Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергетический барьер для переноса

    Наконец, при взаимодействии с аммиаком, обладающим наиболее высоким сродством к протону ( 9 эВ), сдвиг частоты основного перехода достигает 800 см . Первый обертон в спектре не наблюдается. На потенциальной кривой возникает достаточно глубокий минимум. Вершина энергетического барьера переноса протона расположена между первым и вторым колебательными уровнями, т. е. его высота лежит в пределах 40— 80 кДж/моль (рис. 1.3, в). [c.27]


    Отсюда следует, что каждый протон, пересекающий энергетический барьер, переносит элементарный положительный заряд на расстояние- [c.537]

    Уменьшение среднего размера дефектов до 2-5 нм приводит к повышению энергетического барьера переноса и резко увеличивает зависимость проницаемости от температуры. Для преодоления сил межмолекулярного взаимодействия в полимерной матрице и образования окна для внедрения малой молекулы в микропористое тело необходима избыточная энергия-энергия активации. Перенос в данном случае осуществляется индивидуальными молекулами, поэтому при контакте с жидкой фазой происходит внедрение малых молекул в дефекты на поверхности материала, которому предшествует испарение их из жидкой фазы [32]. [c.41]

    На стадии миграции ионного дефекта лишь некоторая часть от полного заряда протона смещается за счет перескока Н+ от группы к группе. Остальная часть заряда смещается за счет поворота полярной группы. Во льду, например, доля ионного дефекта в переносе заряда составляет 0,62 от полного заряда протона. Благодаря разделению заряда протона при переносе между ионным и поворотным дефектами, существенно снижается энергетический барьер переноса Н+ через мембрану. Высота барьера определяется уровнем электростатической энергии заряда в ионном канале и оценивается по формуле Борна [см. (ХХ.1.1)]. Как следует из этой формулы, уменьшение транспортируемого заряда в два раза по сравнению с зарядом протона приводит к 4-кратному уменьшению энергии активации переноса Н+ через мембрану. Характерные подвижности ионного и поворотного дефектов составляют 10 и 10 см/В с соответственно. Согласно расчетам, время миграции ионного и поворотного дефекта через мембрану толщиной 5 нм не превышает 0,25 мкс и 2,5 мкс соответственно. [c.163]

    На рис. 26.3 представлена диаграмма энергетических зон идеальной структуры МДП в отсутствие разности потенциалов. Допустим, что полупроводником является кремний с акцепторной примесью, т.е. кремний / -типа. Обозначим энергетический барьер переноса электронов через диэлектрик символом фв- Как показано на рисунке, в состоянии равновесия уровни Ферми металла и кремния совпадают, а потенциал и распределение заряда везде постоянны. Если же к металлу приложить напряжение, а кремний заземлить, то система выйдет из равновесного состояния и уровни Ферми металла и кремния разделятся, причем разность между ними будет пропорциональна приложенному напряжению. Система становится, таким образом, своеобразным заряженным конденсатором, заряженными пластинами которого являются металл и полупроводник. [c.387]


    Возможность переноса электронов между частицами в растворе связана главным образом с малой массой электронов и, следовательно, возможностью преодоления энергетического барьера по туннельному механизму, аналогично тому, как это предполагается для выделения а-частиц пз ядра. Кроме того, малая масса приводит к чрезвычайно высокой подвижности электрона по сравнению с большинством других молекулярных частиц. Однако все эти преимущества значительно уменьшаются благодаря ограничениям, вносимым принципом Франка — Кондона. Так, в случае передачи электрона от Ре к Се " в водном растворе скорость теплового движения электрона около 5-10 см/сек и расстояние 10 Л могло бы быть преодолено за время порядка сек. Скорости большинства частиц, [c.504]

    При анодной поляризации АУ энергетический барьер анодной частной реакции (За = <Зо уменьшается на величину аА, а энергетический барьер катодной частной реакции = (Зо увеличивается на величину РЛ, причем а - -Р = 1. Множители ос и р принято называть коэффициентами переноса или перехода). Таким образом, можно написать следующие уравнения  [c.199]

    Различие в изменении структуры, как отмечают авторы [125], указывает на разные механизмы этих процессов. При термическом спекании дисперсных тел большую роль играет объемная диффузия. В присутствии водяного пара ускоряется перенос вещества за счет поверхностной диффузии, облегчаемой адсорбцией водяного пара либо за счет испарения вещества геля с водяным паром с поверхности мелких частиц и конденсации его на поверхности более крупных. Наиболее вероятный механизм действия водяного пара состоит в снижении энергетического барьера миграции поверхностных атомов и молекул. Роль объемной диффузии при температуре паровой обработки невелика, так как при 750 °С термическое спекание протекает крайне медленно [126]. [c.54]

