Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ассоциация и сила оснований

    В тех случаях, когда растворитель имеет высокую диэлектрическую проницаемость и значительную кислотность, легко образуются продукты присоединения недиссоциированного характера, которые затем в зависимости от силы основания диссоциируют в большей или меньшей степени. В этих средах ассоциация ионов не наступает и асс-С соответственно а (1 + + пр) Тогда согласно уравнению (У,бЗ) [c.344]


    В зависимости от радиуса катиона основания ассоциация происходит в различной степени при близких ионных радиусах основания становятся одинаково сильными, но не полностью диссоциированными. При заметном различии в ионных радиусах при низкой диэлектрической проницаемости растворителя происходит дифференцирование силы оснований за счет различия в ассоциации. Это третий возможный тип дифференцирующего действия. [c.400]

    Дипольный момент в разбавленных растворах. Определение степени ассоциации на основании дипольных моментов Если на молекулу наложить внешнее поле силы (напряженности) Е, то действительная сила поля внутри молекулы, р, будет больше на дополнительную силу поля, пропорциональную поляризации Р. [c.69]

    Хорошие результаты получены при титровании солей карбоновых кислот ацетатов, цитратов, бензоатов и т. п., проявляющих сильноосновные свойства. Следует иметь в виду, что в результате изменения степени ассоциации ионов можно увеличить разницу в эффективной силе оснований, даже принадлежащих к ряду очень близких соединений, например ацетатов щелочных металлов. [c.122]

    Данных по системам МН- -X меньше, чем по водородным связям с группой ОН. Впрочем, широко используется пиррол в качестве стандартного донора протонов для оценки силы оснований, и исследованы ассоциации амидов и нуклеотидов. Смещения гМН обычно меньше, чем в случае ОН-групп большинства спиртов или фенолов, но из этого не следует, что водородные связи слабее. Расстояние ЫН---0 меняется значительно сильнее при фиксированном изменении уЫН, чем у систем ОН- - -О все значение этого факта еще не получило должной оценки. Однако, если расстояние, на которое подходит протон к акцептору, является важным критерием силы связи, то казалось бы, что в случае системы с МН это расстояние может достигать величины, сравнимой с расстоянием в случае систем с ОН, без такого же растяжения связи ЫН, как это происходит для связи ОН. [c.298]

    В инертных, неполярных растворителях вероятность отрыва протона очень мала, хотя в силу внутренних электронных эффектов связь Н—А может быть в высокой степени поляризована. В таких условиях кислотные свойства проявляются в самоассоциации молекул НА или в ассоциации с акцепторами протонов — основаниями, В последнем случае мерой кислотности является константа ассоциации с каким-либо основанием, выбранным в качестве стандарта. Например, константа ассоциации бензойной кислоты и дифенилгуанидина в бензоле составляет 1,82 10 . [c.234]


    Константы диссоциации электролитов в растворе определяются на основании данных об электропроводности, измерения электродвижущих сил и определения оптических свойств. Первые два метода пригодны и для определения констант ассоциации ионов. [c.123]

    Третий тип дифференцирующего действия состоит в том, что при попадании кислоты или основания даже одной природной группы в растворители с низкой диэлектрической проницаемостью изменяется соотношение в их силе. Если первый и второй типы связаны с химическими свойствами растворителя, то третий тип связан уже с физическими его свойствами — с низкой диэлектрической проницаемостью. Это дифференцирующее действие объясняется ассоциацией ионов и зависит от различия в их радиусах. [c.287]

    В муравьиной кислоте (е = 57) большинство оснований становится одинаково сильными, полностью диссоциированными. В уксусной кислоте (е = 6) большинство оснований превраш,ается в свою ионную форму но благодаря низкой диэлектрической проницаемости в ней происходит заметная ассоциация ионов. В результате основания имеют меньшую силу. [c.354]

    Можно было бы думать, что растворитель без протонов будет идеально подходить как среда для изучения относительной силы кислот и оснований, поскольку сам растворитель совершенно инертен и не может нп принимать, ни отдавать протоны. Такого рода измерения были сделаны, но в толковании их результатов много неясного. Пре кде всего, использование таких растворителей затруднено вследствие их малой диэлектрической проницаемости, которая обычно имеет величину 2 или 3. Поэтому заряженные частицы в таком растворе образуют двойные ионы и происходит сильная ассоциация. При таких условиях обычные методы определения силы кислоты становятся ненадежными и константа равновесия уже ие имеет такого простого вида, как в растворителе с большой диэлектрической проницаемостью. Об относительной силе кислот и оснований в растворителях с малой диэлектрической проницаемостью имеется очень мало данных. [c.339]

