Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость водородной связи

    Другими факторами, оказывающими влияние в том же направлении, являются склонность трехокиси серы к образованию комплексов с сульфоновыми кислотами и резко выраженная тенденция всех реагирующих частиц к сольватации или к сильно выраженному процессу образования водородных связей. При применении в качестве сульфирующего агента серной кислоты образование воды настолько замедляет реакцию, что скорость ее можно удобно изучать только в начальных стадиях. При применении SO3 ввиду высокой скорости реакции изучение ее уже становится проблемой. [c.527]


    Еще один фактор, влияющий на скорость элементарного акта R02- с InH, — водородная связь между ингибитором и пероксидным радикалом. Пероксидный радикал как полярная частица склонен образовывать водородную связь с О—Н- и N—Н-группами молекул [102]. Поэтому реакции предшествует [c.102]

    Фенолы и ароматические амины образуют водородные связи с продуктами окисления — спиртами, кетонами, гидропероксидами, кислотами это снижает скорость обрыва цепей при взаимодействии пероксирадикалов с 1пН. [c.116]

    Выделяются высокие значения скоростей водородных и гидроксильных ионов. Это связано с тем, что между ионами гидроксония Н3О+ и молекулами воды, а также между молекулами воды и гидроксильными ионами ОН" всегда происходит обмен водородными ионами по уравнениям  [c.404]

    Образование водородных связей существенно влияет на кинетику цепных реакций окисления углеводородов в жидкой фазе. Для термических реакций углеводородов и нефтепродуктов образование водородных связей значения, разумеется, не имеет. Влияние на кинетику термических реакций может оказывать образование я-комплексов радикалов с ароматическими углеводородами. Для некоторых радикалов найдено, что константа скорости реакции я-кои плекса радикала [c.117]

    Хлорирование. Реакционная способность углеводородов возрастает с увеличением протяженности углеродных цепей. Фотохимическое хлорирование при умеренных температурах более эффективно действует на атомы водорода, связанные с третичным углеродом, так как связи первичного углерода с водородом более стабильны. При 500—600 °С все углеродно-водородные связи достигают примерно одинакового уровня реакционной способности. Ненасыщенные углеводороды в отличие от насыщенных реагируют в жидкой фазе при низких температурах, отсутствии света и катализатора. Пропилен хлорируется значительно быстрее, чем этилен 2-бутен — с такой же скоростью, что и изобутан, но гораздо быстрее, чем 1-бутен и пропилен. Бутан может быть хлорирован при комнатной температуре в темноте, если в нем содержится несколько процентов бутенов, которые облегчают хлору разрушение механизма цепей. [c.41]

    Константы скорости реакции переноса водородной связи, [c.166]

    Молекулы высших алканов (Л Ю) представляют собой почти свободное сочленение двух более коротких цепей. Каждая такая цепь участвует в реакциях переноса водородных связей С-Н...С независимо от остальной части молекулы. Диэлектрическая релаксация и процессы перестройки структуры жидких алканов при П 9-1.0 не зависят от длины углеводородной цепи. Этим можно объяснить практически постоянное значение времени релаксации в высших алканах, а также, то, что значение /1// оказывается близким к значению 4// н-пентана. Wo TpY высших алканов не равно tpj н-пентана. По-видимому, время релаксации, наблюдаемое в наших опытах, определяется константой скорости лимитирующей реакции, т.е. той, в которой участвует наиболее длинный участок молекулы, > [c.172]


    Межмолекулярные связи, как правило, слабее обычных химических связей, но могут существенно влиять на скорость реакции. Огромную роль играют, наиример, водородные связи в процессах с участием биологически важных объектов эти связи определяют многие специфические свойства белков, нуклеиновых кислот. Непрочность некоторых межмолекулярных связей приводит к тому, что соответствующие им колебания могут наблюдаться только в дальней ИК-области спектра, что требует применения специальных приборов для исследований в этой области. [c.219]

    Благоприятные для стеклования условия в низкомолекулярных системах реально достигаются довольно редко из-за высоких скоростей кристаллизации, приводящих к практической недостижимости Тсс- Однако чем больше становятся размеры (или меньше регулярность) молекул и чем существенней вклад специфических взаимодействий между ними в активационный барьер самодиффузии А( Га (например, ассоциации из-за водородных связей), тем вероятнее, что систему удастся застекловать. [c.77]