    Специфическое строение углеводородной цепи на поверхности способствует переносу положительного заряда от одного центра к другому с умеренным энергетическим барьером. [c.82]

    Уже было упомянуто, что в этих реакциях перенос электронов происходит по туннельному механизму это означает, что электрон не преодолевает энергетического барьера, а просачивается через него. Туннельный эффект объясняется корпускулярно-волновым дуализмом частиц на основе соотношения неопределенности Гейзенберга, если рассматривать электрон как волну де Бройля (подробнее см. в учебниках атомной физики). В данном случае возможность туннельного перехода [c.203]

    Перенос энергии происходит в результате столкновений между молекулами. Поэтому за определенный промежуток времени какая-нибудь молекула изонитрила может приобрести энергию, достаточную для преодоления энергетического барьера и превращения в молекулу ацетонитрила. При любой температуре лишь небольшая часть столкновений происходит с энергией, достаточной для преодоления барьера реакции. Однако, как видно из рис. 9.10 (см. ч. 1), при повышении температуры распределение молекул газа по скоростям смещается в сторону более высоких значений. Такими же свойствами обладает распределение молекул по кинетической энергии (рис. 13.8). При повышении температуры увеличивается доля молекул, энергия которых превышает минимум, необходимый для осуществления реакции. [c.17]

    Т. е. Евн должно превышать эл на величину // , чтобы преодолеть омическое падение напряжения в ячейке. В действительности, наложенное внешнее напряжение должно быть больше напряжения, необходимого для преодоления омического падения напряжения, так как существует градиент концентраций у поверхности электродов, а процессы переноса электронов протекают с конечной скоростью из-за энергетического барьера, который нужно преодолеть при переносе электрона на поверхность электрода. [c.179]

    Согласно законам квантовой механики существует некоторая вероятность перехода системы из одного состояния в другое, отделенное от него энергетическим барьеров, при энергии меньшей, чем энергия на вершине барьера. Такой переход называют туннельным переходом. С ним приходится считаться при некоторых процессах переноса небольших частиц — протона и в особенности электрона. [c.268]

    Наблюдаются также кажущиеся трансмиссионные коэффициенты, большие единицы. Такая картина возможна в случае туннельных переходов, когда система" проходит не через вершину энергетического барьера, а сквозь него. Обычно туннельные переходы наблюдаются в реакциях переноса электронов, но они очень редки для обычных химических реакций, включающих разрыв химических связей. , [c.140]

    Скорость процесса прохождения электрического тока через кристалл льда лимитируется стадией переноса протона по цепи водородных связей. Такой перенос осуществляется по неклассическому механизму, вероятно, за счет туннельного эффекта [10] (преодоление обычного активационного барьера путем проникновения небольшого иона сквозь узкий энергетический барьер). Подвижность протона в кристалле льда всего на 2— 3 десятичных порядка меньше подвижности электрона в металлах (табл. 2.1). [c.25]


    В традиционных химических источниках тока (аккумуляторах), имеющих твердофазные активные материалы на пути электронных переходов, энергетические барьеры возникают на границе твердая фаза — раствор. Физический смысл затруднения кинетической интерпретации состоит в том, что электрические свойства обеих твердофазных границ в процессе генерирования энергии непрерывно изменяются по законам, не учитываемым современной теорией, а именно изменяется не только структура, но и химический состав твердой фазы, так как катод непрерывно (пропорционально количеству прошедшего электричества) обогащается металлом, а анод — окислителем (например, кислородом) рождается новая твердая фаза, электрическое поведение которой с точки зрения современной теории твердого тела не поддается прогнозу переток электрических зарядов (ионов) через систему, представляющую собой, как пра-дало, многослойную среду, происходит в сложных нестационарных условиях переноса энергии и вещества, сопровождается разрывами сплошности потенциала и соответствующими скачками коэффициентов переноса (при нелинейных граничных условиях). [c.10]

    Как уже отмечалось, процесс генерирования н переноса заряда через границу, включая преодоление энергетических барьеров, происходит во многих моделях ТЭ [c.57]

    Наоборот, если поверхность уменьшается, то локальное натяжение понижается по сравнению с равновесным, так как требуется определенное время для десорбции и диффузии ПАВ. Это различие между динамическим и статическим натяжениями известно как эффект Марангони. Была предпринята попытка количественного обоснования этого эффекта на основе уравнения Шишковского (1908). Эта проблема трудна из-за сложностей конвективного переноса, потенциальных энергетических барьеров адсорбции и стерических ограничений к проникновению молекул в адсорбционный слой, уже частично занятый молекулами ПАВ. Качественно ясно, что этот эффект является наибольшим в системах с очень разбавленными растворами высоко поверхностно-активных соединений, включающих высокомолекулярные поверхностно-активные вещества. [c.86]

