Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотохимические реакции, применение

    Альтернативным подходом к определению световых интенсивностей является измерение скорости фотохимической реакции, для которой квантовый выход точно известен. Химические системы такого типа называются химическими актинометрами. Разумеется, квантовый выход самого актинометра должен быть определен посредством абсолютных (т. е. с применением термостолбика) измерений интенсивностей света. Химические актинометры предпочтительны вследствие независимости их показаний от длины волны света и экспериментальных параметров. Одним нз наиболее употребительных составов для этой цели является раствор КзРе(Сг04)з, известный в этой области как ферриоксалат калия. Окисление ферриоксалата в кислом растворе приводит к восстановлению Fe + до Fe + и одновре- [c.188]


    Для получения этих величин был разработан целый ряд методов [144], в том числе и наиболее часто используемый метод прерывистого освещения в применении к фотохимическим реакциям. [c.518]

    Почему некоторые фотохимические реакции требуют применения сенсибилизатора  [c.164]

    Значение фотохимических реакций отнюдь не исчерпывается рассмотренными видами реакций. Ряд фотохимических реакций используется в химической промышленности. Важной проблемой будущего является возможность технического применения фотохимических реакций в энергетической промышленности с целью использования энергии солнечных лучей. [c.502]

    Действие света облегчает или вообще делает возможным протекание химических реакций. Широкое применение фотохимических реакций для синтетических целей, избирательность поглощения и высокая энергия поглощаемых фотонов, установление связи между особенностями фотохимических реакций и процессами взаимопревращения электронных состояний — все это вызвало огромный интерес к фотохимии. [c.132]

    По принципу действия различают абсорбционные, дисперсионные и интерференционные светофильтры. Наибольшее применение при исследовании фотохимических реакций находят абсорбционные светофильтры. Абсорбционные светофильтры изготовляются из сред, поглощающих свет окрашенных стекол и желатиновых пленок, химических фильтров (газовых, жидких). Существует большое количество абсорбционных стеклянных светофильтров. Отдельные типы стекол обозначаются соответственно спектральной области пропускания ультрафиолетовые — УФС, фиолетовые —ФС, синие— СС, сине-зеленые — СЭС, зеленые — ЗС, желто-зеленые — [c.141]

    В данной работе следует изучить кинетику цепной фотохимической реакции с применением газометрического метода анализа, и определить константу нарастания скорости реакции. [c.394]

    Многие из количественных аспектов термических и фотохимических реакций органических соединений могут быть рассмотрены с использованием простого квантовохимического подхода к реакционной способности, основанного на методе возмущений [30 35—65]. Этот метод особенно удобен для рассмотрения реакций циклоприсоединения. На различных уровнях применения метода возмущений можно получить либо детальную картину поверхности потенциальной энергии одной реакции, либо полуколичественную-корреляцию относительной реакционной способности большой серии реакций. [c.284]


    Для подготовки реагентов с выбранными квантовыми состояниями может потребоваться применение методики молекулярных пучков, которая здесь непосредственно не рассматривается. И наоборот, можно так провести термические или фотохимические реакции, что их продукты преимущественно будут иметь определенные состояния. В случае многоатомных соединений вращательные и даже колебательные уровни в реагентах могут быть так переполнены при температурах окружающей среды, что селективное возбуждение отдельных уровней оказы- [c.205]

    Связь между термическими и фотохимическими реакциями можно проиллюстрировать рассмотрением некоторых типов реакций, обсуждавшихся в предыдущей главе, и проверкой применения подхода орбитальной симметрии к фотохимическому типу реакиии. [c.420]

    Наконец, в-четвертых, из-за окислительно-восстановительных свойств многие макроциклические комплексы находят применение при изучении поведения ионов металлов в необычных степенях окисления Такие комплексы также используют в прикладных целях в качестве окислителей и восстановителей или катализаторов ряда редокс-лроцессов, включая фотохимические реакции [c.20]

    Несмотря на то что исторически первые кинетические исследования гетерогенной полимеризации были проведены на примере реакций виниловых мономеров в газовой фазе, их объяснение в ряде случаев еще неполно. Поскольку термический распад молекул мономера с образованием осколков радикального характера наблюдается только при высоких температурах, а бимолекулярное инициирование при выбранных концентрациях происходит с очень малой скоростью, обычно прибегают к фотохимическому инициированию, часто с применением сенсибилизатора, например ацетона в некоторых случаях изучалась и прямая фотохимическая реакция. Образование полимера в виде тумана в реакционном сосуде серьезно мещает поглощению света мономером или сенсибилизатором, более того, часто протекают побочные реакции, вызываемые фотораспадом мономера, приводящим к образованию низкомолекулярных продуктов. [c.125]

