Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиэтилен термическая

    Термическая деструкция — это процесс разрушения макромолекул под влиянием повышенных температур. При термической деструкции одни полимеры разрушаются с образованием коротких цепей различного строения (полиэтилен, полипропилен), другие— с образованием мономера (полиметилметакрилат, полиизобутилен, поли-а-метилстирол). Деструкция первых протекает по закону случая (статистически)  [c.67]


    При термическом воздействии на полиэтилен происходит резкое уменьшение его молекулярной массы, связанное с распадом молекулярных цепей (рис. 15.2). Наличие в полиэтилене разветвлений увеличивает скорость термического распада. Как видно из рис, 15.2, скорость распада уменьшается при увеличении времени нагревания полиэтилена. Это объясняется тем, что вначале распадаются связи и у мест разветвления макромолекул, и по мере уменьшения их молекулярной массы стабильность осколков молекул возрастает. После начального распада макромолекулы полиэтилена на два радикала реакция деструкции может идти по следующим направлениям  [c.234]

    Нейтрализацией известью верхнего слоя прудов кислого гудрона, смешением продуктов нейтрализации с асфальтом и последующим окислением воздухом изготовляют дорожный вяжущий материал. Этот процесс опробован на Ярославском НПЗ для старых прудов кислого гудрона. К кислому гудрону до окисления можно добавить полиэтилен, который блокирует водорастворимые соединения, и получить водостойкий вяжущий материал. Последний можно производить также термической обработкой водорастворимых соединений. [c.141]

    Молекула этилена СНа=СНа имеет симметричное строение и ие содержит полярных заместителей Этим объясняется его невысокая химическая активность В зависимости от способа получения различают полиэтилен высокого и низкого давления Полимеризация этилена по радикальному механизму протекает при высоком давлении (200—300 МПа) и температуре 180—200 С Для инициирования полимеризации применяют молекулярный кислород или органические пероксиды, при термическом разложении которых образуются свободные радикалы Началом реакции является присоединение этилена к свободному радикалу [c.144]

    Характер надмолекулярных структур, их размеры н взаиморасположение, плотность упаковки молекул в первичных элементах структуры и, наконец, морфология сложных кристаллических образований должны оказывать влияние на величину и характер диффузии и растворимости низкомолекулярных веществ в полимерах. В пачке, являющейся основным элементом надмолекулярной структуры аморфного полимера, обеспечивается более или менее полная параллелизация участков цепных молекул, поэтому можно предположить, что в самой пачке более плотная упаковка молекул, чем в промежутках, отделяющих пачки друг от друга. По аналогии с переносом газов и паров через кристаллические полимеры можно считать, что перенос низкомолекулярных веществ в аморфных полимерах будет происходить преимущественно по границам раздела пачек. В результате огибания пачек молекулами диффундирующего низкомолекулярного вещества путь молекул в полимере будет возрастать и, следовательно, значение эффективного коэффициента диффузии уменьшается. Диффузия по межпачечным пространствам должна характеризоваться также и меньшей энергией активации, так как в областях между пачками должно наблюдаться уменьшение межмолекулярных сил и плотности энергии когезии, а также повышение конфигурационного набора цепных молекул. Различие в размерах и формах кристаллических образований сказывается на изменении ряда физических свойств полимеров, в том числе и на процессах переноса низкомолекулярных веществ в полимерах. Так, было показано, что на коэффициенты диффузии низкомолекулярных углеводородов и некоторых постоянных газов в полиэтилене влияют термическая обработка и предыстория образцов полиэтилена, что связано с изменением их кристаллической структуры 2. [c.155]


    Полипропилен вполне пригоден для производства полых изделий. Он имеет ряд преимуществ по сравнению с линейным полиэтиленом. Термические свойства полипропилена обуславливают более короткие циклы, чем при работе с полиэтиленом, его физические свойства также лучше. [c.164]

    В зависимости от условий полимеризации и термической обработки большая или меньшая часть полимерного вещества переходит в кристаллическое состояние, поэтому обычно наряду с аморфной в полимере представлена в той или иной степени кристаллическая структура. К распространенным кристаллизующимся полимерам относятся полиолефины (полиэтилен, полипропилен), полиамиды (капрон) и полиэфиры (лавсан). При нагревании кристаллическая структура полимера нарушается, и он переходит в аморфное состояние. Механическая прочность кристаллических полимеров значительно больше, чем аморфных. Например, прочность на разрыв аморфного полиэтилена 20—30, а кристаллического до 700 —1000 MH/м Волоконце полиэтилена длиной 7—10 см и толщиной 0,03—0,04 мм обладает прочностью до 4 ГН/м , в то время как прочность лучших сортов легированной стали около 2 ГН/м . Полиэтилен легче стали в 7—8 раз, поэтому при равной массе полимерное волокно окажется в 15—20 раз прочнее стали. [c.337]

