Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рафинат свойства

    Масла для гидравлических систем сочетают свойства антифрикционных жидкостей (высокий индекс вязкости) с низкими температурами застывания и высокими стабильностью против окисления и противокоррозионными свойствами. Такие масла готовят преимущественно из узких фракций низкозастывающих масляных нефтей путем глубокой очистки и с добавлением к рафинату набора присадок, количество и состав которых зависят от области применения масел. Свойства некоторых из этих масел представлены в табл. 29. [c.141]


    Выход, пес- % Свойства основных рафинатов Свойства десорбированных рафинатов  [c.75]

    Для уменьшения потерь ценных компонентов с экстрактом и увеличения выхода рафината, а также с целью получения двух рафинатов разных состава и свойств применяется двухступенчатая очистка фенолом. В этом случае установку оснащают двумя экстракционными колоннами. В первую по ходу сырья подается примерно половина количества фенола, требуемого для очистки, и с верха этой колонны отводится раствор утяжеленного рафината. Утяжеленный рафинат направляется на вторую ступень очистки — во вторую экстракционную колонну, куда вводится остальное количество фенола. С верха второй колонны конечный рафинатный раствор поступает на регенерацию растворителя. Экстрактные растворы I и П ступеней очистки смешиваются и направляются в секцию регенерации фенола из экстрактного раствора. [c.70]

    Основные свойства остаточных рафинатов [c.32]

    В табл. 3, составленной по материалам ГрозНИИ с учетом других источников, в том числе и работы, проведенной во ВНИИ НП А. А. Карасевой, Л. Г. Жердевой и Е. В. Вознесенской [1], приводятся важнейшие свойства рассматриваемых рафинатов для [c.28]

    Степень извлечения низкоиндексных компонентов зависит от расхода растворителя, определяемого сочетанием его растворяющей способности и избирательности, химическим составом сырья и требуемой степенью очистки. С повышением пределов выкипания масляных фракций в их составе -увеличивается содержание полициклических ароматических и нафтено-ароматических углеводородов, а также смол и серосодержащих соединений, подлежащих удалению. Поэтому при прочих постоянных условиях (температуре, способе экстракции) расход растворителя, необходимый для очистки, увеличивается по мере утяжеления сырья. В то же время при увеличении кратности растворителя к сырью выход рафината уменьшается, одновременно изменяются его химический состав, а следовательно, и свойства. На рис. 21 и 22 показано влияние кратности растворителя на показатели селективной очистки дистиллята одной из восточных нефтей [19]. С увеличением расхода растворителя независимо от его природы выход рафината снижается, а его индекс вязкости растет. Однако при практически одинаковой кратности растворителя к сырью выход рафината заметно ниже в случае очистки фенолом. Высокая растворяющая способность фенола при средней его избирательности приводит к большему извлечению смолистых веществ от их потенциального содержания в дистилляте (см. кривые 4) и большему переходу в экстракт парафино-нафтеновых компонентов (см. кривые 1). [c.94]


    Основные свойства рафинатов средних и нижних дистиллятов туймазинской, мухановской девонской и некоторых другах нефтей [c.29]

    В результате экстракции на установках риформинга, предназначенных для выработки ароматических углеводородов, получают индивидуальные ароматические углеводороды - бензол, толуол, ксилолы и деароматизированный бензин -. рафинат. Свойства бензольно-толуольного и ксилольного рафинатов приведены в табл. 14 [64]. [c.29]

    Для иллюстрации влияния фракционного состава на микроструктуру авторы в лабораторных условиях подвергли вторичной перегонке образцы среднего и нижнего рафинатов, полученные в промышленных условиях на одном из восточных заводов. При разгонке из испытуемых продуктов было удалено небольшое количество (около 5%) начальных и концевых фракций, чтобы фракционный состав этих продуктов стал более четким, но основные их свойства существенно не изменились. На рис. 3 показаны микрофотографии одного из продуктов до и после обработки. Из рис. 3 видно, насколько сильно влияет на кристаллическую структуру этих продуктов четкость отделения их от более высококипящих фракций. При этом нужно отметить, что в заводской практике четкости фракционировки исходных продуктов, являющихся [c.30]