    Адсорбция является чисто поверхностным процессом, который заключается во взаимодействии молекул или ионов адсорбата (газа или растворенного вещества) с поверхностью адсорбента за счет сил Ван-дер-Ваальса, водородных связей, электростатических сил. Скорость такого процесса велика, и адсорбция протекает мгновенно, если поверхность адсорбента легкодоступна для молекул адсорбата. В пористых адсорбентах адсорбция протекает медленнее и с тем меньшей скоростью, чем тоньше поры адсорбента. Для физической адсорбции характерны такие признаки, как большая скорость, обратимость, уменьшение количества поглощенного адсорбата с повышением температуры. [c.326]

    Протоны, образующие связи с кислородом, азотом с серой, находятся в спиртах, фенолах, карбоновых кислотах, енолах, аминах, амидах, меркаптанах и других соединениях. В большинстве случаев такие протоны относятся к так называемым активным атомам водорода. Характер таких активных протонов зависит от силы межмолекулярных взаимодействий и скорости химического обмена. На положение сигналов таких протонов сильно влияет концентрация раствора, его температура и характер растворителя. Поэтому для определения истинных химических сдвигов активных протонов используют растворитель, не образующий водородных связей (например, четыреххлористый углерод), и производят измерения при нескольких концентрациях раствора, после чего экстраполяцией к бесконечному разбавлению раствора определяют величину химического сдвига. Полученное при этом значение 6 соответствует отдельным молекулам, не связанным межмолекулярными водородными связями. [c.133]

    Скорость кислотного гидролиза изотактического изомера более чем вдвое превышает скорость гидролиза синдиотактического изомера. У такого изотактического полиметилметакрилата все сложноэфирные группы расположены в одной плоскости, т. е. соседние группы находятся в минимальном удалении друг от друга. Образующаяся при гидролизе карбоксильная группа катализирует гидролиз соседней сложноэфирной группы за счет образования водородной, связи. В синдиотактическом изомере геометрия расположения соседних сложноэфирных групп, когда они максимально удалены друг от друга, не позволяет образоваться подобному комплексу, и скорость гидролиза замедлена  [c.221]

    Различные надмолекулярные образования и структуры в полимерах также существенно влияют на характер протекания химических реакций. Так, скорости реакций целлюлозы существенно зависят от ее морфологии. Многие реакции модификации целлюлозы протекают гетерогенно, так как она нерастворима или частично растворима в реакционной среде. Реагент часто вообще не достигает некоторых гидроксильных групп в молекуле целлюлозы, прочно соединенных водородными связями  [c.222]

    Если считать, что в реакции замещения водорода металлом в первую очередь происходит атака карбаниона по углерод-водородной связи, то можно было бы ожидать, что сравнительная скорость ее в различные положения должна была бы контролироваться сравнительными плотностями электронов в тех положениях кольца, в которых находятся атакуемые атомы водорода. Представляется невероятным, чтобы существовал какой-либо механизм изменения этих плотностей электронов, в котором резонанс играл бы какую-либо роль. Отсюда следует, что сравнительные плотности электронов должны определяться в первую очередь индуктивным влиянием заместителя. Исходя из этого полон<ения, электронные плотности в моноалкилбензолах должны быть наиболее высокими в о-положении и должны уменьшаться в ж- и п-псложениях в указанном порядке. Из этих данных следует, что замещение в о-положе- [c.474]


    Джиллеспай и Миллен [8] полагают, что реакция серной кислоты с ароматическими соединениями имеет важное значение в реакции нитрования. По-видимому, все растворимые в серной кислоте ароматические соединения образуют с серной кислотой при помощи водородной связи комплексы, которые могут подвергаться ионизации с образованием иона бисульфата и сопряженного основания. Положительное поле, возникающее в результате образования водородной связи, будет деактивировать кольцо и тормозить реакцию нитрования. Появление свободного заряда на сопряженном основании должно способствовать дальнейшей деактивации кольца. Таким образом, по мере увеличения концентрации кислоты активность ароматического соединения должна снижаться. Очень сильное воздействие на активирующий эффект ароматического соединения оказывает повышение кислотности вследствие возрастания ионизации азотной кислоты, приводящей к образованию ионов нитрония. Ионизация азотной кислоты фактически доходит до конца в 90 %-ной серной кислоте таким образом, следовало бы ожидать, что дальнейшее увеличение концентрации серной кислоты должно было бы повести к снижению скорости нитрования. [c.560]