    Теплота полимеризации на единицу массы велика по сравнению с теплотами полимеризации других мономеров (табл. 11), и отвод тепла, выделяющегося при реакции, имеет большое значение для регулирования процесса полимеризации этилена. Например, при 100° и 1000 ат теплоемкость этилена с =0,415 [И], и, следовательно, в результате полимеризации при постоянном объеме в адиабатических условиях только 1% этилена выделяется 8 кал г, что приводит к повышению температуры почти на 20°. В отсутствие кислорода полиэтилен термически устойчив до 300°, при более высокой температуре начинается разложение, но в заметных количествах этилен появляется только выше 350°. Свободная энергия полимеризации этилена такова, что равновесие между полимером и мономером при обычных температурах сильно сдвинуто в сторону образования полимера вычисленная предельная температура полимеризации, при которой константа равновесия полимер—мономер равна 1, составляет примерно 400° [12] при атмосферном давлении и растет с повышением давления. Явление предельной температуры, наблюдаемое при высокотемпературной полимеризации метилметакрилата, обычно не имеет места при поли- [c.52]

    Под действием у-лучей во многих полимерах и, в частности, в полиэтилене увеличивается число поперечных связей, что повышает механическую прочность и термическую стойкость полимера и делает его более стойким по отношению к действию [c.263]

    К важнейшим синтетическим полимерным материалам относят пластмассы, эластомеры, химические волокна и полимерные покрытия. В отличие от металлических материалов они имеют высокую устойчивость в агрессивных средах, низкую плотность, высокую стойкость к истиранию, хорошие диэлектрические и теплоизоляционные свойства. Из них несложно изготовить детали и аппараты сложной конструкции. Недостатком многих полимерных материалов является их склонность к старению и невысокая термическая стабильность (до 250 °С). Наиболее известны материалы на основе фенол-формальдегидных смол (с. 192), поливинилхлорида, полиэтиленов (с. 192) и фторопластов. [c.176]

    Подвергая образец полиизобутилена многократному деформированию в вискозиметре, Поль и Лунд показали, что сдвиг вызывает механическую деструкцию полимера, скорость которой убывает. При этом полимерные цепи, постепенно уменьшаясь в длине, достигают такого размера, что уже могут релаксировать без разрывов. Скотт и Кога , многократно экструдируя один и тот же образец полиэтилена при температуре от 200 до 280 °С, не наблюдали изменения вязкости его расплава или характеристической вязкости его раствора. Очевидно, что в этих опытах разрыва полимерных цепей не происходило. Однако когда они повторили свой опыт при температуре 340 °С, то наблюдалось постепенное уменьшение вязкости. Поэтому они сделали вывод, что полиэтилен при обычных температурах переработки не деструктирует уменьшение же вязкости при высоких температурах указывает на преобладающую роль термической деструкции по сравнению с механодеструкцией. [c.42]

    Цель работы. Определение термических характеристик исследуемого полимера с помощью совмещенных кривых ДТА и ТМ. Образцы и реактивы Образец полимера (полиэтилен, Проявитель для обработки [c.218]

    Для покрытий, характеризующихся отсутствием явно выраженных функциональных групп (полиэтилен, пентопласт, фторопласт), образование хемосорбированной адгезионной связи полимера с металлом может достигаться оптимальным режимом термической обработки, а также за счет химического модифицирования поверхности, приводящего к повьпиению стабильности адгезии в воде и электролитах. Например, термообработка фторлонового покрытия на основе сополимера 32Л приводит к деструкции полимера с образованием реакционноспособных центров, взаимодействующих с активными центрами металла прочность сцепления покрытия с основой достигает 12-20 МПа [47].  [c.130]


    Эти данные позволяют предположить, что часто обнаруживаемый в работающих при высоком давлении и невысоких температурах частях промышленных установок (подогревателях, фильтрах и др.) высокомолекулярный полиэтилен может образовываться даже в отсутствие инициаторов в результате медленной термической полимеризации зтилена. [c.59]

    Сведения о процессах деструкции и сшивания полиэтилена имеются в ряде работ [9, с. 199 60, с. 60 61, с. 103 62, с.34]. Полиэтилен устойчив к нагреванию до температуры 290 °С. Выше этой температуры происходит выделение летучих продуктов, ускоряющееся с ростом температуры. На рис. 4.8 приведены кривые изменения характеристической вязкости полиэтилена в зависимости от продолжительности прогревания при различных температурах [60, с. 60]. Об изменении содержания двойных связей в полиэтилене [60, с. 61] в процессе термической деструкции можно судить по следующим данным  [c.75]

