Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние реагирующего вещества

    Выражения кинетики адсорбционных процессов, близкие iio форме к здесь описанным, могут быть получены и на основе предположений о превалирующих других эффектах реального поверхностного слоя. Так, из представлений о двухмерном электронном газе Б поверхностном слое [508—5111 и возникающем эффективном заряде активированного комплекса следует вывод о линейной зависимости энергии активации адсорбции от заполнения поверхности. Аналогичная зависимость предполагается за счет влияния реагирующего вещества на свойства катализатора [521 ]. [c.267]


    В, Химический состав концентрация реагирующих веществ. Первоначальные кинетические исследования были начаты с изучения влияния концентраций реагирующих компонентов на скорость реакции. Для реакций между газами концентрации непосредственно связаны через уравнение состояния с давлением, объемом и температурой. Для жидкофазных реакций давление как переменная представляет второстепенный интерес (объем системы очень нечувствителен к изменениям температуры и давления). Поскольку стехиометрия реакции определяет соотношения между концентрациями различных участвующих в реакции веществ, концентрация каждого конкретного компонента не обязательно является независимой переменной. Так, при образовании иодистого водорода (Нг +12" 2Н1) числа израсходованных молей водорода и иода должны быть равны друг другу, в то время как число молей образовавшегося Н1 в два раза больше каждого из них. [c.16]

    Так как значения 7 могут быть определены независимым путем для реагирующих веществ А, В и т. д., из этой кривой можно определить АУх — частичный молярный объем переходного комплекса, а если доступны данные в достаточно большом интервале давлений, то можно определить и частичную молярную сжимаемость. Некоторые типичные данные приведены на рис. XV.3. Впервые исследование влияния внешних переменных было проведено Эвансом и Поляни [20], которые пользовались методом переходного состояния. Вскоре после этого Перрин, применив метод Эванса и Поляни к ряду данных о скоростях реакции при высоких давлениях, в первом приближении разделил влияние давления на три категории [21]. [c.440]

    Температура. Согласно классическим представлениям, если исключить влияние катализаторов, скорость химических реакций является функцией температуры и концентрации реагирующих веществ. По известному правилу Вант-Гоффа, повышение температуры на 10 градусов ускоряет реакцию в 2—3 раза. Это правило не является строгим, так как температурный коэффициент скорости реакции меняется с температурой. К. И. Ивановым [35 было показано, что температурный коэффициент окисления углеводородов, равный 2, наблюдается только для 140—150 °С. При температурах ниже 140 °С он во всех случаях гораздо больше, а выше 150°С он меньше. [c.69]

    Сложность процесса горения обусловлена тем, что химические реакции протекают в условиях быстро изменяющихся температур и концентраций реагирующих веществ, причем температура и градиент концентраций изменяются также под влиянием одновременно протекающих физических процессов тепло-и массообмена и различных газодинамических возмущений. В тепловых двигателях, работающих на жидком топливе, процесс горения осложняется одновременно протекающими физическими процессами испарения капель распыленного топлива и смешения паров топлива с воздухом. [c.112]


    Теоретическое рассмотрение такого сложного процесса, основанное на изучении его детального механизма, кинетики химических реакций с учетом влияния различных факторов, осложняющих процесс (испарение, перенос тепла и реагирующих веществ), трудно осуществимо. Приходится прибегать к построению упрощенных моделей процесса горения. В теории горения широкое распространение получила упрощенная модель, основанная на представлении о том, что скорость химической реакции горения лимитируется медленно протекающими физическими процессами — испарения распыленного топлива, смесеобразования, теплообмена и т. п. ( физическая модель процесса горения) [144]. Данная модель предполагает, что химические закономерности горения могут быть сведены к физическим закономерностям. [c.112]

    Величину Ф , входящую в формулу (6.51), определим, полагая, что пр больших К2 толщина зоны реакции пренебрежимо мала и может быть заменена фронтом. Решение уравнений диффузионного пограничного слоя относительно реагирующих веществ при допущении, что фронт реакции совпадает с гидродинамической линией тока [405], приводит к значению Фо , совпадающему с результатами расчета по формуле (6-60). Для мгновенной химической реакции второго порядка эта формула будет иметь место при любых значениях Ре, поскольку в данном случае роль гидродинамического влияния, как обсуждалось выше, несущественна. [c.275]

