Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные свойства ионов хрома

    Теория Бренстеда — Лоури объединяет в общую группу прото-литических реакций все виды взаимодействия между кислотами и основаниями, в том числе нейтрализацию, гидролиз, диссоциацию кислот и оснований, распад растворителя на ионы и др. Из определения кислоты и основания по протолитической теории вытекает, что все атомы, характеризующиеся большой электроотрицательностью, могут образовывать кислоты, так как сильнее притягивают электроны, чем протоны. Наоборот, атомы, обладающие малой электроотрицательностью, могут образовывать основания, так как они сильнее притягивают протоны, чем электроны. Отсюда следует, что в высшем состоянии окисления элемент должен образовать соединение, со свойствами кислоты, так как электроотрицательность центрального комплексообразующего атома возрастает с повышением состояния окисления химического элемента. Например, соединения Мп (И) и Мп (ИГ) обладают основными свойствами, соединения Мп (IV) амфотерны, Мп (VI) и Мп (VII) образуют кислоты. Аналогичные соотношения наблюдаются у хрома, ванадия и других элементов. Можно сказать, что основания обладают присущими им свойствами не потому, что они способны отщеплять гидроксильный ион, но вследствие того, что гидроксильный ион способен присоединять протон с образованием воды. [c.54]


    Особое свойство ионов М + состоит в их способности образовывать основные карбоксилаты, в которых атом кислорода расположен в центре треугольника из атомов металла (24.1), сами металлы связаны мостиковыми карбоксильными группами, а шестое координационное место у каждого из них занято молекулой воды или другим лигандом. Эта структура с оксо-центром доказана для карбоксилатов хрома, марганца, железа, рутения, родия и иридия. Такие же структуры были найдены для соединений кобальта (III), [c.450]

    Катализаторами окисления НС1, как видно из изложенного выше материала, могут быть соединения как переходных (Си, Fe, Сг и др.), так и непереходных (Mg и др.) металлов. Поэтому можно предполагать, что для протекания этого процесса необходимой предпосылкой является активация молекулы НС1, которая происходит путем ее координационного связывания с катализатором. Поэтому кислотно-основные свойства катализаторов, обусловливающие их способность образовывать с НС1 соединения координационного типа, являются, очевидно, обязательным условием проявления активности контактов в рассматриваемой реакции. Хлорная медь, как уже отмечалось, и, по-видимому, в меньшей мере, хлориды других элементов, обладают такой способностью. У окиси хрома склонность к координационному связыванию НС1 резко увеличивается после адсорбции кислорода, создающей на поверхности ионы Сг +. [c.280]

    Обработку металлов и покрытий можно проводить в хромат-но-фосфатных растворах, которые используются в основном для обработки металлов и покрытий на основе алюминия и его сплавов, цинка, кадмия и др. с целью получения поверхностных слоев, отличающихся высокими коррозионно-защитными свойствами и повышенной стойкостью к истиранию. Защитная способность пленок в коррозионно-активных средах связана с наличием шестивалентных ионов хрома, обладающих сильным пассивирующим действием, а также соединений трехвалентного хрома, образующего труднорастворимые соединения, а повышение стойкости пленок в условиях истирания — с наличием в растворе нитрата свинца [10]. [c.51]

    Ничего общего в электронной структуре того и другого иона нет. Но у них одинаковая валентность (-+-3) и близкие значения ионного радиуса. Этим и объясняется, что в трехвалентном состоянии хром как бы повторяет в основном свойства классического трехвалентного металла — алюминия. [c.676]


    Степень окисления иона оказывает существенное влияние на его химические свойства. Чем выше степень окисления, тем сильнее проявляются кислотные и ослабляются основные свойства элемента и тем больше степень гидролиза его солей. Например, pH растворов солей Fe составляет 5—6, а солей Fe + — около двух. Гидроксид сурьмы (III) обладает амфотерными свойствами, а сурьмы(V)—кислотными гидроксид хрома (III) имеет амфотерные свойства, а ион СгО , где хром имеет степень окисления -4-6, является анионом кислоты средней силы и т. д. [c.17]

