Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиэтилен деструкция термическая

    При термическом воздействии на полиэтилен происходит резкое уменьшение его молекулярной массы, связанное с распадом молекулярных цепей (рис. 15.2). Наличие в полиэтилене разветвлений увеличивает скорость термического распада. Как видно из рис, 15.2, скорость распада уменьшается при увеличении времени нагревания полиэтилена. Это объясняется тем, что вначале распадаются связи и у мест разветвления макромолекул, и по мере уменьшения их молекулярной массы стабильность осколков молекул возрастает. После начального распада макромолекулы полиэтилена на два радикала реакция деструкции может идти по следующим направлениям  [c.234]


    Для покрытий, характеризующихся отсутствием явно выраженных функциональных групп (полиэтилен, пентопласт, фторопласт), образование хемосорбированной адгезионной связи полимера с металлом может достигаться оптимальным режимом термической обработки, а также за счет химического модифицирования поверхности, приводящего к повьпиению стабильности адгезии в воде и электролитах. Например, термообработка фторлонового покрытия на основе сополимера 32Л приводит к деструкции полимера с образованием реакционноспособных центров, взаимодействующих с активными центрами металла прочность сцепления покрытия с основой достигает 12-20 МПа [47].  [c.130]

    Сведения о процессах деструкции и сшивания полиэтилена имеются в ряде работ [9, с. 199 60, с. 60 61, с. 103 62, с.34]. Полиэтилен устойчив к нагреванию до температуры 290 °С. Выше этой температуры происходит выделение летучих продуктов, ускоряющееся с ростом температуры. На рис. 4.8 приведены кривые изменения характеристической вязкости полиэтилена в зависимости от продолжительности прогревания при различных температурах [60, с. 60]. Об изменении содержания двойных связей в полиэтилене [60, с. 61] в процессе термической деструкции можно судить по следующим данным  [c.75]

    Термическая деструкция — это процесс разрушения макромолекул под влиянием повышенных температур. При термической деструкции одни полимеры разрушаются с образованием коротких цепей различного строения (полиэтилен, полипропилен), другие— с образованием мономера (полиметилметакрилат, полиизобутилен, поли-а-метилстирол). Деструкция первых протекает по закону случая (статистически)  [c.67]

    Напротив, в случае слабополярных полимеров (полиэтилен, полидиметилсилоксан и др.) температуры стеклования и плавления лежат намного ниже температуры термодеструкции. Есть полимеры (например, среди полигетероариленов), у которых температуры стеклования и термической деструкции практически совпадают. [c.85]

    Подвергая образец полиизобутилена многократному деформированию в вискозиметре, Поль и Лунд показали, что сдвиг вызывает механическую деструкцию полимера, скорость которой убывает. При этом полимерные цепи, постепенно уменьшаясь в длине, достигают такого размера, что уже могут релаксировать без разрывов. Скотт и Кога , многократно экструдируя один и тот же образец полиэтилена при температуре от 200 до 280 °С, не наблюдали изменения вязкости его расплава или характеристической вязкости его раствора. Очевидно, что в этих опытах разрыва полимерных цепей не происходило. Однако когда они повторили свой опыт при температуре 340 °С, то наблюдалось постепенное уменьшение вязкости. Поэтому они сделали вывод, что полиэтилен при обычных температурах переработки не деструктирует уменьшение же вязкости при высоких температурах указывает на преобладающую роль термической деструкции по сравнению с механодеструкцией. [c.42]


    Влияние термической деструкции на содержание двойных связей в полиэтилене [c.61]

    Низкомолекулярный полиэтилен. Этот вид полиэтилена производят полимеризацией этилена до определенного молекулярного веса (1500— 7000) в присутствии специальных катализаторов или термической деструкцией высокомолекулярного полиэтилена. Низкомолекулярный полиэтилен может быть получен в виде эмульсии, хлопьев и таблеток. [c.158]