    ХИНОНОВ [176, 231] реакцию можно проводить при нагревании в темноте, тогда как в других случаях происходит присоединение к диеновой системе по схеме диенового синтеза Дильса — Альдера [125, 233]. Хотя возбуждение устраняет энергетический барьер реакции, в случае больших молекул взаимосвязь между возбужденным состоянием и энергетическими состояниями продуктов реакций настолько сложна, что нельзя предсказать, будет ли при фотохимической реакции образовываться то же соединение, что и при повышенной температуре. Некоторое представление об области применения реакции может дать табл. 2. Сернистый ангидрид при облучении присоединяется к о-хинонам с образованием циклических сульфатов по схеме реакции Дильса—Альдера [213]. [c.384]

    В последние годы в качестве органических растворителей и реакционной среды нашли применение жидкокристаллические мезоморфные вещества, например в фотохимических реакциях. Соединения, способные существовать в жидкокристаллическом состоянии, как правило, имеют длинные, плоские и довольно жесткие (относительно их осей) молекулы, отвечающие следующей структуре  [c.62]

    Из других направлений применения фотохимических реакций в процессах разделения можно отметить фотохимическое восстановление платиновых металлов [142]. В этом случае монохроматичность электромагнитного излучения не является обязательным условием проведения процесса. Луч света с широким диапазоном длин волн направляется на раствор, в котором диспергированы частицы фотохимического катализатора, например диоксида титана. В результате фотовозбуждения в поверхностном слое [c.247]

    Фотохимические процессы находят применение в количественном анализе, в частности для генерации титранта. Известно, что количество продукта реакции, образовавшегося при фотохимической реакции, пропорционально интенсивности падающего света и времени облучения. При постоянстве режима работы источника света и других условий освещения (например, постоянство расстояния между источником света я анализируемым раствором) количество продукта реакции (титранта) пропорционально продолжительности освещения (аналогия с кулонометрией, где титрант генерируется электрическим током). Следовательно, зная продолжительность процесса, можно установить содержание титруемого вещества. Правда, существуют факторы, нарушающие строгую пропорциональность между количеством продукта фотохимической реакции и продолжительностью облучения. Однако применение градуировочного графика позволяет находить количество определяемого вещества по продолжительности облучения. [c.20]

    Методы химического анализа, основанные на использовании фотохимических реакций, зачастую оказываются более эффективными по сравнению с методами, основанными на использовании обычных химических реакций. Сведения по применению фотохимических реакций в аналитической химии рассеяны по многочисленным периодическим изданиям, выходящим во многих странах и на разных языках, вследствие чего многие из них мало доступны. Настоящая книга является первой попыткой критической оценки и обобщения всех этих сведений, а также рассмотрения перспектив дальнейшего развития и использования фотохимических -методов в аналитической химии. [c.5]


    При написании этой книги авторы старались возможно полнее представить все сведения по различным методам анализа, основанным на использовании фотохимических реакций, и описать те фотохимические реакции, которые легко могут быть использованы для разработки новых фотохимических методов анализа. При рассмотрении каждого метода или группы методов мы пытались достаточно широко и подробно указать возможные области их применения. [c.5]

    Однако в настоящее время фотохимические реакции находят очень малое практическое применение, хотя перспективность их несомненна, поскольку использование световой энергии для проведения химических реакций не требует больших затрат, дает возможность проводить химические реакции, не протекающие в отсутствие света, а в ряде случаев инициировать многие химические процессы, в том числе процессы полимеризации, конденсации и др. Воздействие света может изменить направление химических реакций. Так, например, если при хлорировании толуола в обычных условиях хлор замещает водород в основном в бензольном ядре, то при освещении — в метильной группе [20]. [c.6]