    Уравнение (I, 24) соответствует закону действия масс, так как оно учитывает влияние концентраций реагирующих веществ. [c.40]

    Если же реагирующие вещества не подчиняются законам идеальных газов, то в уравнение (Х1,5) вместо парциального давления следует подставить летучесть или активность. Уравнение (XI,5) позволяет установить влияние температуры, инертного газа и начальных концентраций иа направленность химической реакции. При условии, что р к == р в = р е =р р = атм, [c.250]

    I. Использование технологических группировок. Можно, например, считать индивидуальными реагирующими веществами бензиновую фракцию, газ, мазут и т. п. Их превращения позволяют охарактеризовать химические процессы, направленные на изменение молекулярной массы и протекающие при крекинге или гидрокрекинге. Для процессов крекинга нужно, однако [1], учитывать, что при технологической группировке за непревращен-ное сырье принимается фракция с одинаковыми температурами начала и конца кипения (или температурами 10 и 90%-ных отгонов), что и у сырья. На самом деле эта фракция может отличаться от сырья по ряду показателей вследствие химических превращений, приводящих к появлению новых веществ, но выкипающих в тех же пределах, что и сырье. Иными словами, технологическая группировка позволяет учитывать появление новых фракций, но оказывается неудобной при учете влияния условий процесса на качественные показатели продуктов или влияния рециркуляции. [c.92]

    Часто из-за неоднородности условий протекания процесса в реальных условиях не достигаются расчетные показатели, потому что при проектировании контактных аппаратов не уделялось достаточного внимания вопросам равномерного подвода реагирующих веществ, смешения потоков на входе в реакционный объем, нагрева и охлаждения, засыпки катализатора и т. п. Создание однородных условий работы приобретает решающее значение при проектировании реакторов большой мощности. Без всестороннего исследования реакторов с помощью математической модели и машинного эксперимента невозможно надежно и однозначно определить влияние неоднородностей на эффективность работы реакторов, установить требования, ограничивающие отклонения от однородных условий в допустимых пределах. [c.15]

    Соотношения размеров поры и молекул, участвующих в каталитическом процессе (исходных веществ и в том числе нейтральных примесей и каталитических ядов, промежуточных комплексов и продуктов реакций), определяют структурную возможность осуществления данного набора каталитических реакций в порах данного размера. Перекрывание электрических полей противоположных стенок норы или изменение строения электрического поля катализатора вследствие искривления его поверхности в микропорах может существенно повлиять на величину адсорбции и энергию активации каталитических реакций. Изменение расположения и взаимного влияния активных центров на сильно искривленной поверхности катализатора изменяет его активность, селективность и стойкость к отравлению, вызывает новые побочные реакции. При этом тонкие поры, сопоставимые с размерами молекул реагирующих веществ, инертных примесей или продуктов реакций, могут уже в самом начале процесса оказаться полностью исключенными из участия в нем в результате геометрического несоответствия размеров молекул и пор. Это происходит в результате чрезвычайно сильной адсорбции веществ, которые, прочно фиксируясь в порах катализатора, будут экранировать их, играя роль порового яда . В таких случаях целесообразно говорить об эффективной микропористости катализатора. Для пор надмолекулярных размеров возможно также интенсивное взаимодействие электронных полей молекул и стенок пор, изменяющее скорости диффузии веществ в порах [53]. [c.140]


    Гибридизация 2 - и 2р-орбиталей атома углерода под влиянием атомов другого реагирующего вещества в 2хр -гибридные орбитали [c.34]

    Управление скоростями этих реакций является сложной проблемой, в которую входит комплекс таких вопросов, как влияние строения исходных веществ на скорости самих превращений, а также на скорости адсорбции и десорбции, вопросов взаимосвязи строения реагирующих веществ и катализатора процесса. [c.335]

