Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адгезия покрытий к основе

    На основе исследований деформационных свойств покрытий были определены зависимость относительной деформации от температуры (рис. 6.4) и скорость относительной деформации стандартного покрытия в зависимости от температуры при постоянной нагрузке (рис. 6.5), а также была определена температура покрытия, при которой допустим опуск изолированного трубопровода. Она составила 20—25° С и ниже (критическая +30° С) выше этой температуры покрытия подвергаются недопустимым деформациям сдвига. Чтобы избежать их, необходимо охлаждение покрытия. Исследования адгезии покрытия к поверхности металла в зависимости от темпе- [c.151]


    Для защиты покрытий от возможных механических повреждений следует применять обертки из полимерных лент с клеевым слоем или битумно-полимерных материалов при толщине основы не менее 0,5 мм. При этом адгезия покрытия к трубе должна быть больше, чем адгезия оберточного слоя к покрытию. [c.42]

    Прочность сцепления покрытия с основным металлом. Прочность сцепления никель фосфорного покрытия с основой непосредственно после осаждения сравнительно невелика На адгезию покрытия влияет не только подготовка поверхности, во и сам раствор Покрытия из щелочного раствора более прочно связаны с основой, чем из кислого Однако даже в оптимальных условиях детали, покрытые химическим никелем, не должны испытывать силовых нагрузок при эксплуатации [c.10]

    Термообработка никелированных деталей способствует повышению адгезии покрытия с основой вследствие диффузии никеля и фосфора в основной металл с образованием переходного диффузионного слоя Максимальная прочность сцепления достигается в результате нагрева покрытия при температуре 400—500 С в течение 1 ч [c.10]

    Чтобы выполнять свои функции, покрытие должно иметь хорошую адгезию к основе. Кроме того, оно должно иметь удовлетворительную химическую стойкость, а также достаточную устойчивость против ударов, толчков, износа и термических напряжений. Результатом химических процессов могут быть следующие повреждения  [c.90]

    Наиболее удачное сочетание атмосферостойкости, химической стойкости и водостойкости с растворимостью и высокой прочностью достигается при сополимеризации 85—87% винилхлорида с 13— 15% винилацетата. К их числу относится выпускаемый отечественной промышленностью сополимер А-15. Для улучшения адгезии покрытий и увеличения содержания сухого остатка при рабочей вязкости в состав лакокрасочных материалов на основе этих сополимеров добавляют алкидную или алкидно-акриловую смолу. [c.53]

    Покрытия на основе ХСПЭ, отвержденные ароматическими диаминами, обладают высокой стойкостью в газообразных и жидких агрессивных средах. Так, в покрытиях по бетону образцы не изменили внешнего вида после выдержки в течение 180 сут в парах азотной, соляной, серной и уксусной кислот [5, 14]. В покрытиях по металлу образцы показали высокую стойкость в агрессивных средах, но только при комнатной температуре. Это связано, по-видимому, с ухудшением адгезии покрытия к металлу при повышении температуры [25, 26] и значительным увеличением скорости диффузии агрессивных сред (в особенности воды) при повышенной температуре. Тем не менее, при 20 °С покрытия на основе ХСПЭ, отвержденные ароматическими диаминами, стойки в таких средах, как 20%-ные соляная и азотная кислоты, 80%-ная и 60%-ная серная кислота, 30%-ная перекись водорода, 40%-ная плавиковая кислота, 85%-ная фосфорная кислота, 40%-ный и 10%-ный раствор едкого натра, насыщенный раствор перманганата калия, изопропиловый спирт, 10%-ная уксусная кислота и 37%-ный формальдегид [26]. Покрытия на основе ХСПЭ, отвержденные ж-фенилендиамином, обладают хорошей атмосферостойкостью, превосходя в этом отношении другие композиции на основе ХСПЭ. [c.166]


    Значительного улучшения адгезии покрытий на основе ХСПЭ к металлу добиваются и применением отвердителей, содержащих наряду с амино- или иминогруппами фенольные гидроксильные и метилольные группы. Известны два вида таких отвердителей продукты конденсации дифенола (например дифенилолпропана) с уротропином и продукты конденсации эпоксидированного соевого масла, полиамина и низкомолекулярной фенолоформальдегидной смолы резольного типа. В композицию вводят до 30 масс. ч. отвердителя на 100 масс. ч. ХСПЭ [33, 34]. [c.169]

