Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород из газа коксовых печей

    Прямой коксовый газ представляет собой сложную смесь газообразных и парообразных веществ. Помимо водорода, метана, этилена и других углеводородов, оксида и диоксида углерода, азота, в 1 м газа (при 0°С и 10 Па) содержится 80—130 г смолы, 8—13 г аммиака, 30—40 г бензольных углеводородов, б— 25 г сероводорода и других сернистых соединений, 0,5—1,5 г цианистого водорода, 250—450 г паров воды и твердых частиц. Газ выходит из коксовой печи при 700°С. Процесс разделения прямого коксового газа (см. рис. 16) начинается в газосборнике, в который интенсивно впрыскивается холодная надсмольная вода, и газ охлаждается примерно до 80°С, благодаря чему из него частично конденсируется смола. Одновременно в газосборнике из газа удаляются твердые частицы угля. Для конденсации смолы необходимо охлаждение газа до 20—30°С оно может производиться в холодильниках различной конструкции — трубчатых, оросительных, непосредственного смешения. В схеме, приведенной на рис. 16, используются трубчатые холодильники, в которых происходит конденсация паров воды и смолы. Понижение температуры газа способствует конденсации смолы и паров воды, увеличивает растворимость аммиака в конденсирующейся воде, что приводит к частичному поглощению аммиака с получением надсмольной воды. Смола и надсмольная вода из холодильника 2 стекают в сборник, где разделяются по плотности. В холодильниках не удается полностью сконденсировать смолу, так как она частично превращается в туман. Смоляной туман удаляется из коксового газа электростатическим осаждением в электрофильтрах, работающих при 60 000—70 000 В. [c.44]


    Описание промышленных методов производства водорода не входит в задачу этой книги. Однако следует отметить, что наиболее важными источниками водорода в промышленности являются газы коксовых печей, водяной и естественный газы. Естественный газ реагирует с паром в присутствии никелевого или кобальтового катализаторов при 800—1000° С и дает окись углерода и водород. В следующей стадии процесса смесь окиси углерода и водорода пропускается над катализатором, приготовленным из окиси железа, при 400—600° С. При этих условиях окись углерода окисляется в двуокись углерода за счет кислорода воды, образуя дополнительно водород. Двуокись углерода отделяется от водорода химикатами или водой. [c.223]

    Горючими газами в горелках могут быть светильный газ, газ коксовых печей, пропан—бутановая смесь, пары бензина, пары керосина или водород. Сжигают горючие газы в токе воздуха, [c.34]

    Синтез аммиака (водород выделяется из газа коксовых печей, получается электролитически или из водяного j-аза) давление 900—1000 ат Перекись железа применяемый катализатор проявляет свою активность выше 400° 590 [c.39]

    Второй метод массового производства водорода из воды заключается в электролизе водных растворов щелочи или кислоты этим путем получают до 16% всей мировой продукции водорода. Около 25% водорода получается теперь также из газов коксовых печей. Ранее эти газы, выделяемые каменным углем при накаливании без доступа воздуха и богатые свободным водородом, просто сжигались. В настоящее время их используют более производительно. Так, на многих заводах их теперь сжижают, причем в состоянии газа остается почти чистый водород, труднее сжижаемый, чем остальные составные части газовой смеси. [c.12]

    Из отходящих газов коксовых печей. Это наиболее дешевый способ получения водорода. При коксовании каменного угля выделяются летучие продукты, содержащие более 50% водорода, 40% окиси углерода, аммиак, который можно перерабатывать в сульфат аммония, примеси метана, бензола, этилена и других углеводородов, а также примеси сернистых и других соединений. Все углеводороды при сильном охлаждении под давлением переходят в жидкое состояние и легко отделяются от газообразного водорода. Водород, освобожденный от примесей, используют для синтеза аммиака. [c.196]


    В Руре на всех заводах газ синтеза получался из кокса в стандартных генераторах синего водяного газа . На некоторых заводах этот процесс дополнялся другими процессами, как, например, термическим разложением газа коксовых печей. Для получения более высокого отношения Hg СО, требуемого для обычного синтеза из окиси углерода и водорода, часть водяного газа, смешанного с избытком водяного пара, подвергали конверсии на специальных установках, где в результате взаимодействия окиси углерода и воды получались водород и двуокись углерода. Конверсию проводили при 450—500° на катализаторе окись железа—окись хрома. На двух заводