Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеофильный катализ, механизм

    Экспериментально не всегда просто отличить нуклеофильный катализ от общего основного. В случае сольволиза оба этих механизма имеют второй порядок — первый порядок по субстрату и первый — по обобщенному основанию или нуклеофилу, т. е. оба кинетически проявляются как общий основной катализ. Механизм общего основного катализа можно отличить от нуклеофильного на основе следующих пяти критериев. Все эти критерии необходимо последовательно применять до тех пор, пока один из них [обычно (а) или (б)] не дает однозначного ответа. [c.463]


    Как было отмечено выше, на основании результатов исследования начальных стадий реакции [157-161, 218-224] механизм акцепторно-каталитической полиэтерификации может быть представлен в виде двух каталитических потоков (см. схему 4.Б) нуклеофильного (образование комплекса II) и общего основного (образование комплекса I). Исследование кинетики этерификации [158-160] и определение относительной активности исходных соединений методом конкурирующего ацилирования [156-160] позволили установить, что в отсутствие стерических затруднений у реакционного центра увеличение кислотности гидроксилсодержащего соединения и основности третичного амина создает условия для протекания реакции по механизму общего основного катализа. Так, в случае конкурирующего бензоилирования фенола и метанола найдено, что в присутствии триэтиламина (ТЭА) степень превращения более кислого реагента - фенола -значительно превышает конверсию менее кислого - метанола (рис. 4.4) [156]. Это свидетельствует о преобладании в указанных условиях общего основного катализа над нуклеофильным. Если же конкурирующее бензоилирование проводить в присутствии менее основного третичного амина - пиридина, то в реакцию вступает главным образом метанол, т.е. в этих условиях преобладает нуклеофильный катализ [156]. [c.47]

    В частности, увеличение активности спиртовых НО-групп и уменьшение активности фенольных НО-групп обусловлено протеканием акцепторно-каталитической полиэтерификации по двум механизмам общему основному и нуклеофильному катализу (см. схему 4.Б части I). В присутствии сильноосновных тре- [c.305]

    Второй вероятный механизм — общий кислотный нуклеофильный катализ-, однако из общих соображений вызывает сомнение возможность депротонирования имидазола с иомощью Н0  [c.297]

    Эта реакция, включающая присоединение гидроксид-иона к карбонильной группе с образованием нестабильного промежуточного продукта и затем распад последнего, происходит по механизму нуклеофильного катализа, в ходе которого регенерации нуклеофила не происходит. Напротив, катализируемый алкоксид-ионом алкоголиз амидов является примером истинного нуклеофильного катализа, идущего по тому же механизму, что и омыление сложных эфиров. [c.161]

    Различить механизмы общеосновного и нуклеофильного катализа можно также по виду графика бренстедовской зависимости, построенной для ряда нуклеофилов или оснований. В случае общего основного катализа точки, соответствующие разным основаниям, независимо от структуры последних в координатах Бренстеда ложатся, за редким исключением, на одну прямую. Напротив, на графике зависимости бренстедовско- [c.110]


    Использование вместо сильноосновного ТЭА значительно менее основного третичного амина (пиридин) способствует протеканию реакций, представленных на схемах 10.А и 10.Б, по механизму нуклеофильного катализа. Это обеспечивает, как отмечалось выше, увеличение активности комплекса II, но мало влияет на величину соотношения активностей спиртовых и фенольных НО-групп, а также на микроструктуру сополимеров. [c.307]

    Общие черты ферментативного катализа можно представить в рамках теории индуцированного соответствия, но практически нельзя однозначно рассматривать действие фермента согласно какому-то определенному механизму, например такому, как нуклеофильный катализ или кислотный катализ. В ходе ферментативного катализа имеет место сочетание кислотноосновного, частично нуклеофильного, специфического катализа с переносом заряда как правило, ферменты действуют согласно очень сложным механизмам. [c.30]

    ЧТО реакция идет по механизму (10.14), а не (10.13). В этом случае внутримолекулярный полифункциональный катализ реализуется в результате комбинации общего кислотного и нуклеофильного катализа 18]. [c.255]

    Механизм этого процесса представляет собой, таким образом, общий кислотный катализ внутримолекулярного нуклеофильного катализа и подразумевает на скоростьопределяющей стадии реакции одновременное действие двух каталитических групп. Одна из этих групп — соседний карбоксилат-ион, вторая — неионизованная карбоксильная группа. Тщательное изучение пути, по которому карбоксилат может катализировать гидролиз сложного эфира, указывает на особое требование ко второй каталитической группе в случае очень реакционноспособной системы и позволяет предположить механизм, по которому будет действовать фермент, катализирующий гидролиз сложного эфира. Перейдем теперь к рассмотрению особых свойств систем с двумя каталитическими груп-пат и. [c.471]