    В теоретической и практической химии ЩЭ большое значение имеют их гидроокиси, относящиеся, как известно, к числу оснований, наиболее сильных из существующих и называемых щелочами (растворимые гидроокиси). Причиной отсутствия заметной ассоциации в разбавленных водных растворах ионов M+ aq и ОН -ая с образованием ионных молекул или даже ионных пар типа [Na+ aq] [OH- aq] является, как и в случае растворов солей, слабое поляризующее действие однозарядных катионов ЩЭ. В ряду Ы—Сз оно ослабевает (если раствор разбавлен и анион не проявляет дополнительного эффекта поляризации). Таким образом, самым сильным из неорганических оснований нужно считать СзОН. Соли, отвечающие этому основанию, гидролизуются в минимальной степени. По силе основных свойств с СзОН могут конкурировать только основания, в которых роль однозарядного катиона играют очень большие по размерам органические частицы. Примером могут быть производные четвертичных аммониевых оснований. [c.16]

    Форма кривых потенциометрического титрования в неводных средах зависит от используемого электрода, растворителя, фонового электролита и силы кислот или оснований. На форму кривых влияют также присутствие ионов металлов, ассоциация между растворенным веществом и растворителем, образование комплексов кислота - анион кислоты и другие факторы. [c.247]

    Явление азеотропии обусловлено сложным взаимодействием молекул в жидкости, основанным на силах сцепления, ассоциации И сольватации. Азеотропия находит разнообразное применение. Ею [c.73]

    В известных условиях глобулы могут развертываться с образованием фибриллярных структур, состоящих из выпрямленных цепей. Например, при нейтрализации полиакриловой кислоты сильным основанием в водном растворе происходит выпрямление свернутой макромолекулы вследствие электростатического отталкивания одноименных зарядов групп С00 , периодически повторяю щихся вдоль цепи. Появление зарядов обусловлено диссоциацией образовавшейся соли, которая в отличие от свободной кислоты является сильным электролитом. Фибриллярные структуры также возникают при переходе от разбавленных растворов к концентрированным и в тех случаях, когда свертывание макромолекулы й глобуле затруднено (недостаточная гибкость цепей, взаимодействие их с некоторыми растворителями и т. д.). В таких условиях стремление одиночной вытянутой цепи к уменьшению своей поверхности и максимальному насыщению сил, действующих между ее функциональными группами, приводит не к образованию глобул, а к ассоциации макромолекул в пачки . Иногда получаются одновременно глобулы и пачки, между которыми устанавливается равновесие, соотношение их зависит от гибкости цепи, концен трации раствора и природы растворителя. Никогда не образуются промежуточные формы, которые, по-вндимому, неустойчивы. [c.434]


    В кислых и амфотерных растворителях с высокой диэлектрической проницаемостью многие основания полностью превращены в лиат-соли, т, е. полностью диссоциированы, благодаря чему они становятся одинаково сильными основаниями, их сила нивелируется (см, табл. 65). В этом случае обратная величина коистанты диссоциации o6g и константа ассоциации Касс равна нулю. [c.666]

    Хорошие результаты получены при титровании солей карбоновых кислот ацетатов, цитратов, бензоатов и т. п., проявляющих сильноосновные свойства. Следует иметь в виду, что в результате изменения степени ассоциации ионов можно увеличить разницу в эффективной силе оснований, даже принадлежащих к ряду очень близких соединений, например ацетатов щелочных металлов. По данным Пайфера и Уоллиша [74] ледяная уксусная кислота не должна содержать более 1 % воды, иначе на изменение pH вблизи точки эквивалентности существенное влияние окажет нивелирующий эффект. Концентрированная хлорная кислота содержит 28% воды. В ледяной уксусной кислоте, применяемой в качестве растворителя, титрант хлорная кислота обезвоживается с помощью уксусного ангидрида. Чтобы получить 0,1 М раствор хлорной кислоты, добавляют 8,5 мл концентрированной хлорной кислоты к смеси 250 мл ледяной уксусной кислоты и 20 мл уксусного ангидрида, разбавляют до 1 л ледяной уксусной кислотой и оставляют на несколько часов, чтобы ангидрид полностью прореагировал с водой, содержащейся в 72%-ной хлорной кислоте [42]. [c.137]