    Основные свойства указанных рафинатов приведены в табл. 4. Как видно из табл. 4, эти продукты, несмотря на различное происхождение и разные технологические методы их получения, обладают относительно близкими свойствами. [c.31]

    При температуре экстракции (для пропана при температуре и давлении экстракции) все эти растворители представляют собой жидкости, а их низкая вязкость облегчает полный контакт с исходным сырьем без эмульгирования. Плотность растворителя такова, что различие плотности образующихся экстракта и рафината в большинстве случаев достаточно для быстрого расслоения их под действием силы тяжести. При этом объем экстракционной аппаратуры сводится к минимуму. Чтобы избежать значительного изменения состава растворителей, они должны обладать значительной термической стабильностью при температурах экстракции и перегонки. Химическая стабильность предохраняет от чрезмерных потерь растворителя, от коррозии или загрязнения аппаратуры, а также от химического взаимодействия с разделяемыми смесями. Литература по этим процессам настолько обширна, что цитировать ее нет необходимости. Соответствующие свойства некоторых растворителей приведены в табл. 5. [c.193]

    Типичная установка состоит из девяти смеситель-отстойников, образующих семь ступеней для экстракции растворителем селекто и две ступени для промывки остаточных продуктов пропаном. Процесс осуществляется при температуре от 25 до 75 и при даилении до 35 кГ/см . Смесь селекто, используемая для очистки остаточных продуктов, обычно содержит от 35 до 70% фенола. Типичные весовые соотношения Между обрабатываемым сырьем, селекто и пропаном составляют 1 2 3 и 1 3 4, хотя эти отношения могут в значительной степени меняться. В табл. 6 приведены данные, показывающие влияние увеличения каждой из переменных при постоянстве остальных переменных на свойства рафината. [c.197]

    Изменения свойств рафината, вызываемые увеличением одной из переменных  [c.197]

    В случае сложных углеводородных смесей, таких как смазочные масла, нельзя рассматривать вершины тройной диаграммы как изображение чистых компонентов или классов компонентов. Однако физические свойства экстракта или рафината значительно отличаются от свойств исходной смеси и поэтому шкалу различия их свойств можно представить как основание треугольника, а растворитель — как его вершину. Обычно применяемая шкала является шкалой изменения удельного веса или вязкостно-весовой константы. По этим диаграммам, построенным по экспериментальным данным, можно найти объем каждой из равновесных фаз, их состав и физические свойства масла, присутствующего в каждой фазе [71—73]. Можно также определить выход очищенного масла и число теоретических ступеней, которые требуются для осуществления заданной степени очистки [74]. [c.278]

    Под избирательностью понимают способность неодинаково интенсивного растворения компонентов экстрагируемой смеси, " благодаря чему составы полученных жидких фаз отличаются друг от друга и от исходной смеси. Свойство это чаще всего требуется от растворителя, причем характерным является его поведение по отношению к экстрагируемому компоненту В. Растворитель с высокой избирательностью растворяет в себе вещество В, оставляя лишь небольшое его количество в рафинате. Другой компонент исходного раствора А должен растворяться в растворителе лишь в незначительных количествах. Рассматривается также избирательность компонентов в других сопоставлениях, например вещества А по отношению к веществу В, так как она представляет интерес для так на- [c.36]

    При рафинировании растворителем из сырого масла экстрагируются ароматические и нафтеновые углеводороды, смолы и асфаль-ты в количествах, зависящих от свойств растворителя и условий экстракции. Исходное масло (сырец) делится на две части разного химического характера рафинат, содержащий парафины (основной продукт процесса), и экстракт, содержащий остальные углеводороды и имеющий свою ценную область применения, например в качестве пластификатора. Методы экстрагирования обеспечивают полное использование исходного масла, в то время как образующиеся при подкислении кислые соединения являются только отбросом, трудным для использования, и чаще всего сжигаются на месте. [c.380]