    Можно видеть, что использование продуктов модификации полиаминов жирными кисло-мами масел обеспечивает большую стойкость покрытий к воздействию ультрафиолетового излучения. Хотя высокие исходные деформационно-прочностные показатели покрытий желательны, однако важнее, чтобы их уровень, установившийся в процессе эксплуатации, обеспечивал требуемую долговечность покрытия [59]. Иллюстрацией этого могут служить данные о работоспособности покрытий магистральных трубопроводов. Для подобных покрытий, эксплуатируемых в условиях Севера, весьма важна устойчивость к циклическому т-менению температуры и влажности окружающей среды [60]. В табл. 7.7 представлена зависимость внутренних напряжений, адгезии покрытий к алюминию и прочности при растяжении пленок на основе порошковой краски П-ЭП-177 от числа циклов изменения температуры и влажности воздушной среды. [c.191]

    Однако при рН> 13 ионы никеля перестают влиять на скорость осаждения меди, и адгезия покрытия к основе ухудшается. Следовательно, восстановление никеля оказывает выравнивающее действие. При этом ионы никеля восстанавливаются не водородом, который образуется в реакции  [c.73]

    Сначала при 0,02-0,05 А/дм рекомендуется осадить определенный слой обычного никеля в качестве подслоя, а потом повысить до 1,3 А/дм и нанести черный никель. Благодаря этому повышается адгезия покрытия с основой. Для работы в условиях умеренного климата (помимо подслоя меди и никеля по стали) черные никелевые покрытия дополнительно обрабатывают в горячем растворе двухромовокислого калия. [c.118]

    При модификации фенольных олигомеров растительными маслами улучшаются эластичность и адгезия покрытий Для модификации можно использовать олигомеры на основе замещенных фенолов (на я-трег-бутилфеноле) и бутанолизированные резольные олигомеры [c.87]

    Рассмотренные методы измерения адгезии применимы только тогда, когда адгезив или субстрат оказываются гибкими. Однако имеется много систем, в которых эти условия не соблюдаются, но принцип постепенного отслаивания все же положен в основу метода измерения адгезии. Таков, например, метод определения адгезии покрытий при помощи ножа-клина [25, 31—35]. Б приборах, применяемых для измерения адгезии этим методом, образец передвигается навстречу неподвижному ножу-резцу или нож перемещается навстречу неподвижному образцу. Этот метод применим при невысокой адгезии и в основном для сравнительных испытаний. В этих случаях, подобрав соответствующие условия испытаний (угол резания, материал ножа, толщину покрытия), можно получить удовлетворительные результаты измерения адгезии одного и того же покрытия к различным поверхностям. [c.219]

    Высокая адгезия покрытий из Си, Ад, Аи, N1 и Сг к деталям из различных материалов (Ре, Мо, 51 и др.) была достигнута при напряжении 3—5 кВ, давлении аргона 2,7—6,7 Па и плотности тока 0,3—0,8 мА/см . Детали не подвергались никакой предварительной подготовке, за счет ионной бомбардировки в процессе ионного осаждения их поверхность нагревалась до 200—400 °С. Сравнение с другими методами нанесения покрытий показало, что если покрытие и основа не образуют твердых растворов, то адгезия ионных покрытий гораздо лучше, чем обычных покрытий. [c.127]

    Адгезия покрытий на основе СКУ-ПФЛ к различным стеклопластикам при 20 ° С [c.170]

    Впервые болгарские специалисты на основе алюминия и легирующих элементов разработали весьма устойчивое защитное покрытие, предотвращающее в значительной мере угар электродов [25], которое можно применять при температурах выше 1750 °С. В результате обработки электрической дугой последовательно нанесенных на электрод слоев расплавленного и порошкообразного алюминия и легирующих элементов достигается высокая адгезия покрытия толщиной 0,5—0,8 мм. Гомогенизироваиный слой электродного покрытия содержит около 75% алюминия. При температурах выше 600°С покрытие находится в расплавленном состоянии, но не стекает с поверхности, обеспечивая хорошую сцеиляе-мость с поверхностью графитированного электрода и газо([)обиость его поверхности. [c.98]

    Адгезиметр - прибор для определения прочности сцепления изоляции с поверхностью металла. Адгезия характеризуется удельной работой, затрачиваемой на отделение изоляции от металла. Эту работу рассчитывают на единицу площади соприкасающихся поверхностей. Чем выше адгезия, тем лучше защита от коррозии. Прилипаемость проверяют как с помощью приборов - адгезиметров, так и вручную. В последнем случае на изоляции делают надрез, образующий угол 45- 60 °С, и этот уголок отрывают от поверхности. Если при отрыве на металле остается часть изоляции (для мастичных покрытий) или клеевая основа (при пленочной изоляции), то прилипаемость считается хорошей. Адгезия покрытия проверяют во всех местах, вызывающих сомнение. После контроля изоляция в месте надреза должна быть сразу восстановлена. [c.106]