    Соотносительное влияние энергии сольватации и ДП растворителя наглядно проявляется и в случае оснований. Высокополярная и высокоакцепторная муравьиная кислота сильно повышает силу оснований по сравнению с водой на 2-12 порядков. Но уже в низкополярной НАс iTa сильных аминов значительно выше, чем в воде, и только для весьма слабых аминов наблюдается понижение степени ионной ассоциации по сравнению с водой. [c.128]

    В связи со способностью к протоннрованию приобретают особое значение данные о силе кислот и оснований. Удобно характеризовать силу кислоты и основания отрицательными логарифмами констант диссоциации и ассоциации рКк = lgЛ к и рКо = — Ко, где  [c.90]

    Минеральные и карбоновые кислоты, как и кислрты Льюиса, присоединяются к олефинам, и по их способности к протонированию можно судить о силе кислот или оснований, которые характеризуются отрицательными логарифмами констант диссоциации и ассоциации рКк = Кк и рКо = —15Ко, где Кк= [Н+][А-] ВН+ о --[НА] [Н+] — кислота Б — основание. [c.65]

    Однако влияние этих равновесий на силу кислот сказывается только в концентрированных растворах. В разбавленных растворах, в которых определяются термодинамические константы, реакция (IV) обычно проходит до конца, а реакция (V) практически еще не начинается. Напрймер, в очень концентрированных водных растворах молекулы азотной кислоты ассоциированы, при добавлении воды ассоциаты уступают место продуктам взаимодействия азотной кислоты с водой состава HN0з H20 и НКОз-ЗНзО одновременно изменяется степень ассоциации воды. При дальнейшем разбавлении эти продукты диссоциируют па сольватированные ионы. Если при этом диэлектрическая проницаемость раствора невелика (смеси диоксана с водой), то образуются ионные молекулы — ионные двойники. Наличие таких ионных двойников наряду с молекулами обнаруживается на основании различия между константами диссоциации, определенными из электрохимических и оптических данных. Ионные молекулы, как и обычные, не переносят тока, но их оптические свойства близки к свойствам свободных ионов. [c.295]

    В связи с тем, что константы диссоциации (ассоциации) солей Ме+Ас и Ме+А" для различных оснований различны, константы К одного и того же индикатора в различных буферных системах также различны. Поэтому сравнивать силу индикаторов можно трлько в том случае, если их сипа измеряется в одной буферной системе. [c.461]

    Селективность. Под селективностью понимают свойство ионита в одних, и тех же условиях по-разному вступать реакции ионного обмена с разными ионами. Для пояснения селективности существуют определенные модели, но область их применения крайне ограниченна [44]. В соответствии с молекулярной теорией селективность ионита по отношению к ионам равных зарядов определяется степенью ассоциации активных групп ионитов с про-тивоионами. В зависимости от плотности активных групп в ионите между ними (группами, способными к ионному обмену) возникает сила отталкивания, что является фактором, способствующим набуханию ионитов. Действию этой силы противодействует сила структурного взаимодействия. На основании изложенного можно сделать вывод, что селективность ионита возрастает с увеличением степени сшитости ионита, обменной емкости и с увеличением концентрации раствора, проходящего через ионит. Райс и Харрис-153] дали количественное описание селективности, применимое для оценки селективности ионита в неводных средах, но непригодное для ионитов с низкой степенью сшитости и с высокой набухаемостью. В ряде теорий исходят из представления о границе раздела фаз ионит — раствор как о полупроницаемой мембране. В этом случае применимо уравнение Доннана 142], и можно сделать вывод, что селективность ионита зависит от его набухания или-обменного объема. При этом не учитывают межионные взаимодействия, особенно сильные в случае ионитов с высокой обменной емкостью. Поскольку все указанные теории не являются общими, при оценке селективности ионита применяют следующие простые правила [54]  [c.376]