    Еще шестьдесят лет тому назад было установлено, что помимо биосинтетических процессов с участием хлорофилла и химических превращений, связанных с зрительными ощущениями, свет может вызывать химические превращения органических соединений. Из первых исследователей, занимавшихся вопросами фотохимии в то время, следует назвать Чамича 1а и Зильбера [77] и Патерно [193]. Однако несмотря на разнообразные и интересные открытия в этой области возможности практического применения фотохимии (не с чисто научными целями) казались ограниченными. Это объясняется многими причинами. Во-первых, для реакций, вызываемых облучением, в особенности реакций нецепного характера, требуется большой расход энергии. Во-вторых, многие реакции, вызываемые светом, связаны с образованием радикалов, склонных к дальнейшим превращениям, но те же самые радикалы можно получить другими, более простыми способами. Продукты многих фотохимических реакций можно легче получать обычными методами синтеза. В-третьих, фотохимические реакции часто приводят к сложным результатам, которые не всегда находят удовлетворительное объяснение, и контроль за такими процессами может быть затруднительным. Наконец, необходимые источники света (не считая солнечного излучения) и аппаратура для фотохимических реакций до недавнего времени были мало доступны. [c.368]

    Ниже перечислены основные особенности фотохимических реакций, которые делают применение этих реакций в аналитической химии весьма перспективным. [c.7]

    Для проведения строго направленных фотохимических реакций используют монохроматическое излучение (лазеры). Лазерное излучение обладает уникальными свойствами, которых нет у обычных источников света. Наиболее важным свойством лазерного излучения с точки зрения применения его для фотохимического инициирования химических процессов является излучение мощных потоков световой энергии в узких спектральных интервалах. Используя излучение определенной длины волны, погло-щаемое реагентом, но не поглощаемое примесями, можно осуществлять только один вполне определенный процесс. Так, при лазерном облучении смеси СН3ОН, СОзОО (О — дейтерий) и Вг2 происходит бромирование только СН3ОН вследствие избирательного возбуждения молекул. Если данное вещество способно, например, к распаду и к изомеризации, то можно, используя лазерное излучение, осуществить направленно только один процесс. [c.120]

    Создание и рациональное применение новых и высокоэффективных удобрений, разработка и внедрение пестицидов, улучшение физических и физико-химических свойств почвы невозможны без знания основ физической химии. Изучение почвенно-погло-щающего комплекса и гумуса почв, так необходимое для раскрытия способов повышения плодородия, прежде всего осуществляется с выявления физико-химического механизма возникновения, изменения и деградации этих систем. Глубокое исследование процессов фотосинтеза на основе знания механизма фотохимических реакций позволит в будущем повысить коэффициент использования солнечной энергии культурными растениями. [c.3]

    Все указанные свойства лазерного излучения нашли свое применение в современной фотохимической практике. Монохроматичность лазерного излучения, большой выбор лазерных длин волн, а также их способность перестраиваться по частоте позволяют легко настроиться на нужную длину волны. Малая расходимость лазерного излучения существенно облегчает дозиметрию и делает возможными эксперименты в многопрохо-довой кювете с облучаемым веществом. Когерентность лазерного излучения используется в ряде специальных методов анализа фотохимических продуктов, например в когерентном антистоксовом комбинационном рассеянии. Наконец, последнее свойство лазерного излучения приводит сразу к двум важным последствиям в фотохимии. Это возможность осуществления многоквантовых (многоступенчатых, многофотонных) фотохимических процессов, а также возможность исследования быстрых стадий фотохимических реакций с временным разрешением вплоть до 10 с. [c.5]

    Фотохимические реакции присоединения кислорода важны во многих фотосенсибилизированных процессах окисления ненасыщенных соединений. Биологические аспекты фотосенсиби-лизированного окисления известны с 1900 г., когда было открыто, что присутствие кислорода и сенсибилизирующих красителей могут вызывать гибель микроорганизмов. Патологические эффекты фотоокисления компонентов клетки включают повреждение клетки, мутагенез или онкогенез и летальный исход. Последние исследования фотосенсибилизированного окисления позволили лучше понять механизмы химических процессов, а полученные результаты находят теперь применение в области биологии. Логично закончить настоящую главу описанием этих очень важных реакций фотоокисления. [c.173]