    В ряду гидроокисей хрома различных степеней окисления Сг(ОН)г—Сг(ОН)з—НгСгО закономерно происходит ослабление основных свойств и усиление кислотных. Такое изменение свойств обусловдено увеличением степени окисления и уменьшением ионных радиусов хрома. В этом же ряду последовательно усиливаются окислительные свойства. Если соединения двухвалентного хрома очень сильные восстановители и легко окисляются в трехвалентное состояние, то соединения трехвалентного хрома могут, с одной стороны, проявлять окислительные свойства при действии сильных восстановителей, переходя в соединения хрома (2+). а с другой стороны, сильными окислителями (например, галогенами) могут быть окислены в соединения шестивалентного хрома. [c.343]

    Поэтому окиси многих металлов могут действовать в них как основания -доноры ионов 0 " и благодаря этому легко в них растворяться с образованием часто характерно окрашенных растворов. Ион ВО2 может, помимо акцепторных (кислотных) свойств, проявлять и донорные (основные) свойства. Они проявляются, например, в присутствии трехокиси хрома [c.227]

    С возрастанием валентности и уменьшением ионного радиуса элемента основные свойства его гидрата окисла должны ослабляться, а кислотные усил иваться. Это мы и наблюдаем на гидратах окислов хрома  [c.149]

    Возможно ли получение иона Сг + Устойчиво ли это состояние Какими свойствами должен обладать гидроксид хрома (И) — кислотными или основными Приведите уравнения реакций. [c.167]

    У металлов, проявляющих разные степени окисления, характер соединений может быть различным и подчиняется определенным закономерностям. В частности, чем больше радиус иона металла и меньше его степень окисления, тем сильнее выражены основные свойства у оксида и гидроксида этого металла. И, наоборот, с уменьшением радиуса иона металла и увеличением степени окисления усиливаются кислотные свойства его соединений. Например, оксид хрома (И) СгО—основной, оксид хрома (И1) СггОэ — амфотерный, а оксид хрома (VI) СгОз — кислотный. [c.260]

    Закономерности в изменении потенциала и скорости коррозии находятся в хорошем соответствии с теми значениями концентрации хромат-ионов, которые содержатся в водных вытяжках. Все это указывает на то, что основным пассивирующим агентом в пигментных смесях является хромат-ион. При исследовании кинетики анодной реакции также подтвердилось, что пассивирующие свойства водных вытяжек сильно зависят от соотношения пигментов в водной вытяжке, полученной из одного фосфата хрома, стальной электрод слабо пассивируется. В вод- [c.143]

    Хром(П1)-наиболее распространенное состояние окисления хрома. Хром(П)-хороший восстановитель, а Сг(1у)-хороший окислитель. Как и следует ожидать, кислотность оксидов хрома изменяется в зависимости от его степени окисления СгОз обладает кислотными свойствами, СГ2О3-амфотерными, а СгО и Сг(ОН)2-основными. Распространенным оксианионом хрома является желтый хромат-ион, СгО , который в кислом растворе димеризуется с образованием оранжевого бихромат-иона  [c.443]

    Величина IgPpfi меняется в пределах 2,28—2,43. В эту подгруппу сульфидов включаются MnS, FeS, oS, NiS, ZnS. К ним относится и сульфид ванадила VOS. Все сульфиды подгруппы сернистого аммония окрашены, кроме сульфида цинка (белый). Так как катион хрома (II) обладает сильным восстановительным действием и неустойчив (хотя и образуют черный очень малорастворимый сульфид rS), то здесь рассматриваются катионы хрома (III), хромат- и бихромат-ионы кроме марганца (II), рассматриваются также манганат- и перманганат-ионы. Аналитические свойства хрома (III) объясняются структурой электронейтрального атома (ЗiiЧs ). То же самое наблюдается у меди (И) (3d "4si). Трисульфид хрома черно-коричневый, подвергается гидролизу вследствие меньшей растворимости гидроокиси хрома (III). В табл. 38 сопоставлены основные характеристики катионов этой подгруппы. Все катионы данной подгруппы легко переходят из одной степени окисления в другую, используются при редоксметодах анализа и как катализаторы в кинетических методах. В химико-аналитических реакциях этих ионов сказывается сходство их электронной структуры по горизонтальному направлению. Катионы ярко окрашены и образуют разнообразные комплексные соединения. 8-оксихинолин, который называют органическим сероводородом , дает характерные, ярко окрашенные внутрикомплексные соединения с этими катионами, начиная от титана и до цинка (табл. 38). [c.205]