    Полиэтилен относится к группе кристаллизующихся полимеров. При комнатной температуре он частично закристаллизован. Степень кристалличности ПЭВД лежит в интервале 20-40%. Она значительно ниже степени кристалличности ПЭНД лежащей в интервале 50-75 %. Обычно под степенью кристалличности понимают долю групп -СНз-, находящихся в упорядоченном состоянии, имея в виду дальний порядок в трех измерениях. Степень кристалличности полиэтилена определяют различными методами рентгенографией, ИК-спектроскопией, ЯМР, дифференциально-термическим анализом, дилатометрией и др. Каждый из этих методов основан на определенном физическом явлении и дает в принципе несколько отличные от другого метода результаты. Однако эти различия несущественны. [c.142]

    Изучение взаимосвязи между строением и свойствами в ряду гетероцепных сложных полиэфиров привело к представлению, что наиболее интересных свойств, и в частности повышенных термических характеристик, можно ожидать от полимеров на основе ароматических исходных компонентов. Так, был осуществлен синтез ряда полиэфиров ароматических дикарбоновых кислот и алифатических гликолей, из которых несомненный практический интерес представили полиэтилен- и полибутилентерефталаты. Ароматический цикл может быть введен в полиэфирную цепь и за счет диолового компонента. [c.155]

    Полиэтилен широко используется в технике в качестве электроизоляционного и упаковочного материала и для изготовления различных изделий (пленка, трубопроводы и др.). Полиэтилен устойчив к воздействию сильных кислот и щелочей, но обладает низкой термической устойчивостью и под действием солнечных лучей и кислорода воздуха постепенно становится хрупким (старение полимера). [c.120]

    Высокая энергия связи углерод-фтор влияет на повышение химической и термической стойкости фторполимеров по сравнению с соответствующими карбо- или гетерополимерами. Энергия связи углерод-хлор меньше, чем углерод-водород, и поэтому, например, поливинилхлорид обладает меньшей химической и термической стойкостью, чем его аналог полиэтилен. А энергия связи углерод-бром или иод еще меньше, чем углерод-хлор, и полимеры, содержащие бром и иод, отщепляют последние даже при невысоких температурах. Поэтому из галогенпроизводных полимеров наибольшее значение получили фтор- и хлорсодержащие полимеры. [c.56]

    Так получается промышленный полиэтилен высокого давления со степенью полимеризации и = 600—1200, который широко используется как изолятор и упаковочный материал, для изготовления пленок, труб и т. д. Он химически очень инертен, однако термически и фотохимически не очень устойчив. Аналогично получают полипропилен высокого давления. [c.356]

    Напротив, в случае слабополярных полимеров (полиэтилен, полидиметилсилоксан и др.) температуры стеклования и плавления лежат намного ниже температуры термодеструкции. Есть полимеры (например, среди полигетероариленов), у которых температуры стеклования и термической деструкции практически совпадают. [c.85]

    К кислому гудрону можно до окисления добавить полиэтилен, который блокирует водорастворимые соединения и даёт возможность получать водостойкий вяжущий материал. Последний можно получить также в результате термической обработки водорастворимых соединений. [c.353]

    Из Приведенных данных видно, что при одном и том же термическом к. п. д. производительность по полистиролу более чем в два раза превышает производительность по полиэтилену. Одним из факторов, который может обусловливать такие различия в производительности является температуропроводность. [c.141]

    Применение ряда современных методов исследования, например метода электронного парамагнитного резонанса, позволяющего определять структуру и концентрацию свободных радикалов, образующихся при окислении, термическом, фотохимическом, радиационном, механическом распаде полимеров, метода ядерного магнитного резонанса и других дало возможность изучить механизм старения и стабилизации полимеров н разработать эффективные методы стабилизации различных классов полимеров. Для многих из них предложены меры комплексной защиты от теплового, термоокислительного, светоозонного, радиационного старения. При этом оценка эффективности противостарителей осуществляется не только по активности в химических реакциях, но и по растворимости в полимере, летучести, термостабильности и другим факторам. Полиэтилен, например, хорошо защищается от термоокислительной деструкции в присутствии небольших количеств (0,01 /о) фенольных или аминных антиоксидантов, что важно для его переработки. При эксплуатации полиэтилен достаточно стабилен, тогда как полипропилен нуждагтся в защите от старения при эксплуатации. Здесь более эффективны такие антиоксиданты, как производные фенилендиаминов. Для защиты полиэтиленовых пленок от действия ультрафиолетового света применяют <5г < -фенолы. Весьма важна проблема стабилизации ненасыщенных полимеров (каучуков), где достаточно эффективны аминные про-тивостарители или их сочетание с превентивными антиоксидантами. [c.273]