    Поток массы из объема определяется скоростями диффузии и адсорбции. Далее будут рассматриваться предельные случаи, когда скорость переноса поверхностно-активного вещества из объема к поверхности пленки лимитируется либо объемной диффузией (если на поверхности быстро устанавливаются равновесные условия), либо же адсорбцией (когда выход на поверхность связан с преодолением определенного энергетического барьера). [c.31]

    Способность стеклянных электродов функционировать в качестве индикаторных на изменение pH тесно связана с содержанием воды в стекле, но роль этой воды в механизме действия электродов еще до конца не выяснена. Вода может способствовать движению ионов в стекле, понижая электрическое сопротивление, или снижать энергетический барьер переноса протонов из раствора в набухший слой . Вероятно как в сетке стекла, так и в растворе протон ассоциирует, по крайней мере, с одной молекулой воды. Однако миграция иона гидроксония в целом сквозь поверхность затруднена. Процесс заключается в переносе протона, а перенос электрона между стеклом и раствором обычно не происходит. Поэтому можно условно рассматривать стеклянный электрод как протод [32-34]. [c.266]

    В ограниченном температурном интервале вблизи Г величину энергетического барьера переноса АЕ из уравнения (4) можно отождествлять либо с постоянной энергией активации вязкого течения расплава в аррениусовской области [96, 132], либо с некоторой эмпирической константой, имеющей размерность энергии и изменяющейся пропорционально температуре стеклования полимера [138, 139]. В то же время на основании анализа температурной зависимости процессов переноса при вязком течении расплавов полимеров [143] можно предположить, что при значительном переохлаждении расплава ниже постулированная А. Манделькерном [138, 139] инвариантность АЕ не выполняется. Убедительным подтверждением этого вывода явились результаты Т. Судзуки и А. Ковакса [146], которые показали, что экспериментальные значения скорости роста сферолитов изотактического полистирола в очень широком диапазоне температур могут быть удовлетворительно описаны уравнением (4) только в том случае, когда трансляционная подвижность сегментов в расплаве подчиняется уравнениям, описанным в [143, гл. 2]. Наиболее часто параметр АЕ аппроксимируется следующим эмпирическим уравнением, которое может быть получено из уравнения ВЛФ [143] [c.43]

    Согласно теории Хауффе и Ильшнера (1954 г.), скорость образования очень тонких (тоньше 50 А) пленок может контролироваться переносом электронов через окисный слой путем туннельного эффекта. Число электронов N с массой т и кинетической энергией Е = 1/2то (где о — компонента скорости в направлении, нормальном к энергетическому барьеру), проходящих сквозь прямоугольный (для упрощения вывода) энергетический барьер высотой и и шириной к, определяется по уравнению [c.48]

    Вагнер и Меервейн высказали мнение, что одной из стадий изомеризации алкильной группы должна быть стадия образования карбониевого иона, который может образоваться при взаимодействии алкилирующего агента с катализатором. Совершенно ясно, что как внутримолекулярные гидридные переносы, так и скелетные перегруппировки зависят от величины энергетических барьеров, определяющих тенденцию к изомеризации до получения стабильных промежуточных карбокатионов. Например, алкилирование бензола трет-бутилхлоридом или изобутилхлоридом при контакте с А1С1з дает лишь грет-бутил-бензол (что объясняется большим различием в стабильности первичного и третичного карбокатионов), тогда как алкилирование трет-пентилхлоридом дает смесь продуктов, что можно [c.100]

    Каталитическую активность а-химотрипсина нельзя приписать исключительно наличию системы переноса зарядов. Из рентгено структурных исследований следуют многие другие факторы, от ветственные за каталитический процесс. Было обнаружено де вять видов специфических ферментсубстратных взаимодействий которые повышают эффективность а-химотрипсина. Например стабилизация тетраэдрического интермедиата, а следовательно понижение энергетического барьера переходного состояния, со провождается образованием водородной связи между карбониль ной группой субстрата и амидным атомом Ser-195 и Gly-193 В химотрипсиногене эта водородная связь отсутствует. Действи тельно, уточнение структур химотрипсиногена и а-химотрипсина с помощью рентгеноструктурного анализа показывает различия в расположении каталитической триады в зимогене и ферменте. Это конформационное изменение в общей трехмерной структуре фермента, возможно, вызывает значительные изменения химических свойств каталитического центра, что может играть важную роль в увеличении ферментативной активности при активации зимогена. [c.221]

