода в степени окисления +1 имеет место специфический вид связи — водородная связь Все это свидетельстЕ1уе,т о том, что в периодической системе водороду должно быть отведено необычное место (см. первый форзац книги). Водород по праву занимает одну протяженную клетку над элементами второго периода системы (исключая пеон). Такое расположение водорода в системе вгюлие логично, так как первый период содержит всего два элемента. [c.97]

    Если посредством кислородных мостиков связывается большее количество моноядерных анионов, могут образоваться как циклические группы, так и бесконечно длинные цепи. При этом цепи могут простираться в одном направлении (цепочечные), в двух (ленточные), или в трех направлениях (пространственные структуры). Все перечисленные типы изополикислот встречаются, например, у кремния в различных природных силикатных материалах. Строение гетерополикислот еще сложнее. До сих пор еще нет единой теории, способной увязать опытные данные по структуре с характерными для гетерополикислот свойствами. Лучше других изучены додека-кислоты. Для них рентгеноструктурными измерениями установлено, что центральный атом металла тетраэдрически окружен более сложными группировками (например, [МозОюр" и [ШзОюР-. Каждая группа состоит из трех октаэдров, состыкованных по ребрам и вершинам. Благодаря этому атомы металла связываются друг с другом и с соседними группировками кислородными мостиками. Один из атомов кислорода каждой группы осуществляет одновременно связь со всеми атомами металла в группе и с центральным атомом неметалла. Молекулы воды, которые входят [c.149]

    В свободном состоянии фосфор образует несколько аллотропных разновидностей. В соответствии со строением атом фосфора образует три ковалентные связи, как и атом азота. Но в молекуле азота все три связи оба атома затрачивают на связывание друг с другом, а во всех аллотропных разновидностях фосфора все атомы связаны попарно лишь одной связью. Если один атом фосфора присоединил к себе подобным образом три других, то у каждого из последних остаются неиспользованными две единицы валентности (рис. 23), т. е. по 2 несра-ренных электрона. Эти единицы валентности могут затратиться на связывание присоединенных атомов друг с другом. Тогда образуется молекула Р4 из четырех атомов, каждый из которых связан ковалентной связью с каждым из трех остальных. Форма молекулы — правильная трехгранная пирамида (тетраэдр, рис. 23, а). Из таких молекул состоит белый фосфор. Его кристаллическая решетка, таким образом, молекулярная, слагается из молекул, слабо связанных межмолекулярными силами. Поэтому белый фосфор, подобно другим веществам с молекулярной решеткой, легкоплавок и летуч. В воде он почти нерастворим, но хорошо растворяется во многих органических растворителях. Белый фосфор ядовит. [c.67]

    К началу XX столетия стало ясно, что Система элементов в области самых тяжелых элементов характеризуется совершенно особыми радиоактивными свойствами атомов. В дальнейшем радиохимия приобрела фундаментальное значение не только для понимания строения и систематики атомных ядер, но и для космохимии звезды оказались пылаюш,ими очагами, в которых происходит синтез элементов. При этом удивительно то, что не только сбылись мечты алхимиков о философском камне , способном превраш,ать металлы друг в друга, но оказалось, что этот камень не представляет собой исключительной редкости в природе и давно известен химикам как урановые руды их начали разрабатывать в массовом масштабе, и человек широко использует их в практических целях. [c.5]

    Периодический закон Д. И. Менделеева лвляетсл основой современной химии. Изучение строения ато .юв вскрывает физический смысл периодического закона и объясняет закономерности изменения свойств элеменгов в периодах и в группах периодической системы. Знание строения атомов является необходимым для понимания причин образования химической связи. Природа химше-ской связи в молекулах определяет свойства веществ, поэтому данный раздел /1вляется одним из важнейитх разделов общей химии. Изучение этого раздела способствует формированию представлений о материальном единстве мира. [c.52]


Смотреть страницы где упоминается термин Строение атома Атомы: [c.12]    [c.98]    [c.72]    [c.93]    [c.33]    [c.56]    [c.56]    [c.69]    [c.185]   
Смотреть главы в:

Строение вещества Издание 2 -> Строение атома Атомы




ПОИСК





Смотрите так же термины и статьи:

Атомов строение



© 2025 chem21.info Реклама на сайте