Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Строение спектров и интенсивность спектральных линий

    Строение молекулы (ее симметрия) проявляет себя отчетливо в колебательном спектре, отражаясь в его характерных особенностях — числе полос, значениях частот, поляризации линий комбинационного рассеяния, интенсивности спектральных линий и их контуре и т. п. Вся совокупность данных, а не одна из особенностей позволяет установить строение многих малых молекул. В табл. 16 отражены формы колебаний и активность в ИК- и КР-спектрах газов ряда конфигураций малых молекул. Обычно для исследуемой молекулы возможно предположить исходя из соображений симметрии или химической интуиции несколько равновесных конфигураций, для каждой из которых характерно определенное число полос, соотношение между их интенсивностями и т. д. Сопоставляя имеющиеся спектральные данные с предполагаемой моделью, определяют наиболее вероятную конфигурацию (структурный анализ). Например, для молекул ВОз можно предположить две структуры — плоскую (0 ) и пирамидальную (Сзг,). Для последней в ИК- и в КР-спектрах активны все четыре колебания М1, М2, УЗ, Для плоской конфигурации в ИК-спектре активны три частоты кроме ух), а в КР-спектре — тоже три (кроме Уа). Для молекулы B я в КР-спектре найдены всего три фундаментальные частоты 471, 956 и 243 см 1. Из них наиболее интенсивна первая. В ИК-спектре обнаружены полосы при 460, 956 и 243 м . Таким образом, пирамидальная конфигурация отпадает, молекула должна быть плоской (см. табл. 16). Линия 471 см 1 в КР-спектре должна принадлежать полносимметричному колебанию у1 как наиболее яркая в КР-и отсутствующая в ИК-спектре. Вывод о плоском строении молекулы ВСЬ подтверждается методом изотопного замещения. Из табл. 16 (см. молекулы ХУз симметрии Оз ) видно, что только в полносимметричном колебании У1 (ВСЬ) = 471 см ядро атома бора не смещается от положения равновесия. Следовательно, только частота [c.175]


    Возможность теоретического объяснения возникновения и строения спектров появилась только после изложения Нильсом Бором основ его теории строения атома. Теория Бора сыграла большую роль в развитии спектрального анализа, так как позволила понять основные процессы возбуждения спектра, определяющие его вид и интенсивность спектральных линий. [c.7]

    Экспериментальным основанием теории строения атома служат данные о спектрах химических элементов. При измерениях длин волн спектральных линий точность 0,001% в настоящее время является обычной во многих исследованиях она значительно выше. Весьма точно может быть определена также интенсивность спектральных линий. Таким образом, наши знания о строении атомов основываются на весьма надежном экспериментальном материале. С рассмотрения этих данных мы начнем изучение строения атома. [c.13]

    Число возможных энергетических переходов и, следовательно, число спектральных линий в спектре определяется строением и динамикой электронных уровней атома каждого элемента. Так как в излучении принимают участие много атомов с различными начальными энергиями, то в спектре излучения наблюдаются линии, обусловленные всеми возможными энергетическими переходами, присущими этому элементу. Спектр излучения характеризуется длиной волны спектральных линий и их интенсивностью. Интенсивность спектральных линий зависит от вероятности осуществления данного перехода и от числа атомов, участвующих в осуществлении этого перехода. Эта зависимость выражается формулой [c.142]

    Линейчатые спектры обязаны своим появлением переходам электронов между энергетическими уровнями возбужденных атомов или ионов. Дискретный характер спектров связан с квантовым характером уровней. Полосатые спектры принадлежат молекулам, присутствующим в разряде, и являются результатом возбуждения электронных, колебательных или вращательных уровней молекулы. В ряде случаев тонкое строение полос исчезает, и молекулы излучают сплошной спектр. Такой спектр излучается и накаленными твердыми частицами в разряде, а также может появляться в результате переходов излучающего электрона между уровнями, энергия которых не квантуется (так называемые свободно-свободные и свободно-связанные переходы). В различных источниках и даже в разных участках пламени одного и того л е источника, а для источников, питающихся переменным током, и в разные моменты времени, может преимущественно излучаться тот или иной тип спектра и играть основную роль тот или иной механизм излучения. С точки зрения задач спектрального анализа сплошной спектр всегда, а молекулярный — почти всегда, снижают точность измерения интенсивностей спектральных линий, а следовательно, точность и чувствительность анализа. [c.18]