    Низшие алкилгидразины (до Сц)-гигроскопичные, дымящие иа воздухе, весьма агрессивные (разъедают кожу, каучук, отчасти даже стекло) жидкости со специфич, запахом раств. в спирте, эфире и воде (с разогреванием). Высшие — кристаллич. в-ва. Колебательные н ЯМР-спектры низших алкилгидразинов свидетельствуют о наличии межмолекулярной ассоциации с большей энергией (8-10 кДж/моль), чем в Г. В масс-спектрах всех алкилгидразинов надежно регистрируются молекулярные ионы, к-рые благодаря делокализации положит, заряда между обоими атомами N распадаются в дальнейшем ие по связи N—N, а по связям р-СС или N. Моио- и диалкилгидразины-основания той же силы, что и Г. три- и тетраалкилгидразины значительно менее основны, С к-тами алкилгидразины образуют кислые и нейтральные соли. Хорошо кристаллизуются обычно гидросульфаты, оксалаты, пикраты. Гидрохлориды низших моноалкилгидразинов весьма гигроскопичны и ие имеют четких т-р плавления, а гидрохлориды аралкилгидразинов кристаллизуются легко, [c.548]

    Структура некоторых а-глиадинов, называемых А-глиадина-ми, изучена наиболее полно, поскольку их можно выделить в чистом виде в достаточных количествах простым способом, основанным на их агрегации при pH 5 и малой ионной силе [16]. Четвертичная структура А-глиадинов очень широко изменяется в зависимости от условий pH и ионной силы (рис. 6.4). Их агрегация происходит при pH 5 и ионной силе >0,005. Агрегация обратимая и поэтому обусловлена нековалентными связями [117], вероятно водородными [53]. В агрегированном состоянии они находятся в виде фибрилл диаметром 60 А. Этот диаметр больше того, который имела бы линейная ассоциация жестких клубков с такими же молекулярными массами, как и у а-глиадинов (40 А), и меньше диаметра ассоциаций статистических клубков (70 А). Организация таких фибрилл, следовательно, может быть относительно сложной. Эти микрофибриллы в концентрированном растворе могут образовывать устойчивую трехмерную сеть [12]. Однообразие структуры фибрилл позволяет предположить, что структура самих основных единиц (молекулы а-глиади- [c.197]

    Существуют двойные и тройные смеси с определенным соотношением компонентов, у которых состав насыщенного пара и жидкости одинаков. Такие смеси кипят при температуре более низкой или более высокой, чем температура кипения каждого компонента смеси в отдельности, и называются постояннокипя-щими, или азеотропными смесями. Явление азеотропии обусловлено сложными взаимоотношениями молекул в жидкости, основанными главным образом на силах сцепления, ассоциации и сольватации. Большую роль в этих явлениях играют водородные связи, т. е. свойство атома водорода в группах ОН, ЫНз, СООН и т. п. быть координационно связанным с атомами кислорода или [c.162]

    H. А. Измаиловым предложена новая схема диссоциации электрс литов, учитывающая все глзЕнейшие процессы, протекаюшие в растворах. На основании этой схемы и учета энергии взаимодействия ионов и молекул электролитов с растиорителем выведены обшие уравнения, характеризующие зависимость силы кислот и оснований от физических >5 химических свойств растворителей. Дифференцирующее действие растворителей связано с различием в энергии сольватации ионов и молекул, г также с различной ассоциацией ионов. [c.147]

    Исследования, проведенные Харлоу [409], по изучению факторов, влияющих на устойчивость неводных растворов четвертичных аммониевых оснований и влияния структуры катиона на условия титрования кислот показали, что самыми устойчивыми титрантами являются гидроокиси тетраметил-, тетрабутил- и тетраэтиламмония и наименее устойчивым — гидроокись триметилбензиламмо-ния. Устойчивость растворов увеличивается с увеличением содержания воды в титранте вследствие того, что относительно высокая кислотность воды понижает основность этих растворов и большая сольватирующая способность воды понижает степень ассоциации ионов титрантов. Однако увеличение содержания воды мешает определению очень слабых кислот и анализу смесей кислот различной силы. Разбавление спиртовых растворов нейтральными или основными растворителями с целью увеличения основности титрантов понижает их устойчивость. [c.105]