    В фазовых контактах сцепление частиц обусловлено близкодействующими силами и осуществляется по крайней мере 10-... 10 межатомными связями вследствие увеличения площади контакта по сравнению с атомным [174]. В зависимости от дисперсности и средней прочности отдельного контакта прочность структуры составляет 10. .. 10 Н/м и более. Образование фазовых контактов можно рассматривать как процесс частичной коалесценции [174] твердых частиц из-за увеличения площади непосредственного контакта между ними с переходом от "трчечного" соприкосновения к когезионному взаимодействию на значитеяы ой площади. Такой переход может осуществляться постепенно, например вследствие диффузионного переноса вещества в контактную зону при спекании. Чаще он происходит скачкообразно, как правило, в тех случаях, кс гда возникновение фазового контакта связано с необходимостью преодоле1 ия энергетического барьера, определяемого работой образования устойчивого в данных условиях зародыша - контакта - первичного мостика между частицами. Возникновение и развитие его могут быть результатом совместной пластической деформации частиц в местах их соприкосновения под действием механических напряжений, превышающих предел текучести материала частиц. Зародыш-контакт может образоваться и при вьщелении вещества новой фазы из ме-тастабильных растворов в контактной зоне между кристалликами - новообразованиями срастание кристалликов ведет при этом к формированию высокодисперсных поликристаллических агрегатов [174,193]. [c.106]

    Вывод формул (76) и (9) для капли на плоской твердой подкладке допускает такую возможность. При этом оказываете , что согласно (76) с уменьшением г капли угол ее смачивания 0 также уменьшается. Однако, согласно (9), еш е до того, как этот угол станет равным нулю, работа образования зародыша 2 может стать нулевой. Это означает, что для х<сО при определенных пересьщениях, соответствуюш их согласно (1) определенным значениям терогенному выделению новой фазы энергетический барьер не препятствует, а скорость выделения ограничивается только кинетическими обстоятельствами (переносом веш ества на каплю). Мы подсчитали, используя (9) и (7в), эти значения Ко в зависимости от [c.283]

    Из приведенного материала следует, что триплетная сенсибилизация для 2-диазо-1-нафталинона по меньшей мере бесполезна, если желательно повысить квантовый выход кетена и соответственно инденкарбоновой кислоты. Известно, что введение триплетных сенсибилизаторов— кетона Михлера, бензофеноиа, трифенилена — в раствор 2-дназо-1-нафталинона в бензоле или хлороформе с небольшими добавками спиртов, а также в пленку нафтохинондиа-зидного фоторезиста А2-1350 не влияет на скорость распада хинондиазида [37]. Изучая сенсибилизацию красителями фотораспада 2-диазо-1-нафталинона и его замещенных (фрасп = 1-Ь 3 % ), авторы нашли, что наиболее эффективны красители с малым энергетическим барьером 5 — Г в твердой матрице, склонные к переносу электрона механизм сенсибилизации сложен и требует выяснения [26]. [c.74]

    Активизационная поляризация т)а. Замедление реакции связывается с преодолением зарядами достаточно высоких энергетических барьеров (высокая энергия активации). Основные составляющие поляризации определяются процессами адсорбции реагентов на поверхности электрода, переносом электронов и поверхностными реакциями. Большое влияние на кинетику оказывает двойной слой, образующийся на границе электрод (металл) — электролит. [c.47]

    Для образования изомеров 15 и 16 достаточно было бы переноса протона с оксимной группы на нитрозогруппу в соединениях 12 и 13 (путь а или 6), что представляло бы собой сравнительно легкий процесс (у изомера 11 рК 9,8). Поскольку этого не происходит (ср. 1.3.5), то можно заключить, что глубина энергетической впадины промежуточных динитрозосоединений 12 и 13 настолько мала, что они преодолевают энергетический барьер при выходе из впадииы раньше, чем успеет произойти перенос протона. Изомеры 15 и 16 не образуются не только в нейтральных растворителях — нитробензоле и ДМСО, но и в пиридине рКа 5,2), который должеи облегчать перенос протона. [c.24]

    В веществах с молекулярной кристал 1И №ской решеткой возможен также туннельный механизм переноса тока, основанный иа квантовомеханическом эффекте просачивания (туннелирования) электронов сквозь энергетические барьеры. Такой механизм вероятен в случае высоких, цо достаточно узких. межчоле-кулярпых энергетических барьеров. [c.300]


Смотреть страницы где упоминается термин Энергетический барьер для переноса: [c.148]    [c.55]    [c.179]    [c.267]    [c.300]    [c.306]    [c.45]    [c.201]    [c.26]    [c.164]    [c.300]    [c.306]    [c.26]    [c.639]    [c.26]    [c.520]    [c.80]   
Современная химия координационных соединений (1963) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Барьер

Барьер энергетический



© 2024 chem21.info Реклама на сайте