    Численные значения AS, а поэтому и AG, сильно зависят от концентрации реагирующих веществ. Ввиду этого для характеристики влияния температуры на данный процесс и для сравнения различных реакций необходимо выбирать какие-либо сопоставимые состояния. В качестве последних обычно принимают состояния реагирующей (неравновесной) системы, в которых концентрации (парциальные давления) каждого вещества равны единице, а твердые (жидкие) вещества находятся в модификациях, устойчивых в данных условиях. Такие условия называются стандартными, Зна- [c.53]

    Химические реакции могут проходить в твердой, жидкой или газовой фазах без изменения или с изменением числа молей реагирующих веществ или объема реакционной смеси. При условии, что реакция проходит с изменением числа молей веществ в смеси, величина константы равновесия Кх будет уже зависеть от давления. Для реакций, протекающих в твердой или жидкой фазах, давление слабо влияет на изменение объема системы и мало влияет на изменение Кх (для неширокого интервала изменения давлений и для невысоких значений давлений). В других случаях необходимо учитывать влияние давления на величину Кх- [c.204]

    I. Влияние концентрации реагирующих веществ. Во многих случаях скорость реакции пропорциональна концентрации реагирующих веществ с , возведенных в соответствующие степени п  [c.527]

    Отдельные группы реакций разбивают на подгруппы по виду кинетического уравнения, описывающего скорость процесса, по порядку и молекулярности реакции и по некоторым другим признакам. В качестве кинетического критерия реакционной способности химической системы можно было бы взять скорость реакции. Учитывая, что скорость реакции зависит от концентрации реагирующих веществ [см. уравнение (193.1)], разумно выбрать какое-то стандартное состояние по концентрациям реагирующих веществ. В качестве такого стандартного состояния принимают состояние системы, когда концентрации реагирующих веществ Сь Са,. .., С равны единице. При этом скорость реакции численно равна константе скорости реакции к. Следовательно, в качестве кинетического критерия реакционной способности системы в направлении определенной реакции при концентрациях реагирующих веществ, равных единице, можно принять константу скорости этой реакции. Последняя определяется предэкспо-ненциальным множителем А и энергией активации Е . Теория кинетики химических реакций должна раскрывать физическую сущность Л и и закономерности, определяющие влияние различных факторов — температуры, среды, катализатора, строения молекул и др., на Л и 2 следовательно, и на общую скорость процесса. Зная закономерности влияния различных факторов на Л и реакций, можно синтезировать эффективные катализаторы и создавать условия, при которых реакция пойдет в нужном направлении с высокими скоростями. [c.532]

    В формальной кинетике рассматривается зависимость скорости реакции от концентрации реагирующих веществ. Она основана на ряде положений, из которых наиболее важными являются закон химической кинетики, принцип независимости протекания химических реакций в системе и уравнение материального баланса реагентов. Закономерности протекания элементарного химического акта и влияние ИХ на общую скорость процесса в формальной кинетике не рассматриваются. [c.533]

    Влияние различных факторов. На скорость химической реакции могут влиять различные факторы. В гомогенных системах такими факторами являются температура, давление и состав в гетерогенных системах проблема усложняется. Реагирующее вещество может 22 [c.22]

    Влияние теплопередачи также может быть существенным. Рассмотрим, например, экзотермическую реакцию, протекающую на внутренней поверхности пористого зерна катализатора. Реагирующие вещества должны продиффундировать внутрь зерна, а конечные продукты — из него. Если реакция происходит быстро и тепло не успевает достаточно быстро отводиться, то внутри зерна температура возрастет и скорость реакции увеличится. [c.23]

    Таким образом, различные комбинации высокой и низкой концентраций исходных веществ оказывают существенное влияние на проведение конкурирующих реакций. Кроме того, варьирование концентраций исходных материалов является простым и весьма действенным способом регулирования состава образующейся реакционной массы. Практически это достигается выбором определенного режима сливания реагирующих веществ. [c.167]

    Растворимость. Способность реагирующих веществ растворяться определяет их перенос из одной фазы в другую. Вследствие этого растворимость оказывает заметное влияние на общую форму уравнения скорости процесса, поскольку именно от указанного фактора зависит протекание реакции в одной или сразу в обеих фазах. [c.369]