    Из этих исследований механизма действия карбоксипептн-дазы А можно сделать следующие два вывода 1) 2п(И), по-видимому, связывается с карбонильной группой эфирных и амидных субстратов и 2) 01и-270 — также участник процесса, причем предполагается механизм как общего основного, так и нуклеофильного катализа. Существует также строгое доказательство того, что для эфиров и амидов механизмы различны. Следует обсудить также другой возможный механизм действия карбоксипептидазы А, включающий нуклеофильную атаку эфирной или амидной связи субстрата гидроксильным ионом, координированным цинком(И) Такая возможность тщательно изучена [223], в частности, на гидролизе карбоксилзамещенного эфира 8-оксихинолилглутарата в присутствии 2п(И). [c.350]

    В некоторых случаях, чтобы отличить обший основной катализ от нуклеофильного, полезно проводить анализ конечных продуктов. В реакциях гидролиза, протекающих в присут- ствии имидазола по механизму нуклеофильного катализа, в качестве промежуточного продукта образуется нестабильный четвертичный аммониевый ион. Если же в аналогичной реакции вместо имидазола использовать его нуклеофильный аналог — анилин, то в результате образуется анилид, но уже не в качестве промежуточного соединения, а в качестве устойчивого продукта. Следовательно, в сочетании с имидазолом анилин можно применять для проверки каталитического механизма. Наоборот, если имидазол действует как общее основание, приводя к образованию продукта гидролиза, то такой же продукт должен возникать и под действием анилина. Применимость этого критерия ограничивается допущением об идентичности реакционных механизмов с участием имидазола и анилина, которое не всегда является оправданным. [c.114]

    Механизмы нуклеофильного катализа [c.159]

    Карбоксилат-ионы катализируют гидролиз ряда производных карбоновых кислот. Как отмечалось в гл. 5, некоторые из этих реакций идут по механизму общего основного катализа, а другие— по механизму нуклеофильного катализа. Примером нуклеофильного катализа служит катализируемый формиат-ионом гидролиз уксусного ангидрида  [c.162]

    Если реакция действительно идет по механизму нуклеофильного катализа, то продукт реакции (бензойная кислота) должен быть обогащен изотопом кислород-18, так как превращение промежуточно образующегося смешанного ангидрида уксусной и бензойной кислот в продукты реакции должно в соответствии с относительной реакционной способностью ацетильных и бензоильных производных включать диссоциацию ацильного фрагмента с разрывом связи Ю—С. Экспериментально было найдено, что один из меченых атомов исходного ацетат-иона действительно [c.162]

    Верхняя ветвь на рис. 7.4 соответствует реакциям, идущим ло механизму нуклеофильного катализа. Доказательством тому [c.178]

    Механизмы общего основного катализа неоднозначны веще большей степени. Все приведенные механизмы общего основного катализа, за исключением механизма (5.29), можно с равным успехом рассматривать как описывающие реакции нуклеофильного катализа. Механизм (5.29), представляющий собой единственное исключение, является по сути комбинацией общего кислотного и специфического основного катализа, поскольку в водном растворе благодаря существованию равновесия В+Н20 ВН++0Н- сочетания [ВКН2О] и [ВН+][ОН-] кинетически эквивалентны. [c.107]


    В любом случае трудно провести четкое разграничение между стабилизацией иоиа карбония близко расположенной карбокси-латной группой, как для карбокатиониого механизма, и образованием ковалентной связи между ними, как ири нуклеофильном катализе ([79], с. 184). Возможно, каталитическая активность фермента отражает тонкий баланс между этими двумя экстремальными случаями. По образному выражению Джейкса [79], фермент, регулируя с высокой точностью расстояние между кар-боксилатной группой и связанным субстратом, реализует сразу [c.177]

    Другим способом получения сложного эфира из кислоты является обработка спиртом в присутствии дегидратирующих веществ, одним из которых является дициклогексилкарбодии-мид (ДЦК), в ходе реакции превращающийся в дицик.тогек-силмочевину (ДГМ). Этот механизм во многом сходен с нуклеофильным катализом [537] кислота превращается в соедине- [c.128]

