Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы анализа карбоновых кислот

    МЕТОДЫ АНАЛИЗА КАРБОНОВЫХ КИСЛОТ [c.297]

    Для идентификации сложных смесей, нестабильных веществ, практически нелетучих высокомолекулярных соединений часто используют аналитическую реакционную газовую хроматографию — вариант, в котором хроматографический и химический анализ сочетаются в единой хроматографической схеме. Задача метода состоит в том, чтобы в результате химических реакций получить новую смесь, компоненты которой разделяются или идентифицируются лучше, чем компоненты исходной смеси. Широкое применение при этом находит метод вычитания, при котором проводят два хроматографических анализа — исходной смеси до и после поглощения определенной группы компонентов. Таким способом можно, например, устанавливать наличие во фракциях непредельных углеводородов, селективно поглощая их в реакторе с силикагелем, обработанным серной кислотой. При реакционной газовой хроматографии используются также реакции гидрирования, дегидрирования, этерификации (для анализа карбоновых кислот в вйде эфиров), пиролиза высокомолекулярных соединений. [c.123]


    Для разделения смеси индивидуальных нафтеновых кислот методом ГЖХ нами совместно с Л. С. Борисовой исследованы вначале неподвижные жидкие фазы, рекомендованные для анализа карбоновых кислот [c.147]

    Идентификацию и количественный анализ карбоновых кислот — другого компонента алкидных и полиэфирных смол — проводят методом газо-хроматографического анализа метиловых эфиров соответствующих карбоновых кислот. Метиловые эфиры карбоновых кислот менее полярны и поэтому более пригодны для газо-хроматографического определения. Разработанные экспрессные методы этерификации продуктов омыления полимеров обеспечивают быструю подготовку проб к анализу. [c.196]

    Титрование в среде основных растворителей. В среде основных растворителей сильно возрастают кислые свойства слабых кислот (ПО сравнению с их водными растворами. Метод был применен для количественного анализа карбоновых кислот, фе- [c.201]

    Титрование в среде основных растворителей. В среде основных растворителей сильно возрастают кислые свойства слабых кислот по сравнению с их водными растворами. Метод был применен для количественного анализа карбоновых кислот, фенолов и их производных, сульфамидов, енолов, имидов, нитросоединений, оксимов, аминокислот и т. д. [c.204]

    Обнаружение подвижных атомов Н, способных к образованию водородных связей, облегчается благодаря смещению их резонансных полос в более высокочастотное ноле с разбавлением (снижением степени ассоциации). Многие гетероатомные функции, содержащие неподеленные электронные пары и способные к комп-лексообразованию с металлами, могут быть выявлены по смещению- полос поглощения в более слабое или более сильное поле присутствии парамагнитных сдвигающих реактивов комплексных солей европия или празеодима соответственно. Такой метод использован, например, при анализе ароматических карбоновых кислот [240]. [c.31]

    Определение процентного содержания карбоновых кислот методом горячего омыления, как следует из описания, довольно длительно и сложно. Если бы можно было быстро и точно определять кислотные числа карбоновых кислот, содержащихся в продукте, то по кислотности можно было бы легко вычислить и процентное содержание карбоновых кислот. Но так как для определения кислотного числа необходимо выделить чистые карбоновые кислоты, т. е. провести весь анализ горячего омыления, то в ходовых пробах для простоты не определяют кислотные числа карбоновых кислот каждой отдельной пробы, а условно принимают их равными некоторому среднему для данного продукта кислотному числу. [c.457]


    На основании данных, полученных при комбинировании методов функционального (химического) и спектрального анализов азотсодержащих соединений нефтей ряда месторождений Советского Союза, эти исследователи подтверждают свое, ранее высказанное предположение, что нейтральные азотистые соединения являются амидами карбоновых кислот. [c.351]

    Существуют определенные методы синтеза органических соединений, в которых отдельные атомы являются изотопно-обогащенными (т. е. обладают более высокиМ содержанием редкого изотопа, чем при природном обогащении) (разд. 1.1). При исследовании превращений таких меченых веществ и анализе продуктов превращений часто удается определить точную судьбу отдельного атома или группы во время реакции. Этерификация изучалась с использованием тяжелого нерадиоактивного изотопа 0. Установлено, что при этерификации карбоновой кислоты спиртом, в котором гидроксильная группа обогащена 1 0 ( меченая ), все тяжелые изотопы находятся в эфирном атоме кислорода (но не в карбонильном кислородном атоме) и ни одного — в образовавшейся воде  [c.157]