    За исключением отдельных случаев изотопного анализа все спектрально-аналитические методы базируются на сравнении интенсивностей спектральных линий в спектрах проб и спектрах соответствующих эталонов. Правильность полученных результатов, как уже говорилось, определяется соответствием состава и строения эталонов составу и строению анализируемых проб. Идеальные эталоны должны по всем своим свойствам совпадать с пробами, отличаясь от них лишь содержанием определяемого элемента. [c.83]

    Источник света может служить для получения информации о составе вещества или о свойствах атомов и молекул. Таковы, например, случаи спектрального анализа, измерения вероятностей переходов по интенсивностям излучения, изучение структуры энергетических уровней по строению спектральных линий, исследование магнитных и электрических свойств атомов по воздействию па их спектры внешних полей. Во всех этих случаях спектроскопист активно вмешивается в работу источника света, выбирает тип источника и режим его работы с учетом всех тонкостей поставленной задачи. Рассмотрению связи свойств атомов и молекул с их спектрами посвящены книги [10.6, 10.7]. [c.252]

    Масс-спектрометрией называется метод исследования органических веществ, основанный на изучении осколочных ионов , образующихся под действием электронного удара пучка электронов с энергией в несколько десятков электрон-вольт. Результаты получаются в виде масс-спектров, в которых регистрируются типы получившихся осколочных ионов (характеристикой каждого из них является отношение массы к заряду т/е) и интенсивность каждой масс-спектральной линии, отражающая число образовавшихся ионов данного типа. С помощью масс-спектрометрии определяют строение органических соединений и их молекулярный вес. Уже небольшие различия в строении отражаются в масс-спектрах, как это видно на примере масс-спектров бутана и изобутана (рис. 42). [c.481]

    В практике спектрального анализа важно знать зависимость между строением атома и его спектром, так как с этим связано влияние температуры пламени, а также влияние других элементов на интенсивность линии определяемого компонента и т. п. Важное значение имеют резонансные линии, отвечающие переходу электрона с нормального уровня (л = 1) на ближайший уровень п = = 2). Эти линии соответствуют первой ступени возбуждения холодного атома. Вследствие низкого потенциала ионизации щелочных и щелочноземельных металлов их резонансные линии легко возбуждаются даже при сравнительно низкой температуре газовой горелки. Существование резонансных линий помогло открытию спектрального анализа в то же время оно является основой одного из современных методов эмиссионного спектрального анализа — метода пламенной фотометрии. [c.176]

    Как и в эмиссионном спектральном анализе, в спектроскопии комбинационного рассеяния наличие вещества в анализируемом растворе устанавливается по характерным линиям в спектре. Принадлежность линии тому или иному веществу определяется по разности волновых чисел рассматриваемой и возбуждающей линий, которая не зависит от волнового числа возбуждающего излучения, и по интенсивности линии комбинационного рассеяния. Данные по характеристикам спектра КР (комбинационного рассеяния) многих веществ имеются в соответствующих таблицах. Чувствительность анализа по спектрам КР не очень велика и не относится к числу преимуществ метода. Основным достоинством спектроскопии КР является возможность анализа сложных многокомпонентных смесей и веществ, близких по строению и составу. Методами спектроскопии КР анализируют смеси парафиновых и ароматических углеводородов, нафтенов, олефинов [c.136]

    Строение молекулы (ее симметрия) проявляет себя отчетливо в колебательном спектре, отражаясь в его характерных особенностях — числе полос, значениях частот, поляризации линий комбинационного рассеяния, интенсивности спектральных линий и их контуре и т. п. Вся совокупность данных, а не одна из особенностей позволяет установить строение многих малых молекул. В табл. 16 отражены формы колебаний и активность в ИК- и КР-спектрах газов ряда конфигураций малых молекул. Обычно для исследуемой молекулы возможно предположить исходя из соображений симметрии или химической интуиции несколько равновесных конфигураций, для каждой из которых характерно определенное число полос, соотношение между их интенсивностями и т. д. Сопоставляя имеющиеся спектральные данные с предполагаемой моделью, определяют наиболее вероятную конфигурацию (структурный анализ). Например, для молекул ВС1з можно предположить две структуры — плоскую и пирамидальную [c.175]