    Если, в свою очередь, такой интермедиат атакуется водой или гидрок-сид-ноном быстрее, чем исходный сложный эфир, то в присутствии нуклеофила суммарная реакция будет протекать быстрее, чем в его огс тствмн. Это является необходимым условием для нуклеофильного катализа. Сложные эфиры, образованные из относительно кислых спиртов, в частности фенолов, в присутствии имндазола гидролизуются по механизму нуклеофильного катализа (15]  [c.303]

    Простейший механизм — нуклеофильный катализ схема (8) . Нуклеофильная атака арилацетата ацетатом вначале приводит к образованию продукта присоединения — тетраэдрического интермедиата, весьма нестабильного и не образую 11легб я в значительных количествах, так как он может очень быстро распадаться либо за счет потери ацетата (/Сг) с образованием исходных веществ, либо с элиминированием арилоксида (/Сз)- В последнем случае другим продуктом служит уксусный ангидрид, быстро гидролизующийся водой. [c.461]

    Механизм (1) исключается экспериментом с изотопной меткой. Если реализуется нуклеофильный катализ, то интермедиатом оказывается смешанный 2ИП1Л11ИД салициловой н уксусной кислот. Известно, что молекула такого ангидрида, гидролизуется водой с приблизительно 25 /о-ным свечением в салициловую кислоту воды, использующейся в качестве растворителя. [c.313]

    Как показано при исследовании серии моноэфиров фталевой кислоты, степень участия внутримолекулярного нуклеофильного Катализа, представленного механизмом (1), существенно завпспт от уходящей спо-собности алкокси Руппы о [c.313]

    Было найдено, что в зависимости от строения исходных веществ и условий проведения реакции акцепторно-каталитическая полиэтерификация протекает по механизму общего основного (I) или нуклеофильного катализа (II), т.е. через образование промежуточных комплексов третичных аминов с фенолами или гало-генангидридами (схема 4.Б). [c.38]

    В отличие от фенолов спирты, обладающие значительно меньшей кислотностью, реагируют с дихлорангидридами по механизму нуклеофильного катализа через образование ациламмониевого комплекса дихлорангидрида с третичным амином (комплекс II). Сорбция комплекса на поверхности графита уменьшает электронную плотность карбонильного атома кислорода, что повышает его электрофильную реакционную способность и соответственно увеличивает константу скорости рассматриваемой реакции. [c.306]

    Второй тип механизма наблюдается в системах, где исключен нуклеофильный катализ. Например, гидролиз этилтрифторацетата катализируется ацетатом, хотя соверщенно ясно, что в этих условиях ацетат не может замещать этоксид-ион. Такой механизм изображен на схеме (9) и известен как общий основной катализ. [c.462]

    Все внутримолекулярные реакции, приведенные в табл. 24.1.2, протекают в соответствии с механизмом нуклеофильного катализа схемы (11), (11а) . Этот механизм ожидается для внутримолекулярного катализа диметиламиногруппой, так как межмолекулярный катализ гидролиза фенилацетата сильным основанием — триметиламином, также нуклеофилен (реакции 6 и 7 табл. 24.1.2). (Значения констант Гамметта р для ряда уходящих групп, представляющих собой замещенные фенолы, равны 2,2 в случае межмолекулярной реакции с триэтиламином в случае внутримолекулярного процесса эти параметры очень близки и составляют 2,5 [28]. Катализ гидролиза фенилацетата ацетат-ионом, с другой стороны, предполагает участие ацетата в качестве общего основания. Внутримолекулярное протекание реакции делает, очевидно, нуклеофильный механизм предпочтительным в сравнении с общим основным. Возможное объяснение этому заключено в структуре тетраэдрических интермедиатов, например (6) см. схему 11 . Группа СОг является лучшей уходящей группой по сравнению с РЬО (т. е. К2 > Кз) в силу более низкой основности, вследствие чего скоростьопределяющей стадией реакции является распад (6) на продукты (/Сз). На этой стадии происходит высвобождение фе-ноксид-иона и, таким образом, из одной молекулы образуются две, Для такого процесса характерна особенно выгодная энтропия ак  [c.466]

    Хотя детали каталитического механизма действия пепсина все еще не ясны, хорошо известно, что гидролиз амидной связи подвергается эффективному нуклеофильному катализу близлежащей карбоксильной группой. Например, гидролиз моноамида фталевой кислоты (46) проходит примерно в 10 раз быстрее гидролиза бензамида [75]. Эта реакция весьма чувствительна к изменениям структуры. Гидролиз наиболее реакциоиноспособных соединений (например, кислых амидов диметилмалеиновой кислоты (47), имеющих период полупревращения при 37 °С менее 1 с) подчиняется общему основному катализу. Механизм зтой реакции (39) указы- [c.500]