    Спектроскопическим методом изучены изменения, происходящие в структуре полиэтилена при его термической деструкции, для чего три образца (высокого и низкого давлений и полиэтилен, полученный радиационной полимеризацией) подвергали пи- [c.279]

    Наполнители могут изменять прочность металлополимерных соединений вследствие изменения химического состава и строения макромолекул, надмолекулярной структуры и реологических свойств полимера, адсорбции низкомолекулярных соединений (антиоксидантов, пластификаторов, продуктов окислительной и термической деструкции и т.д.). Высокой способностью сорбировать низкомолекулярные соединения (спирты, кислоты и т. д.) обладают неорганические полимеры (оксид алюминия, каолин, тальк и др.), характеризующиеся неплотной упаковкой макромолекул и соответственно большей пористостью. При введении порошкообразных неорганических полимеров в полиэтилен или другой орга- [c.37]

    На машине можно перерабатывать полиэтилен, полистирол, полипропилен, ацетатцеллюлозу, полиэтилен с пенообразователем и найлон. Гидродинамическая машина проста по конструкции, обеспечивает надежный нагрев перерабатываемого материала при минимальной продолжительности пребывания полимера в машине, вследствие чего резко снижается его термическая деструкция. Машина обеспечивает также создание высоких давлений. [c.219]

    В отсутствие кислорода полиэтилен весьма устойчив к термическому воздействию (приблизительно до 290° С). При более высоких температурах происходит деструкция, сопровождающаяся уменьшением молекулярного веса полиэтилена. Газообразные продукты деструкции не образуются в большом количестве вплоть до 370° С. В результате пиролиза полиэтилена при 400° С было идентифицировано свыше 30 соединений н-алканы, н-алкены, н-диеновые и циклические углеводороды. [c.177]

    Сложные полиэфиры. Наибольший практический и научный интерес среди сложных полиэфиров представляют полиэтилен-терефталат и поликарбонаты. Поэтому вопросам их термической и термоокислительной деструкции уделено большое внимание во многих работах [1-3, 9, 16, 18, 19]. [c.49]

    Основной стадией является образование активных частиц, способных ко вторичной полимеризации. При нагреве полимеров в условиях вакуума в результате термической деструкции может происходить рекомбинация активных фрагментов полимерной цепи, выделяющихся из полимера. Этот процесс, условно называемый эмиссией полимера в вакууме, можно использовать для получения пленок. В качестве исходных полимеров пригодны поликапроамид, полиарилат, полиэтилен, политетрафторэтилен, имеющие следующие температуры эмиссии (в °С)  [c.326]

    При действии на полиэтилен ультрафиолетовой части солнечного спектра в присутствии кислорода воздуха, как уже указывалось, наблюдается довольно быстрое старение материала, вызванное окислительной деструкцией. Так же как и при термическом окислении, (небольшие количества окисленных (при получении или обработке полимера) звеньев оказывают активирующее действие на процесс разложения, которое усугубляется способностью образовавшихся карбонильных групп поглощать ультрафиолетовые лучи. Развивающиеся при этом процессы протекают по цепному радикальному механизму. [c.181]

    Технический полипропилен, получаемый в присутствии катализаторов Циглера, характеризуется наличием в цепи регулярно чередующихся пространственно упорядоченных метильных заместителей. Благодаря третичным углеродным атомам он по сравнению с полиэтиленом более легко подвергается атаке свободных радикалов, отрывающих от макромолекул водородные атомы. Поэтому полипропилен менее стабилен к термической и термоокислительной деструкции по сравнению с полиэтиленом. [c.197]

    Полистирол более устойчив к термическому разложению и к термоокислительной деструкции, чем, например, полиэтилен. В связи с относительно небольшой температурой эксплуатации [c.202]

    При газопламенном напылении полиэтилен подвергается большому термическому воздействию. Максимально допустимая температура процесса равна 290° С, при которой полиэтилен еще достаточно стоек к деструкции. [c.196]