    Спектральный анализ (эмиссионный) — физический метод качественного и количественного анализа состава вещества на основе изучения спектров. Оптический С. а. характеризуется относительной простотой выполнения, экспрессностью, отсутствием сложной подготовки проб к анализу, незначительным количеством вещества (10—30 мг), необходимого для анализа на большое число элементов. Спектры эмиссии получают переведением вещества в парообразное состояние и возбуждением атомов элементов нагреванием вещества до 1000—10 000°С. В качестве источников возбуждения спектров прп анализе материалов, проводящих ток, применяют искру, дугу переменного тока. Пробу помещают в кратер одного из угольных электродов. Для анализа растворов широко используют пламя различных газов. Качественный н полуколичественныйС. а. сводятся к установлению наличия или отсутствия в спектре характерных линий и оценки по их интенсивностям содержания искомых элементов. Количественное определение содержания элемента основано на Эмпирической зависимости (при малых содержаниях) интенсивности спектральных линий от концентрации элемента в пробе. С. а.— чувствительный метод и широко применяется в химии, астрофизике, металлургии, машиностроении, геологической разведке и др- МетодС. а. был предложен в 1859 г. Г. Кирхгофом и Р. Бунзеном. С его помощью гелий был открыт на Солнце ранее, чем на Земле. Спектроскопия инфракрасная — см. Ифракрасная спектроскопия. Спектрофотометрия (абсорбционная)—физико-химический метод исследования растворов и твердых веществ, основанный на изучении спектров поглощения в ультрафиолетовой (200—iOO нм), видимой (400—760 нм) и инфракрасной (>760 нм) областях спектра. Основная зависимость, изучаемая в С.,— зависимость интенсивности поглощения падающего света от длины волны. С. широко применяется при изучении строения и состава различных соединений (комплексов, красителей, аналитических реагентов и др.), для качественного и количественного определения веществ (определения следов элементов в металлах, сплавах, технических объектах). Приборы С.—спектрофотометры. [c.125]


    При высотах барьеров порядка десяти кДж/моль время поворотной изомеризации, т. е. время превращения одного ротамера в другой, имеет порядок Ю " с. К такой оценке приводит расчет на основе теории абсолютных скоростей реакций (см. 6.1). Следовательно, ротамеры нельзя разделить. Их наличие и доля устанавливаются путем изучения физических и химических свойств смеси ротамеров. Пространственное строение ротамероа различно, соответственно разлиЧа10тся и их колебательные спектры. За время жизни ротамера происходят сотни и тысячи колебаний (с частотами порядка 10 —10 с" )—ротамер успевает выдать свой спектр. Действительно, существование поворотпоа изомерии было впервые установлено Кольраушем с помощью спектров комбинационного рассеяния. Отношение интепсивпостей спектральных линий, отвечающих различным ротамерам, зависит от их содержания в смеси в соответствии с формулами (3.12). Следовательно, АЕ можно определить по температурному ходу интенсивностей спектральных линий. Так, для н-бутана найдено АЕ 2,5 кДж/моль. [c.66]

    Аппаратура. Рентгеновский флюоресцентный спектрометр (рис. 1) состоит из трех основных узлов рентгеновской трубки, излучение к-рой возбуждает спектр флюоресценции исследуемого образца, кристалла-анализатора для разложения лучей в спектр и детектора для измерения интенсивности спектральных линий. В наиболее часто используемой на практике конструкции спектрометра источник излучения и детектор располагаются на одной окружности, наз. окружностью изображения, а кристалл —в ее центре. Он можат вращаться вокруг оси, проходящей через центр этой окружности. При изменении угла скольжения на величину 0 детектор поворачивается на угол 20. Для увеличения светоси.пы спектрографов с плоским кристаллом применяются коллиматоры, т. н. диафрагмы Сол-лера, к-рые располагаются на пути рентгеновских лучей между крпсталлом-апализатором(обладающим большой отражательной поверхностью), источником и детектором. Они имеют сотообразное строение и представляют собой набор плоско-параллель- [c.327]