    Что касается покрытий на полиэтиленовой основе, то в силу своей высокой стабильности по отнощению к процессам старения они при эксплуатации мало изменяют свою структуру, и поэтому степень проницаемости таких покрытий в течение длительного времени остается практически на одном уровне. Так, после испытания и эксплуатации различных полиэтиленовых покрытий в течение большого промежутка времени (7-8 лет) в жестких условиях, включая и повьпненную температуру около 353-373 К, коэффициент влагопроницаемости их изменяется приблизительно на 1/2 порядка. Для поливинилхлоридных покрытий он изменяется на 4-5 порядков за то же время при более низких температурах. Поэтому для полиэтиленовых покрытий основными факторами, определяющими состояние защитной способности покрытий, следует считать их несущую способность и адгезию покрытия к поверхности стальной трубы. Это относится к горячим участкам трубопроводов при температуре эксплуатации 323 К и вьппе. [c.85]

    Технологический Процесс химического ннкелирован [я пресс-форм имеет некоторые особенности осуществляется особо тща тельная предварительная подготовка поверхности с целью удаления загрязнений в труднодоступных местах Термическую обработку покрытий на пресс формах изготовленных из инструментальных сталей, проводят в два этапа 1) нагрев издетия со скоростью 400 С в минуту в течение 1 — 1 5 мин с тем, чтобы в покрытии произошли структурные превращения обеспечивающие необходи мую твердость 2) 3—4 часовой нагрев при 200 °С для повышения адгезии покрытия с основой [c.32]

    В присутствии нонов никеля не наблюдается самопроизвольного отслаивания меди, что имеет место при меднении на падкой поверхности в растворе, не содержащем ионов никеля Присутствие ионов никеля даже на шероховатой поверхности повышает сцепление с поверхностью примерно в 1,5 раза В некоторых работах отмечено, что при рН 13 положительное влияние ионов никеля на адгезию покрытия с неметаллической основой значительно ослабевает, а при меднении гладкой поверхности наблюдаются вздутия осадка Химическое меднение осущесталяется после подготовительных операций обезжиривания травления сенсактивирования промывки (см хими ческое никелирование диэлектриков) [c.76]

    Высокая защитная способность покрытий может быть обеспечена только при тщательной подготовке поверхности, необходимой для хорошей адгезии покрытия к металлу. Для этого наиболее эффективной является дробе- или пескоструйная очистка. Для получения нужной толщины покрытия наносят несколько слоев смолы. После нанесения каждого слоя смолы она сначала подвергается сушке, а потом обжигу. Покрытия на основе фенольных и эпоксидно-фенольных смол характеризуются прочностью при разрыве 0,6—1,0 МПа, прочностью при сжатии 20—30 МПа и относительным удлинением при разрыве 1—3 %. [c.148]

    Живописный слой может иметь различные нарушения. Вздутия и разрушения за счет коробления основы приводят к изломам и отделению левкаса от доски. Кракелюры не типичны для желтковой темперы, так как краски на основе яичного желтка сохнут медленно, за исключением мест многослойного нанесения охры и свинцовых белил. Шелушения и отставания красочного слоя встречаются обычно на местах, где краски 1роло-жены по золоченому фону (плохая адгезия покрытия к металлическому золоту и серебру). Плохо держатся краски и на левкасах, содержащих большое количество масла. Сильно нарушается красочный слой икон при поновлениях, при промьшке икон щелоками — киселями или квасом с добавлением золы лиственных деревьев, при нанесении на потем- [c.67]

    Для получения покрытий на основе ХСПЭ применяются и другие азотсодержащие кремнийорганические соединения [38], которые обусловливают эффективное сшивание ХСПЭ при комнатной температуре. Получающиеся при этом светлые покрытия легко пигментируются, обладают хорошими физико-механическими свойствами, химической и атмосферостойкостью, хотя по адгезионным свойствам и уступают продуктам конденсации диаминов, эпоксисоединений и фенолоформальдегидных смол. Высокую адгезию покрытий на основе ХСПЭ, отвержденных циклосилиламином [39], следует отнести за счет низкой степени сшивания покрытий. В них вводят лишь 0,5 масс. ч. отвердителя, хотя для эффективного сшивания необходимо 10—15 масс. ч. отвердителя на 100 масс. ч. ХСПЭ. [c.172]