    Все три элемента близки по химическим свойствам. Это относится, в частности, к поливалентности, способности образовывать изополи-и гетерополисоединения, проявлению как металлических, так и неметаллических свойств.Основные свойства окислов усиливаются от хрома к вольфраму. Хромовая кислота Н2СГО4 более сильная, чем вольфрамовая. Устойчивость соединений с низшей валентностью растет от вольфрама к хрому. Соединения Мо(У) более устойчивы, чем (V). Соединения Сг(П1) — ярко выраженные ионные соединения. Соединения (У) и Мо(У) почти не имеют ионного характера. Об этом, в частности, говорит их высокая летучесть. Молибден и вольфрам намного более способны образовывать изополи- и гетерополисоединения, чем хром. [c.159]

    Хром находится в 6-й группе, в его электронной оболочке на два электрона больше, чем у титана. В основном состоянии атом хрома содержит две полузаполненные оболочки [Аг]3( 4з с шестью неспаренными электронами. Благодаря наличию шести валентных электронов и не очень высокой электроотрицательности хрома (1,6) химия его очень богата и разнообразна он проявляет все степени окисления от -2 до -Ьб. Как и в случае титана, самые низкие степени окисления (-2, -1,0 и -Ы) проявляются только в комплексных соединениях с л-акцепторными лигандами, например в карбониле Сг(СО)в. Наиболее характерна для хрома степень окисления -ЬЗ и, соответственно, электронная конфигурация иона В природе хром встречается в основном в виде соединений Сг(Ш), например хромистого железняка ГеО СГ2О3, правда на Урале встречается красная свинцовая руда РЬСгО , в которой хром находится в степени окисления -Ьб, характеризуюш ейся выраженными окислительными свойствами. [c.347]

    Типы хемосорбции, наблюдаемые на окиси хрома, рассмотрены Барвеллом и др. [63, 64] хемосорбция на окиси хрома, так же как и на окиси алюминия, может быть диссоциативной и недиссоциативной. Основное качественное различие между окисью хрома и окисью алюминия в отношении хемосорбционных свойств связано с влиянием переменной валентности хрома. Вследствие этого окись хрома, во-первых, легко адсорбирует кислород с образованием поверхностных ионов хрома, имеющих заряд больше трех. Во-вторых, окись хрома легче, чем окись алюминия, диссоциативно хемосорбирует такие молекулы, как водород или алканы, так как поверхностные ионы могут [c.65]

    Значительное сходство в свойствах соединений молибдена и вольфрама проявляется в их ярко выраженной способности образовывать изо- и гетерополисоединения (см. 9.4). У хрома эта способность выражена гораздо слабее. В нормальных молибдатах или вольфраматах одновалентных металлов отношение МаО МоОз= = 1(или МаО 0з=1). В изополимолибдатах МаО МоО ,< < (соответственно МаО У0з<1). Нормальные молибдаты (вольфраматы) получены почти для всех металлов. Изополимолибдаты (изополнвольфраматы) изучены в основном для щелочных металлов и иона аммония ЫН . Подобные соединения для щелочно-земельных и других металлов известны, но мало изучены. По количеству молекул МоОз и Оз, входящих в состав изополисоединений, различают целый ряд типов этих соединений, существующих в основном в водной форме. Например  [c.384]