    Предполагается, что реакционная способность обеих функциональных групп бифункционального мономера одинакова и не зависит от его молекулярной массы [3, с. 46 9, с. 34]. Это предположение подтверждается тем, что константы скоростей многих реакций не зависят от продолжительности процесса и молекулярной массы полимера. Так, константы скорости реакции полиоксиэтилена (молекулярная масса 393) с концевыми гидроксильными группами и 1-бутанола с фенилизоцианатом составляют соответственно 1,5-10 3 и 1,7-10 л/(моль-с) [10]. Однако имеются экспериментальные данные, противоречащие этому. Было изучено влияние молекулярной массы линейных сложных полиэфиров с концевыми гидроксильными группами в диапазоне 400—3000 на скорость реакции их с фенилизоцианатом. При этом установлено, что реакционная способность диэтиленгликольадипината зависит от длины цепи. Константа скорости реакции резко меняется в области молекулярных масс от 400 до 1500 и асимптотически приближается к постоянной величине в диапазоне молекулярных масс от 1500 до 3000 (рис. 1). Установленные закономерности авторы связывают с возрастанием концентрации меж- и внутримолекулярных водородных связей с ростом молекулярной массы полиэфира [11]. [c.158]

    При восстановлении боргидридами самая высокая скорость у реакции, идущей в присутствии четвертичного аммониевого катализатора, который имеет гидроксильную группу в р-поло-жении к атому азота, например с (—)-Ы-додецил-Ы-метилэфед-ринийбромидом, чем с аликватом 336 или трибутилгексадецил-фосфонийбромидом [43]. Однако в других МФК-реакциях этот особый катализатор оказался менее эффективным, чем обычные. Одним из возможных объяснений такой уникальной эффективности именно в реакции восстановления боргидридами является предположение об активировании карбонильной группы к атаке ионом ВН4- благодаря предварительному образованию водородной связи. Некоторые авторы считают, что опти- [c.70]

    Насколько образование такого ассоциата действительно ускоряет реакцию можно определить, сравнив константы скорости реакции КОг-с двумя фенолами, имеющими очень близкие прочности О—Н-связи с 2,6-диметилфенолом и 2,б-ди-7 ре7 -бутилфено-лом. Пероксидный радикал образует водородную связь с первым и не может образовать ее со вторым фенолом из-за стери-ческого препятствия, которое создают две трет-бутильные группы в о-положении. Первый фенол реагирует с тетралилперокси-радикалом с 1пн= 1Л Ю л/(моль-с) при 50°С, в то время как второй —на порядок медленнее —с йтн=1,3-10 л/(моль-с) [35]. [c.103]

    Разрушение граничных слоев воды происходит также и при повышении температуры, когда тепловое движение размывает упорядоченную под влиянием гидрофильной поверхности сетку водородных связей. На рис. 1.3 показана температурная зависимость вязкости воды в тонких гидрофильных капиллярах (кривые / и 2) в сравнении с температурной зависимостью вязкости объемной воды (пунктир). При повышении температуры до 65—70 °С отличия вязкости от объемных значений перестают ощушаться, что означает резкое уменьшение толщины граничных слоев. Как было показано ранее, при этом прекращается также термоосмос воды в тонких порах [23] и заметно растет (из-за снижения вязкости) скорость фильтрации воды в пористых телах и мембранах [18, 20]. [c.10]

    Для силикатных пород нет точной информации о снижении о под действием воды. Обзор сведений по кварцу содержится в книге [257] и в работе [258], из которых видно, насколько велик разброс литературных данных. Однако можно считать, что свободная энергия негидратированной силоксановой поверхности кварца, обнажающейся при образовании ступеньки, вряд ли успевает сильно снизиться при физической адсорбции воды или при смачивании, а термоактивируемая химическая модификация поверхности с образованием силанольных связей требует большего времени. В то же время известно, что движение дислокаций в кварце может значительно облегчаться под действием воды. По схеме, разработанной Григгсом [259], в результате диффузии воды вдоль дислокаций образуются силанольные мостики =51—ОН. .. НО—51 =, которые легко рвутся в самом слабом месте (по водородной связи). Сопротивление движению дислокаций уменьшается, и поэтому диффузия ОН-групп (или, возможно, ионов Н+ или НзО+) контролирует подвижность дислокаций и, следовательно, скорость деформации. По сути, здесь мы имеем дело с явлением, близким к адсорбционному пластифицированию, только облегчение разрыва межатомных связей происходит в другом координационном окружении — не на поверхности, а в объеме. По-видимому, такой механизм возможен и в случае многих других силикатных минералов (оливин [260] и др.). [c.89]