    Поляризация линий комбинационного рассеяния. Другим весьма важным параметром линии рассеяния является ее состояние поляризации. Дело в том, что, хотя пробы обычно освещают естественным (неполяри-зованным) светом, линии рассеяния вследствие процессов, связанных с рассеянием света молекулами, оказываются поляризованными и притом по-разному, в зависимости от того, какое колебание молекулы представляет та или иная линия и каков характер строения молекулы (симметрия молекул). Состояние поляризации линии рассеяния определяют так называемой степенью деполяризации р. Сильно поляризованные линии (р мало) обычно одновременно оравнительно узки и интенсивны. У широких линий степень деполяризации близка к предельному значению, равному /т. Знание степени деполяризации существенно при анализе строения молекул по их спектрам. С точки зрения количественного анализа интерес к величине р обусловлен тем, что спектрограф влияет на интенсивность спектральных линий. Именно, свет различной поляризации может быть по-разному ослаблен при прохождении через спектрограф, ибо в зависимости от поляризации он в различной степени отражается при падении на грани призм [I, в, 7 II, 12]. Следовательно, и различно поляризованные линии будут по-разному ослаблены данным спектрографом. А это может повести к тому, что если табличные интенсивности получены при помощи призменного спектрографа, то в случае перехода к дифракционному спектрографу, где условия отражения иные, чем в призменном, отношение интенсивностей у различно поляризованных линий будет отличаться от табличных. [c.150]

    Интерес к аммиаку особой чистоты обусловлен все возрастающим использованием его в эпитаксиальной технологии. Известные методы химического [1], кулонометрического [2], газохроматографического [3, 4, 5] анализа аммиака на содержание воды недостаточно чувствительны, требуют большого количества вещества. Анализ аммиака на содержание примесей гидридов фосфора и серы не разработан. Перспективны в этой связи методы газовой микроволновой спектроскопии, для которых основным объектом наблюдения является вращательные спектры молекул в диапазоне длин волн от сантиметров до долей миллиметра. Традиционные для экспериментов с использованием когерентных радиометодов высокие чувствительность и разрешающая сила позволяют легко различа ть вращательные спектры близких по строению молекул, устраняя влияние спектра основного вещества на резулыагы анализа. Анализы методами микроволновой сиектроскопии выполнялись в хорошо освоенном сантиметровом диапазоне, где имеются серийные приборы [6]. Малая интенсивность спектральных линий в сантиметровом диапазоне ограничивает аналитическое применение микроволновой сиектроскопии. [c.64]

    Количество спектральных линий, относящихся к одному атому, достаточно велико. В настоящее время наши представления о строении любой химической частицы (будь то атом, ион или молекула) настолько детальны, что сведения о практически всех ее спектральных линиях имеются в справочных изданиях. Для атомов и их ионов наибольшей популярностью пользуются диаграммы уровней энергий с указанием на них длин волн спектральных линий и сил осцилляторов соответствующих переходов. Такие диаграммы носят название Гротриановских (по имени ученого Гротриана, впервые широко использовавшего их). На рис. 1.2 приведен пример Гротриановской диаграммы для атома натрия. На основании приведенных значений сил осцилляторов можно сразу судить о наиболее интенсивных линиях в спектре этого атома. [c.16]

    РАДИОПРОЗРАЧНЫЕ МАТЕРИАЛЫ, см. Радиопоглощающие и радиопрозрачные материалы. РАДИОСПЕКТРОСКОПИЯ, методы исследования состава, строения, реакц. способности и др. св-в в-в, основанные на изучении спектров электромагн. излучения в диапазоне )адиоволн от 5 10 до Ю м (частоты от 6 - Ш до неск. ц). Благодаря малой энергии квантов и малой естеств. ширине спектральной линии в диапазоне радиоволн можно получить высокое разрешение спектра, а его параметры (положение, интенсивность, ширину и фор.му линий) определить с большой точностью. Это позволяет регистрировать резонансное поглощение или испускание электромагн. энергии, возникающее вследствие очень небольших расщеплений энергетич. уровней, к-рые невозможно обнаружить с помощью др. спектроскопич. методов. [c.171]