    Для алкилпроизводных дифенилолпропана основным направлением использования является стабилизация различных материалов. /прет-Бутилзамещенные дифенилолпропана могут быть использованы как неокрашивающие антиоксиданты каучуков " , турбинного масла и крекинг-бензина . Добавки 2,2-бис-(3 -бутил-4 -окси-фенил)-пропана и 2,2-бис-(3 -изопропил-4 -оксифенил)-пропана к полиэфиру делают последний устойчивым к термическому окислению стабилизованный таким же образом полиэтилен является нетоксичным и может быть использован для упаковки пищевых продуктов . 2,2-Бис-(3 -трет-бутил-4 -оксифенил)-пропан является хорошим неокрашивающим антиоксидантом для полистирола, бактерицидным агентом, а также может быть использован для синтеза смол типа фенол о-формальдегидных 2. [c.56]

    Величтша энергии связи углерод—фтор больше энергии связи углерода с водородом, причем в присутствии атомов фтора повышается прочность соседних с ними связей между углеродными атомами. Вследствие этого полимеры фторпроизводных этилена обладают наиболее высокой химической и термической стойкостью по сравнению с другими органическими полимерами, в том числе и по сравнению с полиэтиленом. Особенность связи углерод— фтор ярко выражена в свойствах политетрафторэтилена, который отличается наибольшей химической инертностью и термоустойчивостью. [c.253]

    Энергия связи углерод—хлор меньше энергии связи углерод— ьодород, поэтому поливинилхлорид обладает меньшей термической и химической стойкостью, чем полиэтилен. Подавляющее большинство процессов химических превращений поливинилхлорида, его термическая, световая и окислительная деструкции происходят с замещением или отщеплением H I от макромолекул гюлимера. [c.253]

    Известен еше один вид фазовых диаграмм, для которых НКТР находится выше ВКТР и выше температуры кипения, но ниже критической температуры перехода жидкость — пар для растворителя. Такие диаграммы характерны для систем, состоящих из компонентов, идентичных по химическому строению, но сильна различающихся по размерам. НКТР повышается с увеличением размеров молекул растворителя. Расслоение системы в данном случае обусловлено большой разницей в термических коэффициентах расширения компонентов. Диаграммы состояния типа изображенной на рис. П1. , г получены, в частности, для систем полиэтилен — алканы, полистирол — циклогексан, поливинилацетат — этилацетат, поливиниловый спирт — вода и др. [c.81]

    Для многих твердых пластических ыатерпалов термическая характеристика заключается в нахождении температуры, при которой имеет место определенпос изменение в структуре материала прн заданном давлении. Например, в методе Вика [4, 32, 47] игла (имеющая площадь острия I Ш1 ) при определенном давлении (обычно не превышающем I кг) вдавливается в поверхность стандартного образца (минимальная ширина 18 мм, толщина 3 мм), который нагревается с заданной скоростью (50° в час). Температура, при которой наблюдается погружение иглы на 1 нм, принимается за точку размягчения, или температуру пенстрации. Это испытание применено к полиэтилену, полистиролу и полиакрилатам с точностью до 2° Для мягких образцов поливинилхлорида, поливинилиденхлорида и некоторых других эластомеров область размягчения слишком велика, чтобы получить такую точность. [c.68]

    Если формально рассматривать полистирол как зал1сщенный полиэтилен, в котором один атом водорода в каждом звене замещен на фенил, то можно сделать вывод, что такое замещение приводит к снижению 7 . Это снижение может быть настолько большим, что интенсивная термическая деструкция может начинаться до достижения температуры стеклования. Так ведут себя полимеры с объемистыми боковыми заместителями, содержащими полярные Фуппы. Одним из них является полиметилиденфталид.  [c.224]

    Характер продуктов термической деструкции определяется главным образом двумя факторами реакционной способностью деполиме-ризующегося радикала и подвижностью водорода, участвующего в реакции передачи цепи. Все полимеры, содержащие подвижный а-водород (полиакрилаты, полиакрилонитрил, разветвленный полиэтилен и др.), дают незначительное количество мономера исключением является полистирол, у которого радикал стабилизуется сопряжением с бензольным кольцом (с. 244). Большой выход мономера при деструкции полиметилметакрилата и поли-а-метилстирола объясняется тем, что а-водород замещен на метильную группу. Высокая прочность связи С—F в политетрафторэтилене также обусловливает малую скорость передачи цепи и высокий выход мономера. [c.635]