    При формировании некоторых адгезионных соединений, например полиэтилен—металл, одновременно развиваются каталитические и диффузионные процессы. Предположения о возможности диффузии ионов металлов в полимер высказывались давно [72, 73]. Экспериментально растворение металла в полимере было обнаружено в работах Белого, Егоренкова и др. и описано в 74]. Было установлено, что в результате взаимодействия полимера с поверхностью металла при высокой температуре образуются соли жирных кислот, которые затем и диффундируют в массив полимера. Появление в объеме полимера металлсодержащих соединений оказывает в свою очередь влияние на окислительные процессы и, следовательно, на адгезионную прочность [75—82]. Каталитическая активность металлов (медь, железо, свинец, алюминий) в процессе окисления полиэтилена различна. Некоторые металлы (например, железо) ускоряют процесс окисления полиэтилена, поэтому зависимость адгезионной прочности от продолжительности процесса формирования адгезионного соединения в данном случае описывается кривой с максимумом, что связано с интенсивной термоокислительной деструкцией макромолекул граничного слоя [75]. В отличие от железа свинец катализирует процесс окисления полиэтилена только на ранних стадиях термического воздействия, а затем выступает в роли ингибитора. Поэтому адгезионная прочность в системе полиэтилен—свинец после незначительного снижения, вызванного интенсивным окислением, стабилизируется на достаточно высоком уровне [75]. В случае меди также только в начальной стадии процесса окисления наблюдается каталитический эффект, а затем на стадии ингибирования в полиэтилене накапливаются карбонильные группы, что приводит к термоокислительному структурированию полиэтилена и повышению адгезионной прочности [75]. [c.90]


    Были рассмотрены [2083] многочисленные пики плавления полиэтилентерефталата, полученные при дифференциальном термическом анализе и дифференциальной сканирующей калориметрии. Термическая деструкция полиэтилентерефталата исследована в работе [2084]. Кинетика деструкции полиэтилен- [c.423]

    Термическая деструкция, протекающая с разрывом цепей главных валентностей, характерна для таких полимеров, как полиэтилен, политетрафторэтилен, полиметилметакрилат, полисти- [c.11]

    Присутствие четвертичного атома углерода снижает устойчивость к термической деструкции полиизобутилена по сравнению с полиметиленом, полиэтиленом или полипропиленом. В то В ремя как полиэтилен при термической деструкции при 350 °С выделяет в минуту [c.30]

    Энергия связи углерод—хлор меньше энергии связи углерод— ьодород, поэтому поливинилхлорид обладает меньшей термической и химической стойкостью, чем полиэтилен. Подавляющее большинство процессов химических превращений поливинилхлорида, его термическая, световая и окислительная деструкции происходят с замещением или отщеплением H I от макромолекул гюлимера. [c.253]

    Применение ряда современных методов исследования, например метода электронного парамагнитного резонанса, позволяющего определять структуру и концентрацию свободных радикалов, образующихся при окислении, термическом, фотохимическом, радиационном, механическом распаде полимеров, метода ядерного магнитного резонанса и других дало возможность изучить механизм старения и стабилизации полимеров н разработать эффективные методы стабилизации различных классов полимеров. Для многих из них предложены меры комплексной защиты от теплового, термоокислительного, светоозонного, радиационного старения. При этом оценка эффективности противостарителей осуществляется не только по активности в химических реакциях, но и по растворимости в полимере, летучести, термостабильности и другим факторам. Полиэтилен, например, хорошо защищается от термоокислительной деструкции в присутствии небольших количеств (0,01 /о) фенольных или аминных антиоксидантов, что важно для его переработки. При эксплуатации полиэтилен достаточно стабилен, тогда как полипропилен нуждагтся в защите от старения при эксплуатации. Здесь более эффективны такие антиоксиданты, как производные фенилендиаминов. Для защиты полиэтиленовых пленок от действия ультрафиолетового света применяют <5г < -фенолы. Весьма важна проблема стабилизации ненасыщенных полимеров (каучуков), где достаточно эффективны аминные про-тивостарители или их сочетание с превентивными антиоксидантами. [c.273]