    В разд. 24.1.3 мы видели, как каталитические механизмы, по которым, как полагают, действуют некоторые ферменты, могут в ряде случаев наблюдаться в простых системах. Так, общий основной катализ имидазолом, например, гидролиза Л ,0-диаце-тилсеринамида (36) [53] представляет собой модель реакции химотрипсина со сложноэфирным субстратом. В ионной реакции этого типа переходное состояние каталитической реакции стабилизуется за счет делокализации заряда на нескольких центрах. В этом случае фиксация положительного заряда на нуклеофильной гидроксильной группе нейтрализуется делокализацией на азо-тах имидазола. В результате происходит понижение энергии активации реакции за счет затрат повышенной энтропии активации (см. разд. 24.1.22). Данные табл. 24.1.4 иллюстрируют это положение мономолекулярная реакция отщепления 2,4-динитрофен-оксида от соответствующего фосфатного моноэфира-дианиона имеет высокую энтальпию активации, однако реакция протекает достаточно легко из-за ее весьма благоприятной энтропии активации. Нуклеофильный катализ этой реакции пиридином характеризуется несколько меньшей энтальпией активации, так как азот пиридина может принимать на себя положительный заряд в переходном состоянии, в результате чего удается избежать образования высокоэнергетического интермедиата — метафосфата [РОЛ- Тем не менее участие молекулы пиридина отражается в виде намного менее выгодной энтропии активации. Близкие активационные параметры наблюдаются и в случае нуклеофильного катализа ацетатом гидролиза триэфира (73) также бимолекулярной реакции. Нейтральный гидролиз (73) проходит, как полагают, по механизму тримолекулярного общего основного катализа (см. табл. 24.1.4). Эта реакция протекает относительно медленно исключительно за счет энтропийного вклада, еще менее выгодного в этом случае. Энтальпия активации, впрочем, для тримолекулярного процесса несколько ниже, поскольку делокализация заряда на трех молекулах еще больше уменьшает его фиксацию в каком-либо одном центре. [c.522]

    Если с помощью методов химической идентификации удается доказать, что образующееся на промежуточной стадии соединение представляет собой промежуточный продукт нуклеофильного катализа, а кинетика всего процесса подчиняется закономерностям, характерным для реакций, катализируемых нуклеофилами, то имеет место не общий основной, а нуклеофильный катализ. Для регистрации промежуточного продукта могут быть использованы прямые методы наблюдения за его образованием и распадом либо обработка реакционной смеси каким-либо реагентом, образующим с промежуточным продуктом устойчивое соединение, которое можно выделить и охарактеризовать. Например, в случае гидролиза п-нитрофенилацета-та, катализируемого имидазолом, за образованием и распадом. N-aцeтилимидaзoлa можно следить спектрофотометрически на длине волны 243 нм, соответствующей максимуму поглощения этого соединения. Результаты, полученные этим способом, полностью удовлетворяют механизму двухстадийного нуклеофильного катализа [17]. [c.109]

    Катализируемый фторид-ионом гидролиз этилхлорформиата идет по аналогичному механизму нуклеофильного катализа. Действительно, в неводном растворителе из хлорформиата легко получить фторформиат, который примерно в 30 раз быстрее гидролизуется, чем его хлоридный предшественник. [c.160]

    С использованием меченых соединений и ловушек промежуточных частиц было установлено, что гидролиз тетраэтилпирофосфата также протекает по механизму нуклеофильного катализа с промежуточным образованием дианиона (С2Н50)2Р( = 0)0Р0з . Этот дианион должен обладать большей лабильностью, чем исходный нейтральный субстрат, превращаясь в конечном итоге в продукты реакции с регенерацией каталитически активного ортофосфат-иона НР04  [c.163]

    Третичные амины, фосфины, сульфиды, оксиды третичных аминов, а также оксиды фосфора катализируют множество самых разнообразных химических реакций. Среди них следует отметить катализируемую диалкилсульфидами реакцию дисульфидов с сульфиновой кислотой, катализ третичными фосфинами трансэтерификации фосфатов, фосфонатов и фосфинатов под действием алкилгалогенидов, катализируемое фосфиноксидом превращение изоцианатов в карбодиимиды, катализ Ы-оксидом пиридина реакции изоцианатов со спиртами, катализируемый триметиламином алкоголиз Ы-бензоилфосфорамидата, а также катализируемые диметилформамидом реакции хлорфосфатов со спиртами, кислотами и аминами. По-видимому, все эти реакции идут по механизму нуклеофильного катализа с образованием неустойчивых промежуточных соединений. Образование ре-акциоиноспособных промежуточных частиц доказано достаточно строго только для последней из перечисленных реакций. [c.169]