    ХСПЭ хорошо совмещается со многими синтетическими смолами, термопластами и эластомерами [12, 43], придавая покрытиям на их основе эластичность и повышенную прочность к удару. В свою очередь смолы повышают твердость покрытий из ХСПЭ и улучшают адгезию, увеличивают жесткость системы. Для увеличения твердости покрытий на основе ХСПЭ применяют меламино- и мочевиноформальдегидные смолы [42], высокостирольные бута-диен-стирольные сополимеры [44]. Введение эпоксидной смолы в композиции с ХСПЭ ускоряет сушку и улучшает адгезию покрытий, создает стабильную надмолекулярную структуру [45]. Высокомолекулярные эпоксидные смолы и фенокси-смолы способствуют устранению липкости пленок [44]. Непредельные полиэфирные смолы, тощие алкиды, циклогексаноновые и кумарон-инденовые смолы увеличивают твердость и повышают экономичность процесса получения покрытий [44]. ХСПЭ хорошо совмещается также с ПЭ [46], ПВХ, ХПВХ, ХПЭ и хлорированным каучуком [47]. [c.173]

    Фторопласто-эпоксидные композиции (ЛФЭ) представляют собой лаки на основе фторсодержащих полимеров, модифицированные-эпоксидными олигомерами [32].. Применение таких композиций позволяет сохранить основные, присущие фторопластам, свойства (влаго- и химическую стойкость, эластичность, антиадгезионные свойства, атмосферостойкость и др.) и в то же время значительно повышает адгезию покрытий. Адгезия к металлам возрастает в 4—6 раз и сохраняется при длительном воздействии (до 500 ч) кипящей воды. В значительно меньшей степени, чем у исходных фторопластов, снижаются прочностные характеристики при повышенных температурах, что обусловлено образованием, благодаря наличию эпоксидного компонента, жесткого сетчатого каркаса. Сравнительно невысокие температуры отверждения композиций позволяют наносить их не только на металлы, но и на различные другие материалы, в том числе на дерево, пластмассы, резины. Совмещение фторопластового и эпоксидного компонентов осуществляют в смесях сложных [c.213]

    Поверхности, покрытые дисперсионными силикатными краска- >ми, имеют естественный камнеподобный вид. Окрашенная по- верхность — матовая. Сформировавшееся на основе дисперсион- йой силикатной краски микропористое покрытие обеспечивает высокие эксплуатационные свойства высокую адгезию покрытия к подложке, высокую прочность самого покрытия, сопротивление Истиранию, а также атмосферным влияниям. Это касается также такого свойства, как паропроницаемость покрытия, обеспечи- вающая возможность быстрого удаления водяных паров из поме- Пения без их конденсации внутри помещения. [c.195]

    Растворимый полимер пытались использовать как средство, промотирующее адгезию покрытий на основе дисперсий. Этот подход логичен, так как непрерывная фаза дисперсии или наружная поверхность частиц первыми вступают в контакт с подложкой, на которую наносят покрытие. В одном из исследований для этих целей применяли полимер винилоксазолина, модифицированный жирными кислотами [62]. [c.99]

    Наиболее важным требованием, предъявляемым к гальваническим покрытиям, является сцепление (адгезия) покрытия с металлом-основпй- С11,еп.яение покрытия с основой должно быть таким прочным, чтобы при механической или тепловой обработке не происходило отслаивания покрытия. Причиной отслаивания, растрескивания или образования на поверхности пузырьков могут быть внутренние напряжения. При нормальных условиях электролиза никелевые, хромовые и кобальтовые покрытия характеризуются напряжениями растяжения, в то время как цинковые, кадмиевые и свинцовые — напряжениями сжатия. [c.210]

    Покрытия на основе П. л. и э. сушат обычно при комнатной темп-ре. При этом практич. высыхание достигается через 1 ч иосле нанесения. Одиако полное высыхание в естественных условиях (удаление всего растворителя) пропсходит в течение 5 сут,. В ряде случаев применяют горячую сушку при этом время полного высыхания при 60 °С сокращается до 120. чип, при 120 С — до 20 мин. Кроме того, при горячей сушке повышается адгезия покрытия к подложке. [c.295]