    Если формально рассматривать полистирол как зал1сщенный полиэтилен, в котором один атом водорода в каждом звене замещен на фенил, то можно сделать вывод, что такое замещение приводит к снижению 7 . Это снижение может быть настолько большим, что интенсивная термическая деструкция может начинаться до достижения температуры стеклования. Так ведут себя полимеры с объемистыми боковыми заместителями, содержащими полярные Фуппы. Одним из них является полиметилиденфталид.  [c.224]

    Характер продуктов термической деструкции определяется главным образом двумя факторами реакционной способностью деполиме-ризующегося радикала и подвижностью водорода, участвующего в реакции передачи цепи. Все полимеры, содержащие подвижный а-водород (полиакрилаты, полиакрилонитрил, разветвленный полиэтилен и др.), дают незначительное количество мономера исключением является полистирол, у которого радикал стабилизуется сопряжением с бензольным кольцом (с. 244). Большой выход мономера при деструкции полиметилметакрилата и поли-а-метилстирола объясняется тем, что а-водород замещен на метильную группу. Высокая прочность связи С—F в политетрафторэтилене также обусловливает малую скорость передачи цепи и высокий выход мономера. [c.635]

    Термическая деструкция полиэтилена протекает по механизму, совершенно противоположному механизму разложения двух ранее рассмотренных полимеров. Однако наличие разветвленности в полимере изменяет механизм, по-видимому, вследствие увеличения отношения внутримолекулярной передачи к межмолекулярной [87]. При пиролизе любого полиэтилена выделяется не более 1% мономера. Молекулярные веса полиэтиленов резко уменьшаются [48]. Методом инфракрасной спектроскопии было показано, что на начальных стадиях деструкции разветвленного полиэтилена винильные группы образуются медленнее, чем двойные связи других типов. Это указывает на преимущественный разрыв цепей по местам разветвлений или вблизи этих мест. Ход изменения среднечисловой СП для линейного полиэтилена (полиметилен, полученный полимеризацией диазометана под действием эфирата трехфтористого бора) представлен кривой В на рис. 102. Эта кривая показывает быстроту падения СП при разрывах, протекающих по закону случая. При конверсии в пределах 2% СП уменьшается в 1000 раз. Кривые скоростей для сильно разветвленного полиэтилена показаны на рис. 105. Отсутствие максимума и форма кривых указывают на реакцию с большой длиной зипа с другой стороны, кривые линейных полимеров, имеющие максимумы, хорошо согласуются с теорией деструкции по закону случая. На рис. 103 приведена скорость выделения летучих веществ из линейного полимера с молекулярным весом около 5 000 000. Полагая L = 72, из величин максимумов можно непосредственно получить константы скоростей деструкции по закону случая. Были вычислены теоретические кривые, имеющие то же значение максимума оказалось, что они хорошо согласуются с экспериментальными данными. Для константы скорости получено следующее выражение  [c.183]

    Хотя данные о выходах мономера дают ценную качественную картину реакций деполимеризации различных полимеров, очевидно, что не только структурные факторы должны играть в процессах термодеструкции определенную роль. Из данных по характеристике скоростей процессов термодеструкции, приведенных в четвертой колонке обсуждаемой таблицы, видно, что они не всегда соответствуют результатам, которых можно было бы ожидать на основании выходов мономера. В соответствии с обсужденной выше теорией следовало ожидать, что максимальная скорость реакции должна наблюдаться нри образовании 20—30% летучих продуктов деструкции и низких выходах мономера. Но тогда возникает вопрос почему при термодеструкции полистирола максимальная скорость реакции наблюдается при превращении в летучие продукты 40% полимера и почему максимальная скорость реакции имеет место для а-заме-щенных нолистиролов при ожидаемой на основании теории степени превращения 25 %, тогда как при термодеструкции этих полимеров выходы мономера даже выше, чем при термодеструкции полистирола При термодеструкции таких полимеров, как полиэтилен и полипропилен, скорость реакции вообще не имеет максимума, несмотря на то что, судя по образующимся продуктам деструкции, в этих процессах преобладают реакции передачи цепи. С другой стороны, нри деструкции таких полимеров, как полиметакрилат и полиметакрилонитрил, которые на начальных стадиях термодеструкции образуют почти чистый мономер, очень быстро повышается их устойчивость к термическому разложению, и для дальнейшего превращения их в летучие продукты требуется применение гораздо более высоких температур, причем в этих условиях образуются отличные от мономера осколки полимерной цепи. [c.26]