    При построении кривой равновесия для системы масло—растворитель пользуются каким-либо свойством масляной фракции, например показателем вязкости (ПВ) или постоянной вязкость—плотность (ВП). Для высокопарафинового масла ВП=0,8, для ароматического ВП=0,95. В треугольнике состава на стороне АВ наносятся деления от 0,8 до 1,0. Чистому рафинату соответствует точка А (ВП=0,8), экстракту—точка В (ВП=1,0), сырому маслу—точка на прямой АВ. В этой системе можно вычертить кривую равновесия для исследуемого масла, найдя ВП, которую получают каждый раз для других количеств растворителя, рафината и экстракта, свободного от растворителя, а затем с учетом содержания растворителя. Если пользоваться показателем вязкости, то деление прямой АВ будет иным в точке В (экстракт) ПВ=0, а в точке А (рафинат) ПВ = 100. [c.381]

    В некоторых европейских странах (ГДР, Польша) применяется экстракция фурфуролом в двух колоннах (рис. 6-5) с охлаждением экстракта при переходе из одной колонны в другую. В такой двухступенчатой системе получается два рафината первый—высокого качества и второй—со свойствами, средними между свойствами сырца и рафината I или экстракта. Схема двухступенчатой установки дана на рис. 6-6. По этому методу достигается более дешевая переработка исходного масла с менее благоприятным составом. В связи с этим следует заметить, что уже в 1949 г. в США было 20 действующих установок для экстракции фурфуролом с общей производительностью 9600 т сутки. [c.387]

    Свойства рафинатов Плотность при 20 °С, г/см 0,843 0,841 0,881 0,879 0,901 0.901 [c.98]

    В то же время при увеличении кратности растворителя можно получать рафинат с большим выходом и с требуемым индексом вязкости, чем при повышении температуры процесса (рис. 24) [45, с. 92]. В связи с этим выбор оптимальных условий селективной очистки, позволяющих получать высокоиндексные масла с достаточно высоким выходом, зависит от характера сырья и свойств растворителя и достигается сочетанием повышения кратности растворителя и температуры экстракции, В табл. 10 [45, с. 79 и 94] приведены условия я результаты очистки масляных фракций самотлорской нефти фенолом и фурфуролом. [c.99]

    Коэффициенты массообмена в экстракционных колоннах зависят от фнзнко-химических свойств жидкостей, турбулентности в обеих фазах и геометрических элементов колонны. Несмотря на трудности определения поверхности контакта фаз, количественно массообмен определяется для всех типов колонн при помощи объемных коэффициентов массопередачи или высоты единицы массопереноса. Обе аелнчины (коэффициент и высоту единицы переноса) относят к фазе рафината, или к фазе экстракта, или же к диспергированной фазе, или к сплошной. Опытные данные выражаются с помощью критериев подобия, используемых при описании диффузионных процессов критерия Шервуда 5п, критерия Рейнольдса Ре для обеих фаз и критерия Шмидта 5с. В состав этих критериев входят вязкость и плотность жидкости но они не учитывают межфазного натяжения, которое в жидких системах оказывает влияние на массообмен через межфазную турбулентность. Расчетным уравнениям придается зид показательных функций. Введение в уравнения критерия Рей- юльдса для обеих фаз одновременно следует из предполагаемого влияния турбулентности одной фазы на другую. Во многих случаях зто влияние не подтверждается, и тогда уравнение содержит только один критерий Рейнольдса или скорость одной фазы. [c.304]