    Одним из методов изучения состава растворов, а также структуры индивидуальных веществ является метод спектрального анализа, подразделяющийся на абсорбционный, эмиссионный и метод спектров комбинационного рассеяния. Сущность спектрально-аналитических методов состоит в том, что излучение от подходящего источника, тем или иным способом яро-шедщее через вещество или излученное самим веществом, приобретает сложное строение характерного вида (спектр). На фоне непрерывного излучения наблюдаются области более или менее резкого изменения интенсивности различной величины, называемые полосами поглощения — в случае спектров поглощения или линиями испускания — в случае эмиссионных спектров. Это явление, как известно, обусловлено квантовым характером колебательно-вращательных движений как самих молекул, так и элементов, их составляющих. Квантовая теория, на которой мы здесь останавливаться не будем, показывает, что каждое вещество должно обладать индивидуализированным, характерным только для данного вещества набором значений колебательных частот уг, а следовательно, возможностью поглощения или испускания только строго определенных порций энергии при переходе из одного колебательного состояния в другое, так как известно, что энергия излучения Ei и частота связаны соотношением = /гу , где Н — константа Планка. [c.414]

    Число возможных энергетических переходов определяется строением электронных уровней атома каждого элемента. Вероятность осуществления отдельных переходов определяет интенсивность излучаемых спектральных линий. Чем больше вероятность осуществления данного перехода, тем больше интенсивность соответствующей спектральной линии. Наряду с нейтральными атомами линейчатые спектры дают многие однократно, двукратно, трехкратно и т. д. ионизованные атомы. Механизм излучения иона аналогичен механизму излучения нейтрального атома. Поглотив сообщенную ему энергию, ионизи- [c.126]

    При исследовании H4edta методом инфракрасной спектроскопии в области поглощения карбоксильных групп поликристал-лического образца была обнаружена только одна интенсивная полоса 1697 см , свидетельствующая о равноценности всех карбоксильных групп комплексона и расположенная в спектральном диапазоне, характерном для колебаний недиссоциированных фрагментов — СООН. Линий группы — С00 в спектре не наблюдалось. На этом основании бетаиновое строение H4edta было отвергнуто. [c.126]

    Как известно, соседство двойной связи и трехчленного цикла приводит к приблизительно двукратному увеличению интегральной интенсивности линий двойной связи в спектре комбинационного рассеяния вещества [7]. Дальнейшее изучение полученных в настоящей работе спектральных данных показало, что этот эффект отсутствует в случае углеводорода (I) интенсивности линий двойной связи в соединениях (I) и (II) близки между собой. Из этого, однако, нельзя сделать вывод об отсутствии сопрял е-ния в (I), так как особенности строения этого углеводорода, о которых упоминалось выше, позволяют по-другому объяснить наблюдаемое явление. Дело в том, что два эффекта, которые могут иметь место в (I) — сопряжение двойных связей с трехчленным циклом и усиление ароматических свойств пятичленного цикла (т. е. увеличение степени замкнутости его электронной оболочки) — оказывают противоположное влияние на величину интенсивности линий двойной связи. Наложение этих двух влияний может, таким образом, привести к компенсации эффектов. [c.136]


Смотреть страницы где упоминается термин Строение спектров и интенсивность спектральных линий: [c.12]    [c.201]    [c.80]    [c.33]    [c.240]    [c.240]    [c.62]   
Смотреть главы в:

Введение в спектральный анализ -> Строение спектров и интенсивность спектральных линий




ПОИСК





Смотрите так же термины и статьи:

Интенсивность линий в спектре ЭПР

Интенсивность спектров

Линии интенсивность

Линии спектральные, интенсивност

Спектральные интенсивности

спектры строение



© 2025 chem21.info Реклама на сайте