    Здесь мы в большей степени касаемся применения фотохимии в промышленном синтезе. Очевидно, что фотохимический процесс должен превосходить по выходу или чистоте продукта обычные методы производства, чтобы конкурировать с ними. Особенно подходящими кандидатами для промышленного применения являются цепные реакции (часто с радикальными переносчиками цепи) с фотохимической начальной стадией. Мы уже рассматривали такое их использование в связи с фотополимеризацией (разд. 8.8.2). Заметим, что фотохимическая реакция может быть экономически оправданной даже в том случае, когда ее квантовый выход низок, если выход химического продукта выше, чем у обычных процессов. В производстве веществ тонкой химической технологии расходы на свет составлявот незначительную часть общей стоимости продукта высокого качества. Более того, вследствие относительно малых количеств используемого материала серийный процесс часто может представлять увеличенную копию лабораторного метода. При использовании фотохимии в широкомасштабном валовом химическом производстве возникают несколько большие трудности, так как плата за энергию может теперь составлять существенную часть стоимости конечного продукта. В широкомасштабном производстве часто применяются реакторы непрерывного действия, ставящие перед фотохимией проблемы, связанные с их конструкцией. В частности, необходимо использовать прозрачные реакторы или прозрачные кожухи ламп, стенки которых часто загрязняются образующимися смолообразными (и светопоглощающими) побочными продуктами. Размер реактора также может серьезно ограничиваться поглощением света реагентами. Этим недостаткам фотохимического синтеза должна быть противопоставлена более высокая селективность получения продуктов и лучший контроль за их образованием. Процесс производства отличается меньшими тепловыми нагрузками, поскольку реагенты не нужно нагревать, а затем охлаждать. Выли разработаны и технологии преодоления проблем, связанных с фотохимическими реакторами. Они включают освещение поверхности падающих тонких слоев реагентов использование ламинарных потоков несмешивающихся жидкостей, причем ближайшей к стенке реактора должна быть жидкость, поглощающая свет применение пузырьков газа, вызывающих турбулентность, для улучшения обмена реагента. И на- [c.283]

    Этот закон фотохимической эквивалентности А. Эйнтшейна справедлив только для световых квантов, и его применение ограничивается лишь первичными процессами взаимодействия фотона с молекулой. На практике же фотохимическая реакция включает также последующие вторичные процессы, и для описания всей реакции вводится такая характеристика, как квантовый выход, который отражает эффективность реакции. Он удобен для описания экспериментальных фактов и полезен, когда нужно сделать заключение о механизме реакции. [c.155]

    Был применен продажный бромистый о-ксилил. Можно также получить его бромированием о-ксилола в условиях фотохимической реакции . [c.486]

    Природные и синтетические красители, пигменты, люминофоры, аналитические реагенты, катализаторы и ингибиторы химических процессов, сенсибилизаторы фотохимических реакций, биологически активные и лекарственные препараты, включая лекарства от рака и СПИДа - таковы основные направления применения антрахинонов. Химия, металлургия, геология, легкая, целлюлозно-бумажная и деревообрабатывающая промышленность, кино-, фото- и телеиндустрия, полиграфия, микроэлектроника, компьютерная техника, лазерная техника, современные средства записи, хранения и воспроизведения информации, фармацевтическая промышленность и медицина - далеко не полный перечень отраслей науки и техники, широко использующих антрахиноны. [c.3]

    Вторым важнейшим направлением применения антрахинонов является их использование в качестве катализаторов и ингибиторов химических и фотохимических реакций. Перспективы применения антрахиноновых катализаторов в таких многотоннажных производствах, как производства целлюлозы и пероксида водорода, определяются в основном экономическими причинами. Расширение промышленных масштабов этого применения может повлечь за собой резкое увеличение мощностей производства антрахинонов и дать новый импульс развитию технологии их получения. [c.39]

    Для повышения эффективности фотохимической реакции целесообразно исключить действие кратковолновой области ультра фиолетового спектра (длина волны 248,5—280 м р,) Это может быть достигнуто применением специальных фильтров, поглощающих лучи кратковолновой облайги и пропускающих лучи длинноволновой области ультрафиолета [c.249]

    При фотолизе антрахинона в метанольном растворе LiOH получается титрант, который применен [146] для количественного редуктометрического определения растворенного кислорода в метаноле, гексане, этилацетате и др. Кроме того, этот титрант количественно восстанавливает медь (II) до меди (I), а затем — до металлической меди. Титрант образуется с постоянной скоростью вследствие фотохимической реакции количество кислорода или меди (II) в растворе пропорционально количеству израсходованных фотонов, у [c.292]