    Большие изменения концентрации реагирующих веществ в цикле относительно состава исходного газа приводят к уменьшению влияния ошибок анализа при определении скорости реакции. 3. Достижение изотермичности в слое катализатора и возможность качественного регулирования температуры. [c.431]

    В области изменения тЬ от 0,5 до 5 — переходная область. Влияние процессов переноса реагирующих веществ на скорость процесса часто исследуется путем измерения скорости реакции на зернах разной крупности. Например, для частиц размерами и и при одной и той же концентрации реагента в обоих экспериментах получим  [c.433]

    Полупроводники используются в катализе очень широко. Несмотря на изменение состава поверхности под влиянием реагирующих веществ, полупроводники обычно сохраняют свои. свойства, и только в редких случаях в них возникает металлическая проводимость. Таким образом, дефекты в структур полупроводпиков тесно связаны 1С общим электронным хозяйством кристалла и оказывают суще ственное влияние на кат1алнз. [c.19]

    Г Буферные растворы смягчают влияние всевозможных факторов, изменяющих величину pH. Если ввести в систему реагирующих веществ тот или иной буфер, то, несмотря на образование при зеакции кислоты или основания, pH раствора будет оставаться 10ЧТИ постоянным. [c.280]

    Воздействие света (видимого, ультрафиолетового) на реакщ1И изучает особый раздел химии — фотохимия. Фотохимические процессы весьма разнообразны. При фотохимическом действии молекулы реагирующих веществ, поглощая кванты света, возбуждаются, т. е. становятся реакционноспособными или распадаются на ионы и свободные радикалы (см. синтез НС1). Фотохимические исследования представляют собой огромный теоретический интерес. Достаточно сказать, что представление о цепных процессах возникло в связи с изучением фотохимических реакций. В значительной степени под влиянием фотохимии сложилось и современное представление о механизме химических реакций как совокупности элементарных процессов. [c.202]

    Различают положительный катализ — увеличение скорости резь ции под влиянием катализатора — и отрицательный катализ, при]юдящий к уменьшению скорости химического превращения. При положительном катализе промежуточное взаимодействие реагирующих веществ с катализатором открывает новый, энергети — чес(<и более выгодный (то есть с меньшей высотой энергетического бар ,сра), по сравнению стермолизом, реакционный путь (маршрут). При отрицательном катализе, наоборот, подавляется (ингибируется) быс трая и энергетически более ле1кая стадия химического взаимо — действия. Следует отметить, что под термином "катализ" подразумевают преимущественно только положительный катализ. [c.79]

    Анализ полученных продуктов показывает, что вопреки мерам предосторожности побочные реакции все же имеют место, однако принимается, что их влияние на измеряемую энергию активации незначительно. К недостаткам этого метода следует отнести и то обстоятельство, что из-за большой скорости потока определяемое значение температуры газа не вполне достоверно. Наконец, давление реагирующих веществ может меняться лишь в ограниченном интервале, что затрудняет проверку, действительно ли реакция соответствует простой мономолекулярной реакции. Однако, несмотря на все недостатки, метод является весьма эффективным, и Э1]ергии диссоциации связи в лучших случаях могут быть измерены с точностью до 2—3 ккал. В других случаях предполагаемые механизмы реакций недостаточно- хорошо доказаны и результаты вызывают сомнение. Хорошей проверкой результатов определения энергии диссоциации спязи, полученных кинотпческнм нутом, яв гяются данные по взаимодействию электронов. Этот метод [18, 46, 47] состоит в наблюдении потенциалов появления (.4 ) в масс-стгоктрометре для следующих типов реакций  [c.15]

    Если скорость диффузии и скорость химической реакции, рассмотренные независимо друг от друга, соизмеримы, то имеется переходная область. Один и тот же процесс, в.зависимости от условий его проведения, может лежать в различных областях. Большое (влияние на характер протекания гетерогенного химического процесса оказывают давления реагирующих веществ,..хкоррстц.п охо,крв, пористость катализатора и темпера- [c.312]