    Кислотность фенолов и растворимость их солей в воде можно использо-вать как при анализе, так и для их разделения. Нерастворимое в воде соединение, которое растворяется в водном растворе щелочи, но не растворяется в водном растворе бикарбоната, должно быть более сильной кислотой, чем вода, но менее сильной кислотой, чем карбоновая кислота большая часть соединений, кислотность которых лежит в этом интервале, относится к числу фенолов. Фенолы можно отделить от соединений, не обладающих кислыми свойствами, благодаря их растворимости в основаниях метод отделения от карбоновых кислот основан на нерастворимости фенолов в растворе бикарбоната. [c.753]

    Возможности учета небольших отклонений от сформулированных условий рассмотрены в [1, гл. 8 . Там же суммированы описанные в литературе примеры спектрофотометрического определения молярных масс органических соединений различных классов и условия анализа. В подавляющем большинстве случаев погрешность определения не превышала 1—2%. Спектрофотометрическим методом удавалось определять молярные массы алифатических карбоновых кислот, насыщенных спиртов, альдегидов ароматических углеводородов аминов, эфиров, кислот фенолов, углеводородов и других соединений. [c.155]

    Вода быстрее реагирует с фенилизоцианатом, чем с первичными спиртами, и для вычисления поправок можно исходить из того, что 1 моль воды поглощает 1 моль изоцианата. Определениям этим методом мешают первичные и вторичные амины, поскольку скорости их реакций с фенилизоцианатом сравнимы со скоростями реакций спиртов. Третичные амины не мешают анализу, так же как и карбонильные соединения, карбоновые кислоты и ацетали. Большинство ароматических гидроксильных соединений не взаимодействуют с фенилизоцианатом. [c.26]

    Метод волюмометрического определения карбоновых кислот с использованием стандартного щелочного раствора в водных и неводных средах хорошо изучен [73]. Однако титрование с использованием стандартных растворов не столь удобно (а возможно, и не столь точно), как кулонометрическое титрование. В последнем методе стандартный раствор для титрования генерируется электролитически в процессе самого титрования непосредственно в сосуде с анализируемым раствором. Концентрацию неизвестного соединения вычисляют по измеренному количеству электричества, прошедшего через раствор, на основе законов Фарадея. В этом методе совершенно не требуется стандартных растворов, а во многих случаях и стандартных проб. Более того, измеряемым титрующим раствором здесь является количество электричества (а точнее интервал времени, в течение которого включен источник постоянного тока), и анализ легко автоматизировать подавать в анализируемый раствор определенное количество электричества и измерять его легче и дешевле, чем порции стандартного раствора. Системы детектирования в этом методе те же, что и в обычном титровании, так что метод потенциометрического определения конечной точки титрования можно успешно использовать и здесь. [c.144]

    Методом ЯМР анализировали также и смеси карбоновых кислот и ангидридов. Паркер [85] использовал для анализа различия в значениях химических сдвигов для а-водородных атомов ангидрида и соответствующей кислоты. Обычно линии резонанса на а-водородных атомах ангидридов находятся в более низком поле, чем линии для а-водородных атомов кислот. Этим методом авторы анализировали ароматические, а также алифатические кислоты и ангидриды, такие, как уксусная, пропионовая, янтарная, фталевая, хлоруксусная, фумаровая и малеиновая. [c.149]


    Определение отдельных карбоновых кислот в смесях методом хроматографического разделения существенно облегчается, если сначала превратить эти кислоты в их метиловые эф ры. Этот же подход применим и для определения суммы трех кислот. Производные для радиохимического анализа количественно получают путем обработки кислот а) диазометаном- С в смеси эфир — метанол, б) водой, насыщенной тритием, в эфире и затем нерадиоактивным диазометаном, в) раствором едкого натра и метилата натрия, меченного изотопом Н, в метаноле- Н и г) метанолом- С в присутствии трехфтористого бора. В каждом из этих методов избыток реагента удалить легко, и потому все они имеют высокую чувствительность. [c.152]

