Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионные комплексы и комплексы с водородной связью

    Основываясь на современных исследованиях Н-связи, можно сделать предположение, что процесс поляризации существенно зависит от перемещения и положения протона Н-мостика в электрическом поле. Так, в работах [206, 660] при рассмотрении влияния среды на структурную форму комплекса с водородной связью (КВС) отмечается зависимость этой формы от диэлектрической проницаемости среды. При исследовании водородной связи О—Н---М обнаружено, что с повыщением диэлектрической проницаемости раствора происходит переход КВС из молекулярной формы в ионную с последующей диссоциацией комплекса при более высоких значениях е раствора [660, 661]. Существенно, что перенос протона вдоль Н-связи в КВС, как установлено в работе [662], вызывается реорганизацией среды. Хотя влияние среды на связь О—Н---0 мало изучено, высокая подвижность протонов в структуре льда все же д ет основание предполагать, что в образуемых при определенных величинах сорбции КВС возможна миграция протона Н-связи. [c.246]


    Наряду с органической в торфе присутствует и минеральная часть. К ней следует отнести, во-первых, самостоятельные минеральные включения, представленные частицами кварца, глины, полевых шпатов, пирита, магнетита. Во-вторых, это органоминеральные (гетерополярные, ионные) комплексы — соли гу-миновых кислот и фульвокислот, ионообменные группы углеводного комплекса и лигнина. Учитывая, что в ионный обмен вступают в основном карбоксильные группы, в органоминеральных комплексах остается достаточное количество трупп, обеспечивающих сорбцию воды посредством водородных связей. [c.64]

    Комплекс реагента В с кислотой НА может быть ионизированной формой молекулы (ВН ), ионной парой (ВН" ", А ), комплексом с водородной связью (В- НА). В образовании каждой из этих форм принимают участие полярные молекулы растворителя. В первой равновесной стадии продукт В выступает в качестве основания, которое отбирает протон у кислоты НА. Лимитирует процесс вторая необратимая стадия. Аналогичный характер носит реакция, катализируемая основанием. В этом случае реагентом является НА, а катализатором - основание В, которое регенерируется в последующей стадии превращения. При варьировании концентрации катализатора (кислоты или основания) в широких пределах образуются реакционноспособные комплексы различного состава и одни и те же продукты образуются по нескольким маршрутам превраШения исходного реагента. Нередко кислота (основание) образует с реагентом и нереакционноспособные комплексы (константа равновесия К), что, конечно, отражается на скорости реакции. Эффективная константа скорости каталитического превращения В в продукты равна [c.498]

    Принимая во внимание, что водородная связь в значительной степени обусловлена донорно-акцепторным взаимодействием атома Н, имеющего некоторый эффективный положительный заряд, с неподеленной парой электронов соседней молекулы, можно представить себе следующий механизм водородного обмена [247]. Предположим сначала, что комплекс состоит только из двух молекул, например молекул RA—Н и BR, соединенных водородной связью, RA — Н—BR. В таком комплексе водород может перейти от RAH к BR только в виде протона, поскольку нейтральный атом Н всегда будет отталкиваться от неподеленной пары атома В, участвующей в образовании водородного мостика. Переход протона от одной молекулы к другой означает возникновение двух ионов RA и (HBR )" -В газовой фазе этот процесс, разумеется, сильно эндотермичен. Поскольку в ионе (HBR )+ связь +Н В представляет собой типичную донорно-акцепторную связь, естественно считать, что образование водородной связи всегда есть первая стадия перехода протона. При этом по мере передвижения к атому В протон все глубже проникает в деформируемое им электронное облако неподеленной пары атома В, что обозначает усиление донорно-акцепторной связи Н — В. Чем сильнее эта связь в переходном состоянии, тем ниже энергия активации перехода протона. Если комплекс имеет циклическую конфигурацию, то механизм в своей основе остается 1 ем же. Отличие заключается только в том, что в цикле пе возникает иоиов ни на одной из стадий перехода протонов, поскольку их передвижение сопровождается одновременным смещением электронной плотности. При таком механизме значительно снижается энергия активации процесса, вследствие чего последний может происходить и в газовой фазе. [c.279]