    В практическом отношении нри выборе системы раствор— носитель всегда следует помнить о возможной сильной агрессивности раствора в отношении носителя при очень высоком или очень низком pH. Степень этого воздействия зависит, кроме всего прочего, и от величины поверхности носителя. Опыт показывает, что вещества в активной форме (например, у-АЬОз) намного реакционноспособнее, чем вещества, подвергнутые высокотемпературной обработке и превращенные в кристаллические модификации с низкой поверхностью и с низкой собственной активностью (например, а-А Оз). Уголь относительно инертен, особенно в сильнографитированном состоянии, но окись алюминия с высокой поверхностью и окись хрома чувствительны к воздействию растворов с высоким и низким pH на алюмосиликаты и цеолиты действуют растворы с низкими pH, а на двуокись кремния с высокой поверхностью— растворы с высоким pH. Эта проблема возникает главным образом при выборе pH раствора, применяемого для ионного обмена или пропитки, с тем чтобы стабилизовать желаемый ион металла в растворе в таком случае необходимо поступиться или стабильностью иона, или химической устойчивостью носителя. Едва ли следует подчеркивать, что добавляемые кислоты или основания (или буфер) должны образовывать летучие соединения, так как это позволяет избежать загрязнения катализатора. Тем не менее, когда кислоты или основания применяют в отсутствие буфера и начальное pH соответствует значениям, при которых носитель не взаимодействует-с ними, полностью устранить возможность агрессивного воздействия на носитель все же трудно, так как концентрация кислоты или основания может возрастать в процессе сушки. Даже если в раствор, применяемый для пропитки или обмена, не добавляют кислот или основ.аний, способность носителя взаимодействовать с ними может оказаться важной. Например, обладающий основными свойствами носитель увеличивает степень гидролиза растворенного вещества, если гидролиз сопровождается образованием кислоты. [c.185]

    В других случаях следует обратить внимание на каждый ион, окруженный более или менее постоянной оболочкой из молекул воды, причем катионы гидратируются сильнее, чем анионы. В случае сильно электроположительных металлов притяжение в основном электростатическое и участники каждой гидратной оболочки довольно быстро сменяются. У переходных металлов, образующих прочные комплексы, по-видимому, имеются определенные группы из шести координированных молекул воды вокруг каждого катиона. Строго говоря, свойства раствора, например хлорного хрома, обусловлены наличием не Сг , а СгСНаО) . Поэтому неправильно говорить, что ионы окисного хрома — зеленые и эта окраска изменяется при комплексообразовании. Более точно утверждение, что зелеными являются гидратированные ионы хрома и изменение окраски происходит при замещении молекул воды на ионы хлора, молекулы аммиака и т. п. с образованием таких ионов, как Сг(Н20)4С1з, Сг(Н20)з(ЫНд)Г и т. д. (см. стр. 161). Кислую реакцию раствора хлорного хрома также надо рассматривать как следствие постепенной диссоциации аквокатиона  [c.291]

    Все три элемента обладают значительным сходством химических свойств. К таковым относятся, в частности, поливалентность, способность образовывать изополи- и гетерополисоединения. Все три элемента обладают как металлическими, так и неметаллическими свойствами. Основные свойства окислов усиливаются от хрома к вольфраму. Хромовая кислота Н2СГО4 более сильная, чем вольфрамовая. Устойчивость соединений низших валентностей растет от вольфрама к хрому. Соединения молибдена (V) более устойчивы, чем вольфрама (V). Соединения хрома (III) —ярко выраженные ионные соединения. Соединения вольфрама (V) и молибдена (V) почти не имеют ионного характера. Об этом, в частности, говорит их высокая летучесть. [c.272]

    Высший окисел хрома — окись хрома(У1) — является кислотным окислом, он образует хроматы и бихроматы. Низший окисел СгО имеет основной характер он образует ион хрома(П) Сг + и его соли. В гидроокиси хрома(1П) Сг(ОН)з этот элемент находится в промежуточной степени окисления, и поэтому гидроокись обладает амфотерными свойствами. С кислотами она образует соли хрома 1П), такие, как сульфат хро-ма(1П) Сг2(804)з, а в растворах сильных оснований растворяется с образованием гидроксохромит-иона Сг(0Н)4. [c.647]