    Так как для процессов, идущих по механизму нуклеофильного катализа, тангенсы угла наклона на бренстедовских зависимостях больше, чем для процессов, идущих по механизму общего основного катализа, более сильные основания будут преимущественно действовать как нуклеофилы, а более слабые — как общие основные катализаторы. Таким образом, появление излома на зависимостях типа бренстедовских можно объяснить сменой механизма общего основного катализа, характерного для более слабых оснований, на нуклеофильный, типичный для более сильных оснований. На рис. 7.3 видно, что общему основному механизму соответствует более пологий участок (А), а нуклеофильному— более крутой (В). Следует отметить, что зависимость, изображенная на рис. 7.3, не является чисто гипотетической. Она схематично отражает ситуацию, реализующуюся при гидролизе этилдихлорацетата под действием ряда оснований. Гидролиз идет по механизму общего основного катализа, если основность катализаторов ниже основности аммония. Если основность катализатора соизмерима или выше основности аммо- [c.176]

    Может также возникнуть вопрос почему один из данной серии субстратов реагирует по механизму общего основного катализа, а другой — по нуклеофильному Изменение механизмаг легко проследить на реакции катализируемого имидазолом гидролиза сложных эфиров различного строения. Сложные эфиры с активированной ацильной группировкой, а также содержащие плохие уходящие группы в присутствии имидазола реагируют по механизму общего основного катализа. С другой стороны, сложные эфиры с хорошей уходящей группой реагируют в тех же условиях по механизму нуклеофильного катализа. Сходным образом замещенные фенила-цетаты с сильными электроноакцепторными заместителями гидролизуются под действием ацетат-ионов по механизму нуклеофильного катализа, но при наличии любых других заместителей механизм катализируемого ацетат-ионом гидролиза меняется на общий основной. Переход от общего основного к нуклеофильному катализу в промотируемых имидазолом реакциях был исследован путем анализа взаимосвязи между реакционной способностью и строением на примере катализируемого имидазолом и гидроксид-ионом гидролиза ряда сложных эфиров. Соответствующие константы скорости в логарифмических координатах показаны на рис. 7.4. Константы скорости в случае гидроксид-иона отвечают одному и тому же механизму для всех сложных эфиров и поэтому могут быть использованы для построения эмпирической шкалы, отражающей структурные изменения. Электронные эффекты, которые можно учитывать в рамках уравнений Гаммета (ароматические а константы) и Тафта (алифатические ст константы), пока приниматься во внимание не будут. Таким образом, при сопоставлении констант скорости катализируемых имидазолом реакций с константами скорости реакций, катализируемых гидроксид-ионом, автоматически будут выявляться те структурные факторы, которые влияют на реакционную способность. Заметим, что в ходе такого анализа необходимо принимать во внимание помимо смены механизма катализа [c.177]

    Внутримолекулярные реакции обычно протекают значительно легче, чем соответствующие межмолекулярные процессы. Влияние соседних групп на реакционную способность впервые было обнаружено в реакциях нуклеофильного замещения. Теперь же хорошо известно, что во .нутримолекулярных реакциях можно встретить практически все виды катализа от общего кислотно-основного до нуклеофильного н Электрофильного [1]. Установление механизма внутримолекулярного ка тализа обычно сводится к дифференциат ии между обшим основным и нуклеофильным катализом, общим основным и комбинацией катализа общей кислотой и гидроксид-ионом, общим кислотным и комбинацией катализа, общим основанием и ионом гидроксония. Иными словами, те неопределенное , с которыми может встретиться исследователь при зучении межмолекулярных систем, сохраняются и в случае внутримолекулярных. В таких случаях выбор механизма катализа проводится по той же схеме, что и для межмолекулярных каталитических реакций, как это было показано в предыдущих главах. [c.247]


Смотреть страницы где упоминается термин Нуклеофильный катализ, механизм: [c.282]    [c.91]    [c.109]    [c.308]    [c.313]    [c.38]    [c.462]    [c.463]    [c.467]    [c.468]    [c.163]    [c.177]    [c.180]    [c.254]   
Общая органическая химия Т.10 (1986) -- [ c.461 , c.462 , c.466 ]




ПОИСК





Смотрите так же термины и статьи:

Катализ механизм

Катализ нуклеофильный

Механизмы нуклеофильного



© 2025 chem21.info Реклама на сайте