    Химические свойства и модификация. Алифатич. П. п. обладают значительно меньшей термич. стойкостью, чем полиолефины, но большей, чем полиэфиры. сложный. Энергии диссоциации связей С—С и С—О весьма близки (по расчету связь С—О даже более прочна), однако вследствие значительной полярности эфирная связь легко подвергается гетеролитич. расщеплению под действием различных кислотных агентов. П.п. менее стойки, чем полиолефины, и к окислению. Так, полиметиленоксид проявляет себя как типичный полиальдегид (см. Альдегидов полимеры)— он легко деполимеризуется, причем инициирование происходит и с конца цепи, и при случайном разрыве макромолекул. Остальные П.п., включая полиацетали, в меньшей степени проявляют тенденцию к деполимеризации. По-видимому, полиэтилен- и полипропиленоксиды наиболее термически устойчивы и разлагаются с заметной скоростью только при темп-рах выше 300°С. С введением полярных заместителей в элементарное звено существенно повышается в нек-рых случаях хемостойкость П. п. Напр., полидихлорметилоксациклобутан наиболее химически стойкий полимерный материал. Высокой химической и термической стабильностью обладают некоторые фторзамещенные П. ff., а также полимеры, содержащие циклы в основной цепи. Температуры их размягчения и деструкции достигают 300—350°С. [c.64]

    Исследована кинетика термической деструкции полиэтилена 2126 Термогравиметрические кривые термического разложения полиэтилена в вакууме в интервале температур от — 20 до 500° С при остаточном давлении 1 мм рт. от. и скорости нагрева 5° в 1 мин. указывают, что медленное разложение полиэтилена начинается при 340° С, ускоряется при 425° С и заканчивается при 460° С, причем остатка не образуется. В начальный период разложения (до 3%) идет деструкция коротких боковых цепей в полиэтилене, порядок реакции равен нулю, АЕ = 48 2ккал1моль. При дальнейшем разложении (3 15%) порядок реакции меняется от нуля до единицы и затем (до 95%) идет по кинетике реакции первого порядка с АЕ = 67 5 ккал/моль по-видимому, цепи полиэтилена разрываются по закону случая. [c.280]

    В качестве исходных материалов в таких процессах целесообразно использовать полимеры, термическая деструкция которых сопровождается значительным выделением реакционноспособных фрагментов полимерной цепи, способных рекомбинировать на подложке. К таким материалам, в первую очередь, относятся фторсодержащие полимеры — политетрафторэтилен, полихлортрифторэти-лен и др. полиолефины — полиэтилен, полипропилен полиамиды и ряд других. При выборе полимера необходимо учитывать его физико-химические особенности. Так, пиролиз полиэтилена приводит в основном к образованию осколков, представляющих собой углеводороды, содержащие до 80—90 углеродных атомов [81], однако с весьма небольшим временем жизни. Политетрафторэтилен при температурах до 900—1000 К разлагается с выделением главным образом мономера, и только при более высоких температурах в [c.165]

    При некорневой обработке растений наряду с прочными комплексами железа (диэтилентриаминпентауксусной, полиэтилен-нолиаминполиуксусными кислотами и др. [1]) эффективными оказываются и менее прочные соединения [1—3, 14, 46—48], в частности комплексные соединения металлов с продуктами окислительной и термической деструкции природных полимерных углеводов [49, 50], а также настоенные на железных опилках соки, остающиеся после дубления кожи [51]. [c.366]