    Гидроокиси Ре(ОН)г, Ге(ОН)з и Мп(ОН)з обладают слабо основными свойствами, а гидроокиси А1(0Н)з, Сг(ОН)з и Zn(0H)2 — амфотерными свойствами, что используется в качественном анализе для разделения катионов И1 группы на две подгруппы. К первой подгруппе относят катионы Ре +, Fe +.Mn , ко второй — катионы А1 +, Сг= +, Zn +. Если к раствору смеси катионов П1 группы прибавить в избытке раствор щелочи, то катионы первой подгруппы выпадут в осадок в виде гидроксидов Ге(ОН)г, Ре(ОН)з, Мп(ОН)2, а в растворе будут находиться ионы АЮ ", СгО " и ZnO . На практике избыток раствора щелочи добавляют в присутствии окислителя Н2О2 или Вгз. Это необходимо для того, чтобы перевести хромит-ион rOj в хромат-ион СгО -. Последующим действием раствора хлорида бария легко отделить ион СгО от ионов АЮ и ZnO ". В присутствии окислителя ионы железа (II) переходят в ионы железа (III)  [c.272]

    Основной особенностью шпинелей системы МпРе2 а СГх04 является малая величина магнитного момента при 0°К и аномальная зависимость момента от степени замещения [52]. Обнаружена также высокая восприимчивость парапроцесса в сильных магнитных полях [53]. Для объяснения магнитных свойств этих ферритов предполагалось [52—54], что часть магнитных моментов ионов хрома располагается антипараллельно полному моменту В-подрешетки или под углом к нему. Однако при ис- [c.25]

    Как из.ме.чяются кислотные и основные свойства гидратов окис.юв хрома в ряду Сг(ОН)г — Сг(ОН)з — Н2СГО4 Объяснить эти изменения, принимая во внимание величину радиуса центрального иона и его заряд. [c.136]

    Помимо редких земель, из других металлов-активаторов, излучение которых протекает со слабым участием энергетического спектра кристалла, необходимо указать ещё церий, хром и марганец. Они наиболее часто применяются в качестве активаторов в технических люминофорах. Хотя церий по существу должен быть отнесён к редким землям, но по харак- 1 теру излучения (и поглощения) занимает особое место. Энергетические уровни его в состоянии возбужде-= ния расположены на периферии иона и подвержены таким образом активному влиянию решётки [27, 89, 99]. Поведение хрома в люминофорах исследовано преимущественно Дейч-бейном [63, 62, 61, 65]. В решётке корунда (А12О3) излучение можно рассматривать как обязанное основным состояниям трёхвалентного иона хрома, расщеплённым под влиянием поля решётки. Положение с марганцем несколько сложнее. Несмотря на сходство данного металла с хромом, которое обнаруживается по ряду оптических свойств и электронной конфигурации обоих металлов, механизм поглощения и излучения марганца не может быть интерпретирован с той же определённостью. [c.294]

    Для Сг (III) характерна преимущественная координация азот- н кислородсодержащих аддендов, с которыми он образует прочные ковалентные связи. Однако эти связи отличаются меньшей прочностью, чем в соединениях платиновых металлов. Следствием этого является возможность проявления оптической и геометрической изомерии. Вследствие значительной стереохи-мической определенности этих соединений и высокой степени ковалентности связи центральный ион — адденд возможно, что химические свойства этих соединений окажутся объясненными с позиций закономерности трансвлияния. Однако для окончательного суждения о справедливости этой закономерности в химии хрома требуется систематическое исследование соединений Сг (III), Примеры основных типов комплексов Сг (III) даны в табл, 64. В шестивалентном состоянии хром дает многочисленные изополисоединения, например КгСгзОю. [c.208]

    Соединения хрома (III) по многим свойствам напоминают соединения алюминия. Это обусловлено тем, что соединения трехналентных алюминия и хрома имеют в основном ионное строение. Близость величины ионных радиусов А1 + и Сг + является причиной сходства свойств образуемых этими ионами соединений. [c.275]