    Воду, насыщенную тритием, в комбинации с нерадиоактивным диазометаном использовали и для определения отношения количеств гиббереллиновой кислоты и ее дигидропроизводного в спиртных напитках [102]. В работе [102] высказывалось предположение о том, что для приготовления этиловых и пропиловых- Н эфиров с целью количественного анализа карбоновых кислот можно использовать диазоэтан и диазопропан, меченные тритием, однако работ по практическому применению такого метода нет. [c.155]

    Применение фотохимических реакций весьма перспективно в волюмометрических методах анализа, поскольку многие вещества под действием света разлагаются с выделением газообразных продуктов. Этими методами можно определять диазосоединения, в особенности такие, как о-диазофенолы и о-диазонафтолы, высокочувствительные к свету [85]. Определение этих соединений обычными методами отличается значительными трудностями [73]. Волюмометрическим методом определяют карбоновые кислоты, в том числе уксусную, щавелевую, муравьиную, малоновую, ЭДТА, винную, лимонную, а также ацетон, ацетальдегид, формальдегид, некоторые эфиры и многие другие органические соединения. [c.12]

    Карбоновые кислоты. Для проведения количественного анализа карбоновых кислот, особенно их бифункциональных производных, а также высококипящих кислот, их до хроматографического анализа превращают в более стабильные и менее адсорбционно-активные производные. Метиловые эфиры кислот — одна из наиболее популярных форм производных кислот в газохроматографическом анализе. Для получения метиловых эфиров карбоновых кислот используют диазометан [100], метанольный раствор соляной кислоты [Ш1], метанольный раствор трифторида бора [102], пиролиз тетраметилам-мониевых солей [ЮЗ] и другие методы. Применяют также высшие эфиры для повышения чувствительности при детектировании ЭЗД целесообразно использовать галогенсодержащие реагенты для получения сложных эфиров [104]. Следует особо отметить использование эфиров а-оксифосфоновой кислоты для анализа следов карбоновых кислот с применением селективного фосфорного детектора [49]. Триметилсилиловые эфиры также используются для проведения хроматографического анализа [106, 107]. Интересные методы анализа кетокислот [c.46]

    В 1956 г. хроматографический метод применили для исследования молочного жира, и с тех пор этот метод стал основным для качественного и количественного анализа карбоновых кислот в различных природных объектах. Теперь уже ни у кого не вызьшает ни сомнения, ни просто удивления, когда в том или ином жире находят, к примеру, маргариновую кислоту. А много ли ее находят В оливковом, подсолнечном или арахисовом масле ее мало-всего 0,2% от суммы всех жирных кислот, а вот в горчичном масле уже в 10 раз больше-до 2,1%. Примерно столько же ее в говяжьем жире. В сливочном масле маргариновой кислоты чуть больше 1%, причем летом ее меньше, зимой-больше. По-видимому, маргариновая кислота довольно широко распространена в природе-небольшие ее количества нашли в жире питонов и песцов, в семенах помидоров и апельсинов, в речных водорослях и даже в. .. дыме болгарских Табаков. Так что в энциклопедии 1964 г.-явная ошибка (она была исправлена с выходом в 1983 г. Химического энциклопедического словаря ). Отметим, что в датуровом масле , вьщеленном из семян дурмана, этой кислоты нет совсем. [c.122]

    Оригинальный метод идентификации карбоновых кислот С2—С5 основан на хемосорбционном улавливании контролируемых компонентов (см. также главу III) и использовании комбинации газовой и ионной хроматографии [121]. Карбоновые кислоты поглощались в ловушке со стеклянными шариками, обработанными гидроксидом стронция, десорбировались органическим растворителем и анализировались на колонке (1,5 м х 3 мм) с 0,3% FFAP и 0,3% Н3РО4 на Карбопаке В при 200°С с ПИД. Дополнительная информация о присутствии в пробе кислот и их количественном содержании была получена после экстракции иона стронция (2+) из хемосорбента деионизованной водой и анализа раствора методом ИХ. [c.322]