    Напротив, в слу чае слабо полярных полимеров (полиэтилен, полидиметилсилоксан и др.) температуры стскловання и плавления лежат намного ниже температуры термодеструкции. Можно подобрать такой случай (на примере полигетероарнленов), когда температуры стеклования и термической дестру к-ции будут практически совпадать. [c.226]

    Вопрос о структуре некристаллических областей, которые определяют перенос газов и жидкостей в полукристаллических полимерах, рассматривался в работе За основную структурную характеристику таких областей была принята степень напряженности сегментов полимерных цепей. Предполагается, что полимерная цепь может проходить последовательно через кристаллические и некристаллические области, причем кристаллические области играют роль сшивок или частиц наполнителя в аморфном материале, вследствие чего участки между ними находятся в напряженном -состоянии. Активность растворителя, сорбированного такими напряженными областями, отличается от активности растворителя в ненапряженных областях. За характеристику степени напряженности сегментов была - взяга величина V — соотношение наблюдаемой активности к активности в гипотетическом состоянии полимера, в котором отсутствует влияние кристаллитов и сшивок. Значение V может быть вычислено, исходя из степени кристалличности, числа эффективных эластических элементов в цепях и других параметров. В работе установлено на примере линейного и разветвленного полиэтиленов, подвергнутых различной термической обработке, что значение определяется в первую очередь температурой, а не степенью кристалличности. [c.144]

    Асбест применяют в виде ваты, бумаги, картона, ткани. Из него производят асбестопластики, химически и термически стойкие материалы, в которых связующим являются феноло-формальдегидные смолы, пропилен, полиэтилен и кремнийор-ганические полимеры. [c.23]

    С 1936 г. английский концерн ИСИ, а вскоре затем и ИГ стали выпускать полиэтилен высокого давления. Исследователями-химиками обоих концернов было найдено, что этилен полимери-зуется в присутствии катализаторов при высоких температурах и давлениях. В 1953 г. К. Циглер (1898—1973) разработал метод полимеризации этилена при низких давлениях с применением смешанных металлорганических катализаторов А1(С2Н5)з. В том же году итальянский химик Дж. Натта (1903) открыл способ получения полимеров олефинов упорядоченной структуры (изотак-тический полипропилен). Оба эти открытия стали основой для получения полиэтилена различной степени эластичности. В 1938 г. американская фирма Дюпон стала выпускать тефлон — продукт полимеризации тетрафторэтилена. Этот полимер обладает особенно высокой термической устойчивостью и стойкостью по отношению к кислотам и едким щелочам. [c.283]

    Установлено, что начальная температура разложения полиэтилена составляла 400°С, каучука 350°С, ацетилцеллюлозы П0°С, эпоксидной смолы 100° С и изопропилфенантрен-фенол-формальдегидной смолы 100° С. Однако этот фактор не определяет термическую устойчивость вещества при нагреве. Так, полиэтилен, имея наиболее высокую начальную температуру разложения, полностью разлагается в течение 10 мин., каучук за это же время разлагается на 99% в течение 10 мин., эпоксидная смола — на 87% за 12—15 мин., изопропилфенантрен-фенол-формальдегидная смола —на 45—507о за 30—35 мин. [c.39]

    При формировании контакта полимера с металлом роль термических и термоокислительных процессов на поверхности раздела адгезив — субстрат иногда оказывается важнее реологических процессов [53, 132, 133]. Например, продолжительность достижения максимальной адгезии в системе сталь — полиэтилен превышает время, необходимое для достижения максимально возможного контакта [33]. Это можно объяснить влиянием полярных групп, продолжа-юш их образовываться в полиэтилене и после достижения предельной поверхности контакта с металлом. [c.299]


Смотреть страницы где упоминается термин Полиэтилен термическая: [c.5]    [c.261]    [c.23]    [c.103]    [c.503]    [c.45]    [c.488]    [c.503]    [c.503]    [c.193]    [c.300]    [c.177]   
Химические реакции полимеров том 2 (1967) -- [ c.2 , c.18 , c.19 , c.20 , c.23 , c.48 , c.52 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициент термического расширения полиэтилена

Полиэтилен деструкция термическая

Полиэтилен относительная термическая стабильность в вакууме

Полиэтилен разветвленный энергия активации термической

Полиэтилен термическая устойчивость

Полиэтилен термического расширения

Полиэтилен энергия активации термической

Термическое разложение полимеров полиэтилена

Термодинамические параметры термического распада полиэтилена и политетрафторэтилена



© 2025 chem21.info Реклама на сайте