    Граница раздела фаз, поддерживаемая в РДК выше ввода фурфурола, повышает четкость экстракции компонентов, различающихся по структуре, а следовательно, и по свойствам. Роторно-дис-ковые контакторы по сравнению с насадочными и тарельчатыми экстракционными колоннами обладают большей пропускной способностью при меньших габаритах, более высокими объемными скоростями сырья и фурфурола и, по имеющимся данным [51, 52], дают возможность при очистке масляных дистиллятов увеличить выход рафината на 10—15% (масс.). При фенольной очистке применение РДК снижает показатели процесса, очевидно, в резуль- [c.101]

    Высокая эффективность адсорбционной очистки обусловлена тем, что в этом процессе удается практически полностью сохранить ценные компоненты исходного сырья в основном рафинате,. удалив нежелательные компоненты, ухудшающие эксплуатационные свойства готового масла. Та(К, согласно данным табл. 49, в- [c.274]

    Целевые продукты процессов — рафинаты (см. табл. 6.6) — напр<1вляются на депарафинизацию с целью улучшения низкотем — пературных свойств масел. Побочные продукты селективной очистки -- экстракты — используются как сырье для производства битунов, технического углерода, нефтяных коксов, пластификаторов каучуков в резиновой и шинной промыш. енности, как компонент котельного топлива. [c.237]

    НОГО изучения состава нефтяного сырья и фракций. Данные, связывающие количество я качество продукта, вступающего в комплекс с одним или обоими реагентами с другими свойствами начального вещества, экстракта и рафината, могут служить показателем пригодности продуктов для различных целей. Дальнейшие анализы получаемых фракгщй уточняют этот показатель. [c.226]

    Венецуэльский дистиллят смазочного масла, не содержащий парафинов, яв.чяется подходящим сырьем для получения смазочных масел среднего индекса вязкости он был подвергнут пятикратной периодической экстракции фурфуролом при 70° заключительной операцией явилась обработка силикагелем, В табл. 5 приведены выходы и свойства шести рафинатов, полученных таким путем. [c.390]

    Основное сырье Дистиллят из тексасской иефти, экстрагированный ЗОа (подробные физические свойства исходного дистиллята, рафината, экстракта и белого масла даются в оригинале) [c.536]

    Уникальные свойства разработанного металлцеолитного катализатора, совмещающие в значительной степени свойства традиционных катагшзаторов риформинга и селективного гидрокрекинга, позволили по-новому подойти к рещению проблемы повышения октанового числа получаемых при каталитическом риформинге рафинатов. Использование в процессе каталитического риформинга металлцеолитного катализатора дает возможность получить рафинаты с октановым числом выше на 8-10 пунктов (для безолтолуольного рафината) и 15-17 пунктов (для ксилольного рафината) в сравнении с рафинатами, получаемыми на традиционных платиновых катализаторах риформинга. При этом выход ароматических углеводородов не только не уменьшается, но в большинстве случаев увеличивается на 10-20% [c.114]

    Если имеется необходимость, строят расчетную кривую КТР. По аддитивности свойств определяют качественную характеристику рафината и экстракта, а по материальному балансу последнего ряда очистки вычисляют нагрузку по жидкости на каждую секцию колонны с последующим расчетом диаметра К0.20нны либо объемной скорости. Как и в случае деасфальти-зации пропаном для расчета требуется несколько физико-хими- [c.250]

    Дальнейшие упрош,ения и возможность применения аналитического метода расчета [77] появляются в случае постоянного коэффициента экстракции е. Подробное описание свойств, которыми должна обладать система при e= oпst, дано на стр. 117. Они остаются в силе без изменений и для противотока. Эти свойства следующие полная взаимная нерастворимость рафината и растворителя или же низкая концентрация экстрагируемого вещества В, постоянство коэффициента распределения т одновременно с наличием одного из первых двух свойств. [c.140]