    Эффективность большинства известных антиокислителей типа аминов, фенолов, в том числе полифенолов п пространственно затрудненных экранированных фенолов, возрастает пропорционально их концентрации в топливе, однако для некоторых аминов и аминофенолов при определенных условиях имеется предел концентрации, выше которого эффективность их снижается (рис. 9) [1, 14, 30, 31, 36]. Это установлено, например, при хранении топлив, стабилизированных п-оксинеозо-ном, фенил-п-аминофенолом и Н,Ы -ди-втор-бутил-п-фенилендиамином. В некоторых условиях превышение оптимальной концентрации приводит к обратимости их действия и они становятся проокислителями [14]. При введении антиокислителя на начальных стадиях реакции (в свежевыработанное топливо) его действие направляется практически полностью на подавление развития окисления если же его добавляют на стадии развившейся реакции (в топливо, хранившееся в течение какого-то срока), то скорость инициирования окислительных цепей значительно выше и требуется большая его концентрация. Кроме того, антиокислитель расходуется на побочные реакции — взаимодействия с образовавшимися продуктами окисления, образования водородных связей с продуктами окисления типа спиртов, кетонов (на поздних стадиях процесса) [17]. [c.77]

    Скорость процесса контролируется взаимодействием метана с адсорбированным на катализаторе кислородом и тормозится десорбирующимся водородом. Стадия (I) не является лимитирующей. Окисление активных центров происходит быстро с образованием промежуточного соединения, обладающего слабыми основныш свойствами. Меаду подвижным водородным атомом метана и промежуточным соединением устанавливается водородная связь. Вследствие большого сродства водорода к никелю протон, принимающий участие в водородной связи,смещается к атому никеля. В результате разрядки протона на поверхности кристаллического никеля образовавшийся комплекс атомов разлагается на окись углерода, водород и окись никеля. Распад промежуточного соединения не является стадией, контролирующей скорость процесса, о чем свидетельствует большой экзотермический эффект его образования /27/. [c.49]

    Затруднения при реакциях, возникающие вследствие введения заместителей в молекулу и приводящие к сниженик> скорости реакции, справедливо связывали, геометрически с фактом, что атомы и радикалы занимают определенный объем в пространстве и в силу этого способны экранировать функциональные группы, непосредственно участвующие в реакции. Так, например, действуют заместители в орто-положении. Позднее нашли кинетическое проявление внутренней водородной связи, которое состояло в том, что нитрогруппа в о-положении к гидроксильной группе в бензольном кольце, полностью парализует реакционную способность последней за счет образования внутренней водородной связи. Таким образом, стерические препятствия могут выражаться не только в пространственной экранировке, но и в более толком взаимодействии, как в вышеериведенном примере. [c.165]

    Установленная выше корреляция между вторым максимумом концентрации ПМЦ и скоростью обессеривания подтверждается при обессеривании сульфури-рованных коксов, что свидетельствует о разрыве химических связей при распаде сероуглеродных соединений как материнских, так и вторичного происхожденпя. Разрыв углерод-водородных связей создает условия для роста кристаллитов, что в спою очередь существенно сказывается на физико-химических свойствах коксов, например на их удельной поверхности. [c.152]

    Олдройд (1955) отмечал, что когда молекулы эмульгатора в межфазной пленке относительно далеко отстоят друг от друга (например, при действии сил отталкивания), работа, необходимая для того, чтобы сдвинуть пленку, много меньше, чем для изменения ее площади. В этом случае межфазное натяжение в любой точке является простой функцией локального поверхностного расширения или скорости, с которой оно изменяется. Если молекулы в межфазной пленке упакованы настолько тесно, что они связаны, например, водородными связями, тогда, чтобы сдвинуть пленку с постоянной площадью, требуется произвести значительно большую работу. [c.293]

    Если предположить, что скорость медленной коалесценции г полностью регулируется возможностью разрыва тонкой пленки непрерывной фазы между флокулированными каплями (ван ден Темпель, 1957) и разрыва водородных связей между молекулами эмульгатора, адсорбированными вокруг капель, тогда [c.302]

    Следует подчеркнуть, что сольволиз /прет-бутилхлорида является весьма показательной иллюстрацией отсутствия какой бы то ни было общей закономерности в зависимости константы скорости реакции в растворе от диэлектрической постоянной растворителя. Эта реакция является довольно редким примером процесса, в малой степени осложненного специфическими взаимодействиями реагента с растворителем (образованием водородных связей, кислотно-основными взаимодействиями и др.). Естественно, что при наличии специфических взаимодействий неэлектростатичес- [c.130]