    Эта реакция, описанная в 1870 г. Меером, не представляет интереса в качестве препаративного метода получения карбоновых кислот вследствие неизбежно больших потерь, вызываемых термическим разложением. Однако она может быть использована в качестве характерной непрямой реакции для обнаружения алифатических и ароматических сульфокислот, сульфонов и сульфона ми-дов, так как при этом образуется термически устойчивый легко обнаруживаемый сульфит. Это быстрый и простой метод, и для его выполнения может быть использована техника капельного анализа. Из этого примера следует, что иногда для целей анализа имеет смысл превратить сложный метод получения вещества в упрощенную реакцию его образования, которую легко осуществить в виде качественной реакции. [c.31]

    Весовые методы. Для анализа карбоновых кислот, образующих нерастворимые соли, можно воспользоваться весовым определением. Обычно применяют соли свинца, магния, кальция, бария и серебраСледует отметить, что серебряные соли некоторых кислот иногда взрываются, если их сушить при нагревании, и поэтому обращаться с ними надо осторожно. [c.161]

    Эрссон [108] использовал этот метод для газохроматографического определения карбоновых кислот и фенолов. Метод включает экстракцию кислоты в форме ионной пары в метиленхлорид и получение производного с пентафторбензилбромидом. Скорость реакции увеличивается в зависимости от структуры противоиона и при увеличении его концентрации. Для повышения скорости реакции гораздо лучше использовать вместо тетрабутиламмониевых солей более липофильные соли тетра-н-пен-тиламмония. Имеется обзор, посвященный применению экстрактивного алкилирования для анализа фармацевтических препаратов [1052], а недавно описана микромодификация этого метода с твердофазной системой МФК и использованием в каче- стве щелочи карбоната натрия [1053]. [c.128]

    Благодаря высокой чувствительности (10 % мае.) и возможности работы с сильноокрашенными веществами методы потенциометрического титрования полупили большое распространение в практике количествеяного группового анализа ГАС нефти. С помощью этих методов определяются как соединения с выраженными кислотными или основными свойствами (карбоновые кислоты [189], фенолы [190, 191], тиолы [192], азотистые основания [193, 194]), так и некоторые азот- и серусодержащие вещества нейтрального характера. [c.25]

    Близок к методу молекулярных ионов анализ по иону [М— —СНз] + в триметилснлиловых эфирах карбоновых кислот или по двум ионам М+- и [М—СНз]+ в триметилснлиловых эфирах фенолов [181]. В производных кислот ион [М—СНз]+ заменяет отсутствующий молекулярный ион. В работе. [185] впервые определены коэффициенты относительной чувствительности при низких энергиях (8—20 эВ) для ряда алкилпиренов. Эти данные могут быть использованы в случае анализа многих других классов соединений. [c.134]

    Широко применяются циклические комплексные соединения на основе этилендиаминтетрауксусной кислоты (ЭДТА) и других аминополи-карбоновых кислот, называемых комплексонами. Они образуют прочные соединения с большинством катионов. Поэтому комплексоны используют в аналитической химии для определения содержания металлов Б различных материалах (метод анализа называется комплексо-нометрией), а также для определения жесткости воды. Комплексоны применяются для очистки воды и растворения накипи в парогенераторах, а также для удаления продуктов коррозии, что позволило почти полностью заменить малоэффективные, трудоемкие механические методы высокопроизводительными и надежными химическими методами. [c.250]

    Комплексонометрия — титриметрический метод количественного анализа, основанный на реакциях образования комплексных соединений ионов металлов с этилендиаминтетрауксусной кислотой или ее солями (или с другими полиамино-карбоновыми кислотами) [c.439]

    Широко применяются внутрикомплексные соединения на основе этилендиаминтетрауксусной кислоты (ЭДТА) и других аминополи-карбоновых кислот, называемых комплексонами. Они образуют прочные комплексные соединения с большинством катионов. Поэтому комплексоны применяются для определения многих металлов. Теперь этот метод анализа называется комплексонометрией. [c.153]

    Разработаны также способы диэлкометрического титрования. Примером может служить титрование третичных аминов карбоновыми кислотами в бензоле или диоксане. Точки излома кривых титрования соответствуют образованию соединений состава КСООН НКз. В некоторых случаях метод можно применять и для анализа более сложных смесей. [c.170]

    Взаимодействием ароматических аминов с двукратным количеством этилового эфира 2-бром-4-метилимидазол-5-карбоновой кислоты 65 получены соответствующие диимидазо[1,5-й 1, 5 -й ]пиразиндионы 66. Строение последних установлено методом рентгеноструктурного анализа [71]. [c.128]