    Между выходом рафината и его свойствами (например, показателем вязкости) для каждого сырца существуют зависимости, по которым вместе с приведенными выше уравнениями можно рассчитать систему. В известных условиях природа применяемого растворителя не влияет на эти зависимости. Например, для масляных фракций из техасской нефти Скоган и Роджерс [17] составили зависимость между выходом рафината и его показателем вязкости (рис. 6-1), между показателем вязкости и вязкостью рафината (рис. 6-2) и между показателем вязкости и весом по шкале API (рис. 6-3). Из диаграммы на рис. 6-1 следует, что с помощью фурфурола получается рафинат с максимальным ПВ=95, при применении [c.383]

    Экстракция фурфуролом [21—32] производится при 65—120 °С в зависимости от свойств исходного масла (сырца) вязкости, температуры затвердевания и требований, касающихся свойств рафината. При переработке парафиновых масел с высокой вязкостью, а также для получения рафинатов хорошего качества (по показателю вязкости и сопротивлению старению) надо вести процесс экстракции при сравнительно высоких температурах. Объемное соотношение фурфурола и сырца колеблется в пределах от 1 1 до 3 1 и подбирается в зависимости от тех же факторов, что и температура. В первой промышленной установке для экстракции фурфуролом была применена многоступенчатая система аппарат с мешалкой— отстойник, нов дальнейшем ее сменила насадочная колонна. Высота насадки (кольца Рашига диаметром 25 мм) в колонне составляет 6 м, а полная высота экстракционной колонны —30 м. В последнее время получили применение также колонны с вращающимися дисками [29—31] (рис. 4-23, стр. 345). Диаметр кожуха одной из таких колонн 2000 Л1Л1, внутренний диаметр кольца статора 1350 мм, диаметр дисков ротора 1020 мм, высота камеры 254 мм, число камер 20, рабочая высота колонны 5100 мм, общая высота 6900 мм, статор делает 25 об1мин, мощность привода ротора 1 кет. Полная нагрузка колонны 8—32 м 1час-м . Эта колонна дает рафинат с теми же свойствами, что и насадочная колонна высотой 30 м или система аппарат с мешалкой—отстойник, состоящая из семи теоретических ступеней и соответствующая верхнему пределу рентабельности в применении к экстракции масел. В полузаводском масштабе ставились также опыты по применению пульсационных колонн [32]. [c.385]

    Экстракция применяется при рафинировании древесной смолы [309], которая содержит 80—90% абиетиновой кислоты и ее изомеров с общей формулой С19Н29СООН, некоторое количество высших ароматических углеводородов и окисленных смол. Рафинирование смол производится фурфуролом, причем сырая смола растворяется в газолине до концентрации 15%. В качестве экстракционного аппарата пользуются колонной с перфорированными тарелками. (Например, размеры одной из работающих колонн следующие диаметр 1000 мм, высота 13 м, расстояние между тарелками 200 мм). Рафинат освобождается от газолина перегонкой с водяным паром. Рафинированные смолы светлого цвета, их свойства зависят от степени экстракции. Экстракт после удаления фурфурола применяется при производстве искусственных материалов в качестве эмульгатора. Запатентовано также рафинирование пропаном 1326]. [c.421]

    Более сложно оценить избирательность растворителя. Так же, как цри выборе крите,рия для оценки растворяющей способности, в настоящее время нет единой методики, позволяющей оценить избирательность растворителей, применяемых при производстве нефтяных л асел. Есть ряд предложений для оценки этого показателя, в частности, по различию между свойствами рафината и экстракта  [c.56]

    Так как рафинат и экстракт, полученные при очистке хлорексом, наиболее резко различаются по свойствам, особенно по зна-чеиию индекса вязкости, то и избирательность этого растворителя более высокая. Для характеристики избирательности растворителя можно пользоваться следующим уравнением [7]  [c.56]