    Особые структурные типы меркаптосоединений используются для стабилизации полиолефинов против термической и термоокислительной деструкции [713, 1011, 2839]. Такие соединения, как моно-тиоэтиленгликоль или 2-гидроксипропилтиол, применяются в полиэтилене низкого давления и в сополимерах этилена с пропиленом для связывания остатков металлических катализаторов и стабилизации полимера [2921]. Согласно более ранним исследованиям, ароматические меркантосоединения могут служить термостабилизаторами для полиизобутилена [39]. [c.274]

    Частицы с низкой энергией и короткой длиной пробега, выделяющиеся при термической нейтронной реакции В(л, аУЫ, были использованы в борных сэндвичевых конструкциях для соединения разнородных полимерных поверхностей, включая ПТФЭ [19Ц. Целью этой обработки являлось придание материалу локальной адгезии, не сопровождающейся деструкцией его в другом месте. Прочность шва проходит через максимум равный 90—100 кгс/см для ПТФЭ на полиэтилене и затем снижается при дальнейшем нейтронном облучении. [c.306]

    Полимер имеет исключительно низкую, близкую к полиэтилен-терефталату газопроницаемость для кислорода и диоксида углерода. Этерификация вторичных гидроксильных групп приводит к повышению проницаемости [518]. Химическая стойкость и стойкость к действию погодных факторов хуже, чем у поликарбоната. Полигидроксиэфир стоек к действию 10 %-ного гидроксида натрия, 10 %-ной серной кислоты, 10 %-ной азотной кислоты, 10 %-ного аммиака, глицерина, минеральных и растительных масел. Полимер набухает и даже растворяется в бензине, кетонах, сложных эфирах, ароматических хлорированных углеводородах. При эте-рификации вторичных гидроксильных групп происходит увеличение стойкости полимера к действию полярных растворителей. Двухосно-ориентированные пленки склонны к растрескиванию под нагрузкой только при контакте с диэтиловым эфиром и хлорбензолом [473]. Воздействие внешних погодных факторов приводит к пожелтению и появлению хрупкости. Термическая деструкция незначительна до 200 °С. Этерификация полигидроксиэфира вызывает снижение эластичности при одновременном улучшении химической и термостойкости. [c.244]

    Полистирол менее устойчив к термической деструкции, чем полиэтилен. В зависимости от способа его получения разрушение наступает при различных температурах. Технический полистирол начинает разрушаться при 130°С, тогда как чистый полистирол только при 210 °С. Меньшая устойчивость полистирола к температурным влияниям по сравнению с полиэтиленом вызвана присутствием перекисей, образующихся в процессе полимеризации. Термическая деструкция полистирола усиливается при температурах выше 300 °С конечными продуктами разложения полистирола являются преиму-ществен1Ю мономер и небольшое количество ди.мера и тетрамера. Энергия активации термической деструкции полистирола составляет 34,0 ккал/моль -  [c.31]

    При термической или радиационной деструкции полиэтилена lia воздухе пли в кис. ороде 01тразуются кислородсодержащие соединения, по которым можно сделать вывод о механизме окисления [85, 1794]. Спектроскопическая идентификация этих кислородсодержащих соединений (альдегиды, кислоты, кетоны, сложные и простые эфиры, гидроперекиси, ацетали) и их количественное определение явились предметом большого числа исследований [89, 91, 211, 309, 546, 915, 1016, 1153, 1424]. При анализе продуктов окисления в полиэтилене полоса колебания v(OH) при 3559 см была отнесена к колебаниям гидроперекисных групп [211, 309]. В [915] было указано, что на положение полосы по-глощ ения ОН-группы влияют другие группы определено также содержание ОН-групп в окисленном полиэтилене по полосе при 1245 СМ [v( —О)] после количественного ацетилирования. Калибровку проводили радиохимическим способом, используя полиэтилен, окисленный ангидридом уксусной кислоты, который содержал изотоп С. В работе [1153] содержащиеся в полиэтилене ООН-группы переводили с помощью SO2 в сульфатные и затем определяли долю гидроперекисных групп по интенсивности полосы 1195 см . Интенсивность поглощения ООН-групп обычно очень мала для количественных измерений. [c.207]