    Условные обозначения символов н индексов Е — энергия взаимодействий Д — доли соответствующих энергий вдв — силы Ван-дер-Ваальса ак — активированный комплекс Н — водородная связь кср —комплекс свободных стабильных радикалов эда — электроно-донорно-акцепторные взаимодействия типа комплексов с переносом зарядов ис — ионные взаимодействия эс — электростатические силы к — расклинивающие и кинетические силы ДЭС — двойной электрический слой хс — химическая связь. [c.50]

    Если исходить из рассмотренного на рис. 1.3 профиля потенциальной энергии, то такую пониженную тенденцию к переносу протона можно объяснить сравнительно большой шириной нижних участков неискаженных потенциальных кривых и малого удлинения ОН-связей в адсорбированных ионных парах. Учет вызванного взаимодействием с адсорбированными основаниями возмущения делает кривые потенциальной энергии еще шире. Поэтому при образовании на поверхности оксидов слабых комплексов с водородной связью правильнее говорить не о переносе протона, а о колебательном возбуждении ОН-связи. [c.28]

    Здесь АН В — молекулярный комплекс с водородной связью А -- НВ+— контактная ионная] пара с перешедшим] протоном  [c.216]

    Сходные результаты были получены также для комплексов фенолов с аминами. Выяснение типа связи в комплексах фенолов эффективно проводится по УФ-спектрам поглощения. Известно, что полоса соответствующая я—я -переходу в молекулах фенолов, испытывает красный сдвиг как при образовании комплексов с водородной связью, так и при ионизации с образованием фенолят-иона. В последнем случае, однако, сдвиг примерно на порядок больше. Эти особенности полосы были использованы для интерпретации спектров комплексов некоторых нитрофенолов с аминами [54—57]. В частности, в [55—57] было установлено существование равновесия (3) в растворах, содержащих ге-нитрофенол и третичные амины в ряде растворителей. [c.224]

    Так как в системах, имеющих два минимума на поверхности потенциальной энергии, образование ионной пары из свободных молекул кислоты и основания происходит через стадию промежуточного молекулярного комнлекса, можно было бы попытаться извлечь информацию о скорости миграции протона внутри комплекса путем анализа кинетики процесса перехода протона от АН к В. Однако оказывается, что обычно миграция протона является процессом значительно более быстрым, чем образование комплекса. Так, в работе [128] методом микроволнового температурного скачка с регистрацией по УФ-ноглощению была изучена кинетика образования ионных пар при взаимодействии ряда фенолов с аминами в растворителях типа хлорбензола. Скорости процесса составляли 0,1—0,01 от диффузионного предела, причем константы скорости не коррелировали с константами равновесия и скорее всего определялись стерическими факторами молекул-партнеров. Это привело авторов к заключению, что образование ионной пары лимитируется не процессом перехода протона, а стадией образования комплекса с водородной связью. Уменьшение скорости по сравнению со скоростью диффузии было интерпретировано как обусловленное энтропийным фактором, т. е. необходимостью столкновения двух определенным образом ориентированных многоатомных молекул. [c.244]

    Янг с сотрудниками установил существование )того механизма при проведении реакций с хлористым тионилом в неполярных растворителях, не содержащих иона хлора, — в условиях, которые позволяют выбрать между механизмами 8 1 и 8 2. Исключение иона хлора представляло проблему, так как в процессе образования хлорсульфинатов получается хлористый водород. Эту трудность преодолели, когда стали проводить реакции в относительно разбавленном растворе (0,5—1Л/) безводного этилового эфира [74], который образует комплекс посредством водородной связи с сухим хлористым водородом [75, 76, 77]. Испол1,зуя этот метод, можно многие первичные [c.425]