    Гидроксиды некоторых металлов являются амфолита ми, т. е. проявляют как основные, так и кислотные свойства. Поэтому они растворяются в избытке гидроксидов натрия или калия е образованием соответствующих анионов. К этим гидроксидам относятся гидрокеиды цинка, алюминия, олова (И) и (IV), сурь-мы(П1) и (V), хрома и частично меди (II). Уравнения реакций взаимодействия соответствующих ионов с гидроксидом натрия или калия записывают следующим образом, например с нонами алюминия  [c.545]

    Хромит — под этим названием большей частью описывают хромшпинелиды — шпинели, в которых трехвалентный ион представлен в основном хромом. Но Сг + часто в значительной мере бывает замещен А1 + и Ре +, а двухвалентный металл представлен смесью Мд2+ и Ре +. Поэтому свойства хромшпинелидов колеблются в широких пределах, например плотность от 4 до 5 г/см , а твердость от 5,5 до 7. По внешнему виду они не отличаются от магнетита, но у хромшпинелидов черта бурая и они не разлагаются в кислотах и щелочах. Некоторые разности хромшпинелидов — слабомагнитные (высокое содержание окси- [c.446]

    Каждая клетка состоит из огромного числа атомов и молекул. Попробуем разобраться, насколько они универсальны и какие функции выполняют в клетках Оказалось, что из периодической системы элементов всего лишь шесть биоэлементов используются для построения подавляющего числа биологически значимых молекул углерод С, ьшслород О, водород Н, сера 8, азот N и фосфор Р. Еще 16 микроэлементов присутствуют в клетках в различных количествах и соотношениях. К ним относятся железо Ре, медь Си, цинк Zn, марганец Мп, кобальт Со, иод I, молибден Мо, ванадий V, никель N1, хром Сг, фтор Р, селен 8е, кремний 81, олово 8п, бор В, мышьяк Аз и пять ионов натрий Na , калий К , магний Mg , кальций Са " , хлор С1 . Каков бы ни был принцип отбора атомов для процессов жизнедеятельности, он не связан с их распространенностью в природе. Например, из галогенов только хлор и иод выбраны природой, хотя фтор и бром обладают не меньшей доступностью. По-видимому, в основу отбора положен принцип пригодности и целесообразности. Например, шесть основных биоэлементов имеют набор свойств, достаточный для построения почти всех необходимых для клетки молекул. [c.6]

    Положение о связи активности с d-электронной конфигурацией усиленно отстаивалось Дауденом [78]. Имеется много экспериментальных подтверждений этой точки зрения для области хемосорбции и катализа на металлах, и Дауден попытался распространить ее на окислы переходных металлов. Успешнее всего это можно было сделать для реакций с участием водорода, потому что для этого газа, в отличие от кислорода, хемосорбция не обязательно осуществляется путем простого переноса электрона. Мы уже упоминали (раздел IV, А), что хемосорбция водорода на окиси цинка и закиси никеля ниже 100° не оказывает влияния на электропроводность, и отсюда можно сделать вывод о том, что осуществляется слабая форма хемосорбции, возможно, путем ковалентной связи через ионы металла. Для построения ряда активности наиболее пригодной для исследования является реакция обмена Нг — Ог. Она была изучена Дауденом, Маккензи и Трепнеллом [79], которые указали, что нельзя согласиться с прежними предварительными выводами об rt-характере проводимости (например, в окиси цинка или в восстановленной окиси хрома) как об основном факторе, объясняющем высокую активность в реакциях с участием водорода [80]. Вместо этого, согласно интерпретации названных авторов, их результаты указывают на пример такого изменения свойств в ряду ионов переходных металлов, которое отличается наличием двух максимумов, причем низкая активность окиси железа характеризует устойчивость а -конфигурации. Имеются сомнения в надежности некоторых из их экспериментальных [c.345]


Смотреть страницы где упоминается термин Основные свойства ионов хрома: [c.132]    [c.231]    [c.73]    [c.257]    [c.23]    [c.558]    [c.387]    [c.42]    [c.48]    [c.450]    [c.221]    [c.261]    [c.85]   
Смотреть главы в:

Технология соединений хрома -> Основные свойства ионов хрома




ПОИСК





Смотрите так же термины и статьи:

Хром, основные свойства

Хром, свойства



© 2024 chem21.info Реклама на сайте