    Полиолефины (полиэтилен, полипропилен, сополимеры этилена с пропиленом и другими мономерами) являются типичными представителями карбоцепных полимеров. Термическая и термоокислительная деструкция по-лиолефинов изучена достаточно подробно [13—16, 21]. Показано [17, 18], что при термоокислении полипропилена зависимость количества поглощенного кислорода от продолжительности окисления описывается кривыми ав-токаталитического типа. Термоокисление сополимера этилена с пропиленом описывается линейной зависимостью. Процесс не имеет индукционного периода и протекает с постоянной скоростью. Полиэтилен обладает большей стойкостью к тремоокислению по сравнению с полипропиленом, что обусловлено наличием третичного углеродного атома в макромолекуле последнего. Энергия активации термоокисления полиэтилена на воздухе несколько выше энергии активации термоокисления полипропилена [19, 20]. [c.66]

    Полиэтилен под действием кислорода воздуха подвергается окислительной деструкции, сопровождающейся сшиванием цепей с образованием сетчатой структуры. При этом полимер теряет эластические сво11ства и пластичность, становится жестким и хрупким. Этот процесс, называемый старением, ускоряется при повышении температуры и под действием света. Для замедления старения полиэтилена при термической переработке и эксплуатации к нему добавляют в небольших количествах противостарители (термостаби-лизаторы) — вещества, реагирующие с кислородом энергичнее, чем сам полиэтилен, и препятствующие прониканию кислорода в толщу полимера (ароматические амины, фенолы и сернистые соединения). Для улучшения светостойкости в полиэтилен вводят светостабилизаторы (сажу, графит) — вещества, уменьшающие способность полимера поглощать ультрафиолетовые лучи. Кроме термо- и светостабилизаторов, в полиэтилен могут вводиться красители. [c.12]

    Полистирол менее подвержен термической и термоокислительной деструкции, чем, например, полиэтилен. В связи с тем, что полистирол перерабатывается и эксплуатируется при сравнительно невысоких температурах, проблема его термостабилизации не является актуальной. Большее значение имеет повышение устойчивости полистирола к действию ультрафиолетовых лучей, т. е. стабилизация против фотоокисли,тельной деструкции. [c.60]

    В отсутствие кислорода полиэтилен отличается большой устойчивостью к термическому воздействию [106, 107]. Нагревание полиэтилена без доступа кислорода не сопровождается деструкцией вплоть до достижения температур около 290° С [108, 109]. Дальнейшее повышение температуры приводит к уменьшению молекулярного веса. При температуре выше 360" С выделяются газообразные продукты деструкции, полное разложение полиэтилена происходит при температуре около 475° С. Основной продукт деструкции представляет собою воскообразное веш,ество [108], молекулярный вес которого независимо от температуры пиролиза имеет величину 692 (средний молекулярный вес исходного полиэтилена 20 ООО). Кроме воскообразного продукта выделяются незначительные ко.личества низкокипяш их углеводородов и газов, в основном метана. В продуктах термической деструкции полиэтилена практически отсутствует этилен. Это отличает полиэтилен от многих полимеров (полистирола, полиизобутилена, полиакрилатов и др.), разлагаюш ихся с образованием соответствующего мономера. [c.83]


Смотреть страницы где упоминается термин Полиэтилен деструкция термическая: [c.45]    [c.300]    [c.162]    [c.280]    [c.109]    [c.460]   
Полиолефиновые волокна (1966) -- [ c.64 ]

Химическое оборудование в коррозийно-стойком исполнении (1970) -- [ c.209 ]




ПОИСК





Смотрите так же термины и статьи:

Деструкция полиэтилена

Полиэтилен термическая

Термическая деструкция



© 2025 chem21.info Реклама на сайте