    Твердые комплексы с водородной связью типа кислых солей карбоновых кислот делят на два класса по ряду различных физических критериев. К первому классу относят комплексы, для которых при помощи инфракрасной спектроскопии, дифракции нейтронов и рентгеновских лучей показано, что карбоксильная группа и карбоксилат-ион сохраняют в общем каждый свою индивидуальность, хотя их структуры могут быть искажены водородной связью, и что протон находится вблизи одного из атомов, с которым он образует связь. Эти системы несомненно отвечают водородным связям с двумя потенциальными ямами, хотя точный вид потенциальных кривых остается спорным. Ко второму классу относят твердые комплексы, обладающие рядом свойств, характерных для симметричных систем с одной потенциальной ямой. Эксперименты по дифракции нейтронов на смешанных кристаллах фенилуксусной кислоты с ее натриевой солью при низкой температуре указывают на то, что, в пределах довольно высокого разрешения этого метода протон находится посредине между двумя атомами кислорода, являясь участником, по-видимому, симметричной водородной связи [46]. Рентгенографические исследования ряда систем этого типа, таких, как комплекс трифторуксусной кислоты с ее натриевой солью с расстоянием О...О, равным 2,435 А, показывают, что две карбоксильные группы становятся эквивалентными и имеют ДЛ1ШЫ связей, промежуточные между длинами связей в свободной и ионизированной карбоксильных группах. Это значит, что либо система является симметричной (VI), либо протон может перемещаться между двумя карбоксильными группами таким образом, что обе группы выглядят идентичными при рентгенографическом анализе. [c.268]


    МОЛЕКУЛЯРНЫЕ КОМПЛЕКСЫ (донорно-акцепторные комплексы, мол. соединения), образуются из формально валентно-насьпц. молекул благодаря силам межмолекуляр-ного взаимодействия. Совр. представления о М. к. значительно шире того, что заложено в их названии, т. к. в М. к. могут входить ионы, своб. радикалы, ион-радикалы, а также молекулы в возбужденном состоянии (см. Эксимеры, Экси-плексы) к М. к. относятся и комплексы с водородной связью (см. Водородная связь). М. к. имеют вполне определенную стехиометрию и пространств, строение, при этом исходный состав входящих в М. к. молекул сохраняется. Часто М. к. рассматривают как своеобразный тип координац. соед., в [c.116]

    О — Н координированной молекулы воды и тем сильнее водородная связь между координированной молекулой Н2О в комплексе и моле-кулз1 н воды гидратной оболочки комплекса. Все это может привести к разрыву связи О — Н в координированной молекуле Н 0, к превращению водородной связи —Н. .. ОН 2 н ковалентную с образованием иона ОНз и гидроксо-аквокомплекса по схеме [c.209]

    Для веществ, полученных в ходе реакций присоединения, применяют термин аддукты (от лат. addere — добавлять, прибавлять) их полные формулы записывают в виде формул исходных веществ, соединенных точкой, например BI3-PI3 или uSO -SHjO. Термин аддукт употребляют также в более ограниченном смысле для наименования продуктов внешнесферной координации нейтральных молекул незаряженными комплексными соединениями. Такие аддукты известны как в виде индивидуальных соединений, так и в растворах. Пример первого типа — это соединение дигидрата пикрата Li с краун-эфиром бенз-15-корона-5 (см. 3.4) атом лития окружен расположенными в вершинах тетраэдра двумя атомами кислорода пикрат-иона и двумя — от молекул Н2О краун-эфир внешнесферно привязан к комплексу четырьмя водородными связями.  [c.25]

    Степень адсорбции ионов электролитов частицами различных минералов неодинакова. Минералы, в которых между структурными элементами решеток действуют преимущественно близкодействующие ковалентные связи (кварц, глинистые минералы) с небольшой долей ионной составляющей (определяется степенью замещения кремния алюминием в полимерных каркасах, слоях) и с малой плотностью ее, характеризуются меньшей степенью воздействия на ионы электролитов. Наоборот, решетки, в которых связь между ее элементами преимущественно ионная (дальнодействующая) и плотность распределения зарядов по поверхности высокая (Са +СОз -, Мд +СОз - и др.), будут сильнее воздействовать на заряженные частицы электролитов. Таким образом, избирательная способность к ионам солей у известняков (а также у полевых шпатов, гематита) выше, чем у кварца и глинистых минералов. Кроме того, поскольку катионы обычно состоят из одной частички, имеющей малый размер и большую подвижность, а анионы чаще всего являются радикалами (СОз -, 5042") более крупных размеров и меньшей подвижности, на поверхности твердых тел быстрее адсорбируются катионы, чем анионы. Какая-то часть катионов Ыа+, К+, Са +, Mg2+ избирательно адсорбируется (в порядке Мд>Са>ЫаЖ) под действием поверхностной энергии Гиббса в первую очередь на поверхности зерен известняка, полевого шпата, затем кварца, сообщая этим зернам положительный заряд. Под непосредственным воздействием этих ионов на поверхности частиц упорядочиваются молекулы ПАВ и воды, создавая вместе с ионами адсорбционную оболочку вокруг зерен. Наличие положительных зарядов на таких адсорбционных комплексах (известняк —катионы — ПАВ — вода) приводит к тому, что вокруг них ориентируются отрицательно заряженные глинистые частицы и ионы 8042-, НСО3-, тоже предварительно адсорбировавшие на себе молекулы ПАВ и воды. Какая-то часть ионов Ыа+, К+, Mg +, Са2+ и 5042-, НСО3- остается в гидратированном виде в жидкой фазе. Таким образом, в суспензии действуют силы электростатического притяжения и отталкивания крупных адсорбционных комплексов (известняк —катионы —ПАВ — вода), мелких катионов и анионов, дипольные взаимодействия между униполярными комплексами, водородная связь между молекулами воды. Свободная же вода, разделяющая все частицы друг от друга, обеспечивает текучесть суспензии. [c.286]