    Структурные свойства интересующих нас водно-спиртовых и водно-диоксановых растворов, по-видимому, целесообразно описать, исходя из представлений о структуре чистых жидких компонентов [14]. Спирты, так же как и вода, относятся к ассоциированным жидкостям, т. е. таким, у которых силы, действующие между молекулами, имеют определенное направление в пространстве и локализованы в определенных частях молекулы. Ассоциация спиртов происходит благодаря способности их молекул к образованию водородных связей. Атом кислорода в молекуле спирта связан с протоном и имеет две пары свободных электронов, поэтому можно ожидать образования молекулой спирта от одной до трех водородных связей с соседними молекулами. Однако имеющиеся данные указывают на то, что образуется не более двух водородных связей, причем каждый атом кислорода при образовании одной связи действует как донор протона, а при образовании второй — как протонный акцептор. На основании результатов спектральных и рентгенографических исследований сделано заключение о том, что спирты ассоциированы в цепочки или плоские кольца. Координационные числа для нормальэых спиртов С1 — С4 принимаются равными двум. Степень ассоциации спиртов уменьшается с увели- [c.253]

    Тщательное исследование Кольтгофа и Брукенщтейна [39—42] показало, что кислотно-основные свойства в ледяной уксусной кислоте могут быть поняты только с помощью представлений об ионизации растворенного вещества и ассоциации образующихся ионов в ионные пары, а также в триплеты и квадруплеты. Константа ионизации кислоты или основания в уксусной кислоте (с учетом образования ионных пар) позволяет получить значительно более полезные выражения для силы кислоты или основания, чем это дает простая константа диссоциации . Диэлектрическая проницаемость ледяной уксусной кислоты мала (6,13 при 25° С) даже сильные электролиты имеют константы диссоциации меньше 10 [41, 43—45]. Для наиболее сильной (хлорной) кислоты в ледяной уксусной кислоте Брукенштейн и Кольтгоф нашли р/С равными 4,87 в то время как для соляной кислоты рК равно 8,55. Поэтому в таких растворах имеется немного ионов эффектом ионной силы (солевой эффект) можно пренебречь. Сложность равновесий в ледяной уксусной кислоте подтверждается тем, что индикаторные основания колориметрически отзываются на ассоциированную форму (ионные пары) кислоты, а не на активность протона. Кажущаяся сила кислоты зависит от выбранного индикаторного основания, и эта величина может отличаться от значения, найденного потенциомет-рически. [c.198]

    Приведенлые выше данные о влиянии растворителей на силу кислот и о их дифференцирующем действии, рассмотренные в седьмой г.лаве данные о взаимодействии недисс.оции-ровапных молекул кислот и оснований с растворителями, рассмотренные в шестой главе и сведения об ассоциации ионов, рассмотренные в четвертой главе, указывают на недостаточность схемы кислотно-основного взаимодействия Бренстеда. Теория Бренстеда — Лоури—Бьеррума, которая допускает только один тип химического взаимодействия кислот с основаниями (ТОЛЬКО обмен протонов), не позволяет объяснить всех особенностей во влиянии растворителей на силу кислот [c.568]

    В связи с тем, что константы диссоциации (ассоциации) солей Ме+ Ас и Ме+ А для различных оснований различны, константы К, одного и того же индикатора в различных буферных системах различны (табл. 107), Поэтому сравнивать силу индикаторов можно только в том случае, если их сила измеряется в одной буферной системе например с антипирином в качестве основания- Индикаторы, расположенные в этой таблице выше хинальдинового красного, пригодны для титрования сильных осно ваний, ниже хинольдино-вого красного — для титрования средних и слабых оснований и, наконец, индикаторы судан III и судан IV — для титрования очень слабых оснований, слабее мочевины. [c.915]

    Вероятно, наиболее чувствительными к ассоциации ионов должны быть инфракрасные спектры поглощения. Можно указать на работы Барроу, в которых ассоциация ионов связывается с появлением новых полос поглощения в инфракрасной области. На основании интенсивности этих полос Барроу вычислил константы ассоциации. Трудно, однако, сказать, насколько действительно в примере, исследованном Барроу (карбоновые кислоты и амины в СС11), речь идет об ассоциации ионов. Следовательно, оптические исследования не дали однозначных указаний на природу сил, обусловливающих ассоциацию ионов (подробнее оптические исследования рассматриваются в гл. V, УИ1). [c.34]


Смотреть страницы где упоминается термин Ассоциация и сила оснований: [c.667]    [c.285]    [c.236]    [c.259]    [c.297]    [c.398]    [c.76]    [c.56]    [c.569]    [c.646]   
Электрохимия растворов (1959) -- [ c.667 ]




ПОИСК





Смотрите так же термины и статьи:

Ассоциация

Влияние сольватирующих эффектов на силу азотсодержащих оснований эффект ассоциации

Основания сила

Сила оснований влияние ассоциации



© 2024 chem21.info Реклама на сайте