    Введение карбоксильной группы, образующей водородную связь, действительно увеличивает катализ соседним имидазольным остатком и обеспечивает согласованный общеосновиой гидролиз. Однако скорость гидролиза эфиров повьппается все еще незначительно (только в три раза), так что, говоря о ферментативном катализе, таким изменением скорости можно пренебречь. [c.227]

    Следует подчеркнуть, что сольволиз отрт-бутилхлорида является весьма показательной иллюстрацией отсутствия какой бы то ни было общей закономерности в зависимости константы скорости реакции в растворе от диэлектрической постоянной растворителя. Это реакция является довольно редким примером процесса, в малой степени осложненного специфическими взаимодействиями реагента с растворителем (образованием водородных связей, кислотно-основными взаимодействиями и др.). Естественно, что при наличии специфици-ческих взаимодействий неэлектростатического характера между реагентом и растворителем вообще нет оснований ожидать корреляции между влиянием растворителя на скорость реакции и его диэлектрической постоянной. [c.120]

    Молекулы этих растворителей способствуют диссоциации алкилгалогенида на ионы, гак как они способны со.льватировать не только имеющую недостаток электронной плотности алкильную группу, но и атом галогена, на котором сосредоточивается избыточная электронная плотность, образуя с ним водородные связи. Происходящая при этом сольватация нуклеофильного реагента, вызывающая уменьи ение его нуклеофильной силы, не влияет на скорость реакции, так как обра. зовавшийся карбокатион немедленно реагирует с веществами, обладающими даже незначительной нуклеофильной реакционной способностью. [c.130]

    Зависимость скоростей реакций, катализируемых химотрипсином, от pH обнаруживает оптимум при pH 8. [42]. Механизм зависимости химотрипсино-. вого катализа от pH заключается в следующем [6—9, 13, 43, 44]. Эффективные константы скоростей химических стадий ферментативной реакции 2 и сохраняют постоянное значение при щелочных и нейтральных значениях pH, но при дальнейшем понижении pH они уменьшаются. Сигмоидальный характер этих зависимостей указывает на участие в катализе ионогенной группы фермента с рЛГа7. Многие годы полагали, что этой группой является имидазольный фрагмент His-57, однако позднее она была идентифицирована как карбоксил Asp-102 [45]. Ее протонизация разрушает водородные связи в составном нуклеофиле (рис. 32), что приводит к потере ферментом каталитической способности. [c.132]

    Энергия активации большинства таких реакций (в том случае, когда реакция экзотермична) меняется в диапазоне 5 — 60 кДж/моль, стерический фактор обычно меняется от 10" до 10 . В растворе, когда атакуется О — Н- или N — Н-связь (в кислотах, фенолах, аминах), важна ассоциация молекул через водородную связь. Такая связь экранйрует О—Н-группу и снижает скорость реакции. Например  [c.115]

    Одпнм 113 существенных факторов, ВоЧияющих на скорость переноса заряда, с точки зрения К. К. Калниньша и др. [6], является водородная связь. Авторами высказрлвается предположение, что одновременное образование КПЗ н водородной связи [c.9]

    По ряду основных признаков физическая адсорбция имеет определенное схо,1ство с конденсацией газов (паров) обратимость и сравнительно большая скорость достижения равновесия, близкие энтальпии процессов. Это объясняется общностью природы межмо-лекулярных взаимодействий, приводящих к конденсации и к физической адсорбции — в обоих случаях главную роль играют нековалентные по природе силы Ван-дер-Ваальса и в некоторых случаях— водородные связи. Природа этих сил определяет еще одну очень важную особенность физической адсорбции — неспецифич-ность. Один и тот же газ практически одинаково адсорбируется на поверхности различных веществ, при этом он практически никак не влияет на структуру поверхностного слоя твердого адсорбента, а сами молекулы адсорбата сохраняют свою индивидуальность и десорбируются неизменными. [c.317]


Смотреть страницы где упоминается термин Скорость водородной связи: [c.423]    [c.449]    [c.133]    [c.115]    [c.116]    [c.165]    [c.277]    [c.55]    [c.141]    [c.40]    [c.49]    [c.161]    [c.273]    [c.159]    [c.239]   
Современная химия координационных соединений (1963) -- [ c.122 , c.138 , c.150 , c.152 ]




ПОИСК





Смотрите так же термины и статьи:

Водородные связи

Связь водородная, Водородная связь

связи скорость



© 2025 chem21.info Реклама на сайте