    Ион Н+ не занимает определенного места в ряду. Для почв, грунтов, белковых веществ и многих других объектов он стоит перед А1 +, тогда как для других ионитов он располагается в конце ряда. Эти особые свойства Н+ часто связаны с тем, что обменный комплекс образуется в результате диссоциации слабых кислот (поликремниевых, гуминовых), характеризующихся прочной связью кислотного остатка с Н+ (водородной связью). В то же время соли этих кислот обычно хорошо диссоциированы. Поэтому Н+ вытесняет легко все остальные катионы из внешней обкладки и в почвах, даже в нейтральных растворах (при pH =6,5), занимает около половины мест в обменном комплексе. Такая же прочная связь присуща и слабокислотным (карбоксильным) высокомолекулярным ионитам, тогда как для ионитов сильнокислотного типа (например, с фиксированными группами Н50зН)Н+ не обладает высокой энергией связи и расположен в конце ряда среди одновалентных катионов. [c.174]

    П5ВТ и ПИПТ активны в образовании интерполимерных комплексов с полимерными основаниями [91-93]. При этом наблюдалась конкуренция самоассоциации с взаимодействием с полиэти-ленгликолем и полиакриламидом [92]. В случае более сильных оснований - поли-1-винилимидазола и поли-1-винилтриазола обнаружена [93] высокая устойчивость комплексов, стабилизированных водородными связями. При нейтрализации тетразольных звеньев щелочью возможно взаимодействие тетразолят-анионов с акцепторными триазольными п-системами или образование комплексов с мостиковыми ионами Ма . [c.120]

    Конденсация с иминами и иммониевыми ионами. Имино- и иммониевые группы являются азотистыми аналогами карбонильных и 0-протонированных карбонильных групп и обладают аналогичной,реакционной способностью. Одна из простейших реакций пиррола с 1-пирролином, по-видимому, заключается в электрофильной атаке нейтральной группой С = Ы наиболее вероятно, что она осуществляется путем циклизации комплекса, содержащего водородную связь, так как Ы-метилпиррол не реагирует с 1-пирролином в тех же условиях. [c.225]

    Мы видели, что в некоторых кристаллах можно выделить группы сближенных атомов (комплексы), связи внутри которых отличаются от связей между комплексами (и обычно гораздо короче, чем последние). Комплексы могут быть конечными или бесконечно протяженными в одном, двух или трех измерениях они удерживаются вместе за счет ионных, вандерваальсовых или водородных связей. Подразделение комплексов на эти три типа дает общую основу для широкой геометрической классификации кристаллических структур, показанной на схеме 1.2. Правда, с первого взгляда может показаться, что наиболее очевидным способом классификации структур должно быть группирование их в соответствии с типами связей между атомами (считая, что существуют четыре предельных типа ионный, ковалентный, металлический и вандерваальсов). Такое общее деление на ионные, ковалентные, металлические и молекулярные кристаллы делают довольно часто. Однако в действительности связи, приближающиеся к чистым типам (особенно ионному или ковалентному), весьма редки, и, более того, в большинстве кристаллов имеются связи нескольких различных типов сразу. Следует учитывать многочисленные промежуточные классы, и это приводит к тому, что классификации, основанные на типах связи, становятся запутанными, не будучи исчерпывающими. Кроме того, они имеют и тот недостаток, что переоценивают значение чистых типов связи, тогда как связи промежуточного характера рассматриваются как отклонение от этих предельных ти- [c.40]