    ИТФ преимущественно применяют для разделения неорганических ионов и органических карбоновых кислот. Из-за проблем детектирования и трудностей, связанных с нахождением подходящих электролитов, для проб неизвестного состава метод ИТФ неприменим. В частности, подходящие носители, т.е. электролиты, необходимы для белков и других сложных смесей, причем для того, чтобы разделять зоны друг от друга, носители должны обладать скоростью, промежуточной между скоростями движения проб. Из-за необходимости поиска подходящих носителей в анализе белков метод ИТФ едва ли найдет широкое применение в биоаналитике. ИТФ, как вытеснительная хро-матография, способен концентрировать разбавленные пробы, поэтому он может быть использован на стадии предварительного концентри-рования перед разделением методом КЭ. Этим разрешаются проблемы, связанные с дозировкой относительно больших объемов разбавленных проб. [c.108]

    Метиловые эфиры карбоновых кислот количественно получали также путем пиролиза тетраметиламмониевых солей моно- и дикарбоновых кислот в нагретом (около 350 °С) входном устройстве газового хроматографа. Таким методом можно анализировать водные растворы кислоты, причем превращение кислот в соответствующие соли позволяет избежать потерь летучих жирных кислот во время анализа. Аналогичным образом можно анализировать и полиненасыщенные кислоты, если перед вводом в хроматограф сделать сильно щелочные растворы солей почти нейтральными (pH 7,5—8,0), добавляя в них уксусную кислоту [8]. Для анализа щавелевой, малоновой и оксикислот этот метод неприменим. [c.131]

    При гидролизе или омылении эфиров обычно образуются карбоновая кислота, а также спиртовые или фенольные фрагменты, которые можно разделить, превратив в производные, и анализировать методом ГХ по отдельности. (См. гл. 1, разд. И, А — И, Г. Об образовании производных фрагментов см. эту главу, разд. II.) Не слишком полярный спирт, не содержащий кислотных групп, (а возможно, и мешающие примеси) можно удалить путем экстракции из щелочного раствора для проведения омыления несмешиваю-щимся с ним растворителем [44]. Спирты, мешающие анализу, можно также и испарить из смеси под вакуумом. Кислоту, если она не слишком поляриа из-за присутствия в молекуле других функциональных групп, можно экстрагировать растворителем после подкисления раствора для омыления. [c.140]

    В работе [122] предлагается метод определения микро- и полумикроколичеств п-бромфенацилэфиров карбоновых кислот, в котором производные сначала разделяют методом хроматографии на бумаге, затем активируют пучком нейтронов и определяют хроматографическим методом. При этом необходимо количественное или воспроизводимое образование эфиров. Для калибровки метода требуется параллельно с основным анализом вести активационный анализ известных проб бромсодержащего соединения. Наивысшая чувствительность метода достигается при использовании мощного потока нейтронов (ядерный реактор). [c.158]

    Хорошим реагентом для определения макроколичеств карбоновых кислот, ангидридов и хлорангидридов методом изотопного разбавления является п-хлоранилин- С1. Для оценки содержания этих соединений в форме анилидов применяли также и некоторые хлор-феноксиуксусные- С1 кислоты. Как правило, анилиды имеют резко выраженную температуру плавления и их можно очищать путем кристаллизации. Многообещающим радиореагентом для анализа меньших количеств веществ является /г-иоданилин- Ч. Образуемые им меченые я-иоданилиды сначала вводят в хроматографическую колонку, а затем счетчиком с твердым сцинтиллятором измеряют распределение радиоактивности вдоль этой колонки. Преимущество первичных ароматических аминов состоит в том, что обычно ангидриды и хлорангидриды карбоновых кислот реагируют с ними количественно в мягких условиях. [c.158]


Смотреть страницы где упоминается термин Методы анализа карбоновых кислот: [c.157]    [c.306]    [c.286]    [c.116]    [c.307]    [c.31]    [c.41]    [c.215]    [c.63]   
Смотреть главы в:

Акваметрия -> Методы анализа карбоновых кислот




ПОИСК





Смотрите так же термины и статьи:

Кислота методы



© 2024 chem21.info Реклама на сайте