    Количественные закономерности гетерогенно-каталитических процессов существенным образом определяются характером и скоростью протекания адсорбциопно—десорбционных стадий. Это в первую очередь обус.повлено тем, что в гетерогенном катализе скорость реакции зависит от поверхностных концентраций реагирующих веществ, а не от их объемных концентраций. Поэтому для гетерогенных процессов чрезвычайно важно установить влияние условий проведения процесса на степень заполнения поверхности катализатора реагирующими веществами. [c.21]

    Гаргуля Л. Влияние переноса реагирующих веществ в зерне катализатора на активность цеолитсодержащих катализаторов крекинга. Автореф. канд. дисс. М., МИНХ и ГП им. Губкина, 1974. 26 с. [c.294]

    Мерой влияния изменения какого-либо параметра П на показатели процесса является совокупность производных температуры и концентраций реагирующих веществ на выходе аппарата по данному параметру = дТ Ь)/дП, Х/ = дС ЩдП. Каждая из величин х,( = 0. 1, , К) называется параметрической чувствительностью соответствующей переменной по данному параметру. Это понятие впервые было введено Амундсоном и Билоусом [11].  [c.337]

    Стандартные изменения энергии Гиббса. Значения AS, а поэтому и AG сильно зависят от концентрации реагирующих веществ, Ввиду этого для характеристики влияния температуры на данный процесс и ддя сравнения различных реакций необходимо выбирать какие-либе сопостаЕшмые (стандартные) состояния. В качестве последних обычно принимают состояния реагирующей (неравновесной) системы, в которых концентрации каждого вещества равны 1 моль/кг ЬЬО (или парциальные давления равны 101 кПа), а вещества находятся в модификациях, устойчивых в данных условиях. Изменение энергии Гиббса для процессов, в которых каждое вещество находится в стандартном состоянии, принято обозначать А6 °, Введение стандартного состояния весьма удобно, так как если при этом фиксирована и температура, то величина AG° отражает только специфику реагентов. Поэтому подобно тепловым эффектам и энтропиям принято приводить в таблицах стандартные изменения энергии Гиббса образования веществ AG° (чаще всего AG 2os)- Имея значения AG] и S° для веществ, участвующих в реакции, можно с помощью уравнений (2.17), (2,23) и (2.24) вычислить АН° реакции. [c.189]

    Введение. Кинетикой химических реакций называется учение о скорости- их протекания и зависимости ее от различных факторов (концентрации реагирующих веществ, температуры, влияния катализаторов и пр.). Изучение этих вопросов представляет большой практический и теоретический интерес. Разные реакции совершаются с самыми различными скоростями. Некоторые из них, как, например, реакции разложения взрывчатых веществ, заканчиваются в десятитысячные доли секунды другие продолжаются 1инутами, часами, днями, а третьи, например некоторые процессы, совершающиеся в земной коре, растягиваются на десятки, сотни и тысячи лет. К тому же не только между скоростями разных реакций существует такое большое различие, но и скорость какой-нибудь данной реакции может сильно изменяться в зависимости от условий, в которых реакция происходит. [c.462]

    Результаты алкилирования в значительной мере определяются физическими факторами, так как лимитирующей стадией процесса является скорость транспортирования реагирующих веществ к поверхностн раздела фаз, где протекают основные химические реакции. Скорость транспортирования реагирующих веществ зависит от интенсивности перемешивания эмульсии кислота—углеводороды, соотношения изобутан олефины на входе в реактор и времени их пребывания в реакционной зоне, концентрации химически инертных соединений в углеводородной фазе, объемного соотношения кислотной и углеводородной фаз. Качество применяемого сырья, состав кислоты и температура реакции оказывают существенное влияние как на скорость транспортирования, так и на скорость химических превращений. [c.168]


Смотреть страницы где упоминается термин Влияние реагирующего вещества: [c.99]    [c.39]    [c.237]    [c.393]    [c.619]    [c.300]    [c.271]    [c.195]    [c.17]    [c.19]    [c.268]    [c.467]    [c.154]   
Смотреть главы в:

Катализ вопросы теории и методы исследования -> Влияние реагирующего вещества




ПОИСК







© 2025 chem21.info Реклама на сайте