    Колебательные спектры гидроксилсодержащих соединений в полной мере содержат все основные черты спектрального проявления водородной связи. Последняя, имея донорноакцепторный характер [142], зависит от протонодонорных свойств молекулы ВХН природы атома X и радикала В (см. рис. 7) от свойств молекулы акцептора О — М(В), с которой образуется водородная связь, и от степени возмущения ионом или молекулой Ь электронного облака атома X группы ВХН, которое происходит одновременно с образованием Н-связи. Каждый из этих факторов влияет на те или иные геометрические и силовые параметры водородного мостика (связей и углов между ними), а потому — и на частоты собственных колебаний такого комплекса. [c.58]

    ДЛИННЫХ расстояниях (Bi-O 2,61—3,00 А), в результате чего общее К00рдинащ10нн0е число атома висмута равно восьми. Полиэдр атома Bi может бьггь описан как сильно искаженная двухшапочная тригональная призма или додекаэдр. Углы 0 -Bi-0 составляют 88—91,3°, НО -Bi-OH 124,8—127,7°. В структуре комплексы объединены с перхлорат-ионами системой слабых водородных связей типа О-Н. ..0(С104). [c.145]

    Для экспериментальной проверки схем с кольчатыми комплексами и водородной связью необходимы работы по инфракрасным спектрам молекул в поле шелочных центров и по обмену водорода на твердых основаниях. Можно представить электростатическое усиление адсорбции в поле анионов катализатора. Известно, что парафины обладают некоторыми кислотными свойствами и адсорбируются предпочтительно на основаниях (см. статью Ю. А. Эльтекова [29] в сборнике трудов конференции по поверхностным соединениям в МГУ), однако неясно, может ли такое слабое усиление взаимодействия привести к каталитическим эффектам. Образование ассоциативных комплексов (с 0Н —или NH 2— ионами) при шелочном катализе мало вероятно [30]. [c.277]

    Зачастую полосы обладают структурой, не имеющей отношения, к наличию или отсутствию таутомерного равновесия (резоцанс Ферми, комбинации с низкочастотными колебаниями). Поэтому достоверность выводов о структуре комплекса, которые можно сделать при исследовании только полос у(АН), обычно невелика. Таюке, видимо, нельзя использовать величину химического сдвига активного протона в спектре ЯМР в качестве единственного критерия структуры комплекса (молекулярной, ионной или таутомерией). И тем более нельзя ограничиваться измерением каких-либо макроскопических характеристик растворов (диэлектрической поляризации, электропроводности, теплоты смешения и т. д.) Иллюстрацией могут служить противоречивые суждения различных авторов, сделанные подобным путем, относительно строения комплексов трифторуксусной кислоты с пиридином или алифатическими аминами в малополярных растворителях (как уже отмечалось, эти комплексы имеют ионную структуру [34, 37, 39]). Например, в [50, 51], комплекс СРзСООН—пиридин рассматривается как молекулярный комплекс с водородной связью, в [50] допускается возможность симметричной структу-рыЛ- -Н- -В, а в [31] предполагается существование таутомерного равновесия между молекулярной и ионной формами. [c.220]

    В спектрах растворов, содержащих уксусную кислоту (или другие алифатические кислоты — пропионовую, изомасляную и т. д.) и пиридин, во всем изученном интервале температур наблюдаются только полосы свободных молекул кислоты и пиридина, димеров кислоты и молекулярного комплекса с водородной связью-OH---N [39]. Полосы ионных форм отсутствуют. В спектрах же-растворов СН3СООН в третичных алифатических аминах наряду-с полосой V (С=0) молекулярного комплекса уже появляются слабые полосы, типичные для колебания групп Oa ацетат-иона (рис. 2), и, следовательно, имеет место таутомерия (3, б). Равновесные концентрации зависят от соотношения протонодонорных и протоноакцепторных свойств молекул и от температуры. При переходе к более сильной кислоте H2 I OOH (так же, как и при замене третичного амина вторичным) равновесие смещается в сторону ионной пары, о чем свидетельствует соответствующее перераспределение интенсивности полос. [c.221]