    Фенол, обладая большими дисперсионными свойствами, растворяет больше парафино-нафтеновых и моноциклических аромати-чеЬких углеводородов, переводя их в. экстракт Наряду с этим экстракты фенольной очистки отличаются и большим содержанием смолистых веществ, что приводит к получению рафината с более высоким индексом вязкости при меньшем его выходе. В связи с этим при выборе растворителя большое значение имеют качество сырья и получаемого продукта. Так, при переработке масляных фракций с большим содержанием парафино-нафтеновых углеводородов целесообразно при селективной очистке использовать фенол, а в случае высокоароматизированного сырья — фурфурол. В то же время рафинаты фурфурольной очистки содержат больше сернистых соединений, особенно сульфидов, которые являются естественными антиокислителями [43, 44]. Поэтому при производстве масел, к которым предъявляются специальные требования в отношении стабильности против окисления, например энергетических масел из сернистых нефтей, более эффективна фурфурольная очистка. [c.94]

    Фракционный состав многокомпонентной системы твердых углеводородов, образование кристаллов той или иной формы, а также эвтектических смесей оказывают большое влияние н на качество получаемых парафинов. При депарафинизации рафинатов широкого фракционного состава затрудняется процесс обезмасли-вания гачей, и для получения твердых углеводородов с определенной совокупностью свойств в ряде случаев в схеме масляного производства приходится предусматривать вторичную вакуумную перегонку гача, что снижает экономичность производства пара-, финов. [c.137]

    Однако глубокая деасфальтизация (см. главу 1) протекает с малой избирательностью и сопровождается большими потерями с асфальтом денных компонентов масла. Адсорбционная же очистка отличается большей избирательностью, поэтому для получения рафината заданного качества с хорошим выходом целесообразно направлять на адсорбционную очистку деасфальтизаты после неглубокой деасфальтизации, что и подтверждается практикой (см. табл. 48). Эти деасфальтизаты имеют повышенную коксуемость, в частности деасфальтизат второй ступени [18, 19], отличающийся от деасфальтизата первой ступени также большей молекулярной массой смол, серосодержащих соединений и полициклических ароматических углеводородов, входящих в его С01С-тав. Адсорбционной очисткой деасфальтизата Второй ступени можно получить 50—54% рафината, который после депарафинизации обладает относительно высоким ИВ (75—77), коксуемостью не более 1,6% и цветом 2—3 марки (по МРА). Эти свойства при высокой ВЯЗ1К0СТИ (36—45 мм /с при 100 С) делают такие масла [c.270]

    Депарафинизация рафинатов адсорбционной очистки проходит при большей скорости фильтрования, большем отборе депарафи-нированиого масла и меньшем содержании масла в петролатуме. По аксплуатационным свойствам автомобильные масла адсорбционной очистки из восточных нефтей Не уступают маслам фенольной очистки того дее сырья и превосходят их по термоокисли-тельиой стабильности [19]. Маловязкие масла из восточных нефтей типа трансформаторных после адсорбционной очистки обладают лучшими низкотемпературными свойствами, чем масла из того же сырья фенольной очистки. Трансформаторное масло адсорбционной очистки из сернистой восточной нефти более богато ароматическими углеводородами и серосодержащими соединениями, чем масло фенольной очистки . выход его на 25% больше и оно более стабильно против окисления, что объясняется различиями в групповом составе этих масел. Характеристика трансформаторных масел различных способов очистки из восточных сернистых нефтей приведена ниже [13, 19]  [c.276]

    Продукция рафинаты — целевые продукты процесса — направляются на депарафинизацию с целью получения масел экстракты — побочные продукты — используются как сырье для производства битумов, технического углерода, пластификаторов каучуков в резиновой и шинной промышленности, как компонент котельного топлива. Свойства рафннатов и экстрактов представлены в табл. 2.46. [c.212]


Смотреть страницы где упоминается термин Рафинат свойства: [c.29]    [c.252]    [c.384]    [c.392]    [c.396]    [c.61]    [c.70]    [c.97]    [c.143]    [c.272]    [c.307]   
Твердые углеводороды нефти (1986) -- [ c.86 ]




ПОИСК







© 2025 chem21.info Реклама на сайте