    Такая задача была решена [8—13] с помощью материального баланса стехиометрических уравнений. Он дал толчок к переходу с макроуровня, на котором осуществлялись расчеты до сих пор, на молекулярный микроуровень. Применение этого метода сделало возможным решение целого ряда вопросов для каталитических и фотохимических реакций. Так, удалось рассчитать сложные каталитические реакции с учетом катализатора. Стало возможным вычислять нужное количество катализатора ири определенной степени превращения и времени контакта. Известные методы, например метод маршрутов [6] и другие, не позволяют определять указанные величины для таких сложных реакций, как рассматриваемые в данной работе последовательные многостуненчатые каталитические реакции. Большие трудности вызывает расчет кинетических параметров фотохимических последовательных реакций. На примере реакции фотохлорирования этилбензола хлористым сульфурилом покажем метод аналитического расчета кинетических параметров. [c.7]

    Эффект комбинационного рассеяния (Раман-эффект) основан на испускании, а не на поглощении света. Принцип состоит в том, что прозрачная среда, освещаемая монохроматическим светом, обычно рассеивает свет с той же длиной волны, а также с большими и меньшими длинами волн, чем свет, падающий от источника. Разности частот между падающим и рассеянным светом связаны с колебательными и вращательными частотами в молекуле. Поскольку в качестве источника энергии применяется монохроматический свет, обычно наблюдаются линейчатые спектры, располагающиеся симметрично около центральной линии, соответствующей частоте возбуждающего источника. Линии, имеющие более низкие частоты, чем линия, идущая от источника, называются стоксовскими линии, имеющие более высокие частоты, — антистоксовскими. Разности частот, связанные с молекулярной структурой, не зависят от частоты применяемой возбуждающей линии, но интенсивность линий комбинационного рассеяния с увеличением длины возбуждающей волны очень быстро уменьшается. Поэтому в тех случаях, когда флуоресценция, ультрафиолетовое поглощение или фотохимические реакции отсутствуют, применяют ультрафиолетовые источники света, например линию ртути 2537А. Когда применение ультрафиолетового источника нецелесообразно, можно использовать голубую и фиолетовую линии в видимой области. [c.278]

    Применение фотохимических реакций весьма перспективно в волюмометрических методах анализа, поскольку многие вещества под действием света разлагаются с выделением газообразных продуктов. Этими методами можно определять диазосоединения, в особенности такие, как о-диазофенолы и о-диазонафтолы, высокочувствительные к свету [85]. Определение этих соединений обычными методами отличается значительными трудностями [73]. Волюмометрическим методом определяют карбоновые кислоты, в том числе уксусную, щавелевую, муравьиную, малоновую, ЭДТА, винную, лимонную, а также ацетон, ацетальдегид, формальдегид, некоторые эфиры и многие другие органические соединения. [c.12]

    Применение фотохимических реакций в аналитической химии органических веществ весьма перспективно. Для этой цели могут быть использованы такие фотохимические реакции, как фотоокисление и фотовосстановление, фотолиз, фотосинтез, фотоперегруппировки и т. д. Здесь мы кратко рассмотрим некоторые наиболее интересные реакции фотохимического восстановления органических веществ. К таким реакциям следует отнести прежде всего фотохимическое восстановление нитро- и нитрозосоеди-нений. Продукты восстановления (амины) можно количественно определять ацидиметрическим титрованием или титрованием растворами нитрита натрия. Возможно также непосредственное фотохимическое титрование и определение фотометрическими методами. [c.84]

    Чувствительность фотокинетических методов можно легко регулировать изменением интенсивности облучения это может быть достигнуто как применением источников облучения подходящей интенсивности, так и изменением расстояния между раствором и источником облучения. Имеет также значение форма сосуда, в котором находится облучаемый раствор, и толщина слоя раствора. Последний фактор оказывает влияние только в случае сильнопоглощающих растворов. Таким образом, чувствительность фотокинетических методов в отличие от чувствительности обычных кинетических методов можно регулировать в очень широких пределах за счет изменения скорости фотохимической реакции. [c.96]


Смотреть страницы где упоминается термин Фотохимические реакции, применение: [c.5]    [c.85]    [c.420]    [c.89]    [c.195]    [c.375]    [c.2]   
Фото-люминесценция растворов (1972) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Фотохимическая реакция



© 2025 chem21.info Реклама на сайте