    Покрытия из СКУ-ПФЛМ, подобно покрытиям из СКУ-ПФЛ, не имеют адгезии к металлам. Поэтому была проведена работа по подбору адгезивов, обладающих необходимыми эксплуатационными и технологическими свойствами. Из многих испытанных грунтов и клеев наилучшие результаты (табл. 77) показал клей У-15 на основе фенолоформальдегидной смолы и система из грунта на основе ноли-акрилонитрила АК-070 (первый слой) и эпоксидной эмали ЭП-525 (второй слой). Эти материалы сохраняют достаточно высокую адгезию покрытия из СКУ-ПФЛМ даже при 100 °С, т. е. при оптимальной теьшературе эксплуатации металлических изделий. [c.175]

    Диффузионные покрытия образуются при взаимной диффузии (возможно, сопровождаемой химическим взаимодействием) компонентов основы и среды — источника диффувантов. В качестве последней могут выступать твердые, газовые и жидкие среды. Для покрытий этого класса характерна высокая адгезия с основой. Широкое распространение получили методы нанесения диффузионных покрытий, при которых компоненты поступают к поверхности подложки в виде паров элементов или их газообразных соединений, например галогенидов. В последнем случае диффузионному процессу предшествуют химические реакции (восстановление, диспропорционирование). Распространен, в частности, порошковый метод, в котором обрабатываемый металл или сплав загружают в порошок (пороипси) насыщающих элементов или их соединений (парофазное нанесение). В газофазном порошковом методе в смесь вводят активатор, например галогениды металлов или аммония, переносчики элементов покрытия. [c.432]

    Состав недиффузионных покрытий необходимо выбирать таким образом, чтобы обеспечить совместимость материала покрытия и основы при температурах эксплуатации, а также высокую адгезию покрытия с основой. Эти покрытия наносят методами химического осаждения из газовой фазы, а также различными методами напыления (пламенного, плазменного, детонационного). В последние годы развиваются методы электронно-лучевого напыления покрытий в вакууме, а также напыление различных элементов и соединений с использованием электрических и магнитных полей (ионно-плазменное, в том числе магнетрон ное, катодное напыление, нанесение покрытий в тлеющем и высокочастотном разряде и т. д.). При достаточно высокой температуре процесса часть напыленного покрытия может превратиться в диффузионное. [c.432]

    Магнитные лаки — важнейший компонент производства носителей магнитной записи разного назначения (магнитные ленты для звуко- и видеозаписи, ЭВМ и измерительной аппаратуры, гибкие и жесткие диски и др.). Росту их потребления способствовало расширение спроса на компакт-кассеты с видеозаписью, который в 1985 г. оценивался в мире в 500 млн. шт. по сравнению с 80 млн. в 1980 г. Независимо от материала основы и назначения носителя рабочий слой его в большинстве случаев представляет собой лаковое магнитное покрытие толщиной от 30 до 300 мкм. Магнитные лаки выпускают на различной основе — от традиционных эфиров целлюлозы до полиуретанов. Магнитные свойства покрытию обеспечивает введение специальных, главным образом железосодержащих, пигментов. В последние годы для производства видеолент, гибких и жестких магнитных дисков созданы высококачественные уретановые и уретанакриловые лаки, отверждаемые потоком ускоренных электронов. Получаемые при этом ультратонкие (толщина 0,5 мкм) покрытия отличаются повышенными прочностью, износостойкостью, однородностью отверждения по всей толщине, исключительными гладкостью и адгезией к основе. При их отверждении достигается многократная экономия энергии. В 1983 г. в производстве магнитных носителей использовали 15 установок электронного отверждения (в США — 8, Японии— 6, Западной Европе— 1). [c.121]

    Толщина 3. л. п. обычно составляет 60—80 мкм. Однако в нек-рых случаях она не превышает 5—7 мкм (напр., для консервной тары) или, наоборот, м. б. больше 200 мкм (напр,, у покрытий для защиты химич. оборудования). Толщина покрытия на подземных трубопроводах может достигать 1 мм и выше. Лакокрасочные материалы и особенно грунты на масляной основе при нанесении кистью хорошо втираются в неровности окрашиваемой поверхности, в результате чего улучшается адгезия покрытия к подложке. Для окраски стальных листов и крупногабаритных стальных изделий (рефрижераторы, вагоны, судовые конструкции) широко применяют метод безвоздушного распыления красок под большим давлением. Этот способ позволяет использовать более высоковязкие материалы (в подогретом состоянии) и получать более плотные равнотолщин-ные и менее пористые покрытия, чем те, к-рые получают, применяя метод воздушного распыления (пульверизация). [c.393]