    В недавно опубликованной работе А. И. Кульбиды и В. М. Шрайбера (см. ссылку [8] в Предис.ловни к наст, сб.) показано, что процесс перехода протона в комплексе с водородной связью в неполярном растворителе замораживается при темцературе, близкой к точке стеклования растворителя, так что ниже этой температуры соотношение концентраций молекулярного комплекса н ионной нары [см. равновесие (3, б)] не меняется. Это означает, что подвижность молекул растворителя является необходимым условием перехода протона в изученных комплексах и что учет вклада межмолекулярных координат в координату реакции является обязательным. Конкретный механизм этого влияния остается пока невыясненным. [c.242]

    В ионной паре II. Когда в растворе присутствуют обе формы, наблюдается некоторое уширение сигнала, которое можно ис-лользовать для определения скорости их взаимопревращения, К сожалению, по спектрам ЭПР невозможно отличить мономерный свободный радикал I от его комплекса с водородной связью, и авторы не обсуждают возможность его предварительного образования. Поэтому трудно сказать, к какой стадии относятся измеренные кинетические характеристики (в частности, наблюдаемая удельная скорость порядка 10 л1 моль-сек). Однако параметры активации прямого и обратного процессов близки к соответствующим величинам, относящимся к процессам разрыва и образования сильной водородной связи [136]. Поэтому можно предполагать, что и в этом случае образование ионной пары лимитируется скоростью образования комплекса с водородной связью. [c.245]

    Более медленным оказался процесс миграции протона внутри комплексов со сравнительно слабыми водородными связями. Необходимо отметить, что сама возможность молекулярно-ионной таутомерии комплексов со слабой водородной связью до последнего времени была неочевидной. В тех комплексах типа ОН - N, в которых была найдена миграция протона, прочность водородной связи составляет 7—9 ккал1молъ, а комплексы с более слабой водородной связью имеют чисто молекулярную структуру. Это связано с тем, что в ряду ОН-доноров протона способности молекулы к образованию водородной связи (протонодонорная способность) и к отщеплению протона (кислотность) изменяются симбатно 11. Молекулы ОН-доноров, способные к переносу протона в инертных растворителях, автоматически будут обладать высокой протонодонорной способностью. [c.245]

    Заметим, что если в качестве акцептора протона взять более основный трибутиламин, то равновесие при температурах ниже —90° С оказывается полностью смещенным в сторону ионной пары. В этом случае низкопольный сигнал вообще не появляется, что подтверждает сделанные отнесения. Расщепление сигнала подвижного протона показывает, что миграция протона внутри комплекса с водородной связью КН -К при низких температурах происходит довольно медленно. Оценка среднего времени жизни молекулярного комплекса СНдКНКОз с (СНзСН2)зК в точке слияния сигналов (—142° С) дает значение 8-10" сек. (расщепления сигналов а-метиленовых протонов молекулярного и ионного комплексов не происходит из-за малой разности химических сдвигов форм). [c.248]

    Актуальной становится задача поиска тех характеристик электронного строения молекул, которые определяют их способность к передаче протона в комплексах с водородной связью в инертной среде. Из более конкретных задач, требующих дальнейшего экспериментального и теоретического изучения, можно указать на вопрос о существовании различных типов эволюции потенциальных поверхностей и примыкающий к нему вопрос о свойствах комплекса, промежуточного между молекулярным и ионным с водородной связью, близкой к центральной. Это, далее, поиск систем с молекулярно-ионной туатомерией, в которых минимум, соответствующий молекулярной форме, более глубокий. [c.250]


Смотреть страницы где упоминается термин Ионные комплексы и комплексы с водородной связью: [c.108]    [c.314]    [c.40]    [c.328]    [c.348]    [c.723]    [c.173]    [c.217]    [c.302]    [c.43]    [c.402]    [c.348]    [c.226]    [c.241]    [c.118]    [c.433]   
Смотреть главы в:

Биоорганическая химия ферментативного катализа -> Ионные комплексы и комплексы с водородной связью




ПОИСК





Смотрите так же термины и статьи:

Водородные ионы

Водородные связи

Водородный комплекс

Ион ионы связи

Ионная связь

Связь водородная, Водородная связь



© 2025 chem21.info Реклама на сайте