    Виниловые смолы. Широкое распространение в качестве исходного материала для защитных покрытий в химической, пищевой и судостроительной промышленности получили виниловые смолы. Применяют большей частью виниловые смолы на основе винилхлорида или винилацетата, а также продукты сополимеризации этих мономеров. Наиболее широко используют сополимеры винилхлорида и винилацетата, содержащие 867о винилхлорида, 13% винилацетата и 1% малеинового ангидрида, добавка которого способствует улучшению адгезии покрытий к металлам. [c.422]

    Хорошо известны сополимеры стирола с эфирами акриловой и метакриловой кислот, получаемые обычными методами совместной полимеризации [1727—1732]. Влияние различных факторов на сополимеризацию стирола с метилакрилатом изучено Дринбергом, Фундылером и Фростом [1731]. Установлено образование сополимеров и показано, что сополимеризация наблюдалась только при соотношениях мономеров в исходной смеси, близких к эквимолекулярным. Выход сополимера возрастает с увеличением в реакционной смеси содержания более быстро полимеризующегося метилакрилата. Испытание приготовленных на основе сополимеров покрытий показало, что введение в цепь полистирола звеньев метилакрилата повышает адгезию покрытий, сопротивление удару и изгибу. [c.289]

    Авторы определяли время высыхания лакокрасочной пленки, адгезию покрытий к пластмассе, химическую стойкость их и рациональные способы нанесения. Установлено, что все двухкомпонентные лаки обладают меньшей адгезией. Из пленкообразующих веществ, модифицированных маслом, всем требованиям удовлетворяла лишь алкидная смола средней жирности, модифицированная льняным маслом. Очень высокую адгезию проявлял сополимер винилхлорида с винилпропионатом, а все другие высокополимерные продукты, нитроцеллюлоза и другие пленкообразователи, содержащие хлоркаучук и циклокаучук, оказались непригодными. Пленкообразователи на основе алкидных смол, модифицированных стиролом и метакрилом, проявляли меньшую адгезию по сравнению с алкидной смолой средней жирности, модифицированной льняным маслом. Процесс высыхания алкидной смолы и всех других пленкообразователей, содержащих масляный компонент, на поверхности пластмассы длится дольше, чем на металле. При этом целесообразно вначале нанести на пластмассу грунтовочный слой, который имеет большую объемную концентрацию пигмента, и только после этого — слой эмалевой краски. С особой ответственностью следует подходить к окраске изделий, эксплуатируемых в химически агрессивных средах. Алкидные эмали образуют пленки с малой щелоче- и кислотостойкостью, теряющие в химической среде глянец и твердость. Поэтому для окраски таких изделий более пригодны эмали на основе трудноомыляемых пленкообразователей. Лучше всего использовать сополимеры винилхлорида с винилпропионатом или их смеси с полиуретановыми лаками. [c.63]

    Эти проблемы были решены в конце пятидесятых — начале шестидесятых годов. Были предложены способы прочного механического закрепления металлического покрытия на пластмассе, один из них разработан в Чехословакии [4]. Все эти годы не прекращался и поиск пластмасс, подходящих для гальванической металлизации. В лабораториях фирмы МагЬоп СЬет1са18 была разработана технология гальванопокрытия АБС-соиолимеров. Вслед за этим в печати появились сообщения о разработке специальных марок АБС-сополимеров, при металлизации которых достигается максимальная адгезия покрытия к основе, о новых рецептурах растворов, процессах и технологическом оборудовании для гальванической металлизации пластмасс. За последние годы гальваническая металлизация получила большое распространение в промышленности, чему способствовала, в частности, разработка рецептур электрохимических растворов блестящего меднения, никелирования и хромирования, необходимых для получения блестящего слоя металлов. Применение таких растворов позволяет обойтись без механической полировки покрытий, ко--торая повыолает трудоемкость процесса и отрицательно сказывается на сцеплении металла с пластмассой. [c.131]


Смотреть страницы где упоминается термин Адгезия покрытий к основе: [c.85]    [c.85]    [c.53]    [c.46]    [c.435]    [c.127]    [c.128]    [c.456]    [c.396]    [c.281]   
Смотреть главы в:

Нанесение металлических покрытий на пластмассы -> Адгезия покрытий к основе




ПОИСК





Смотрите так же термины и статьи:

Адгезия



© 2025 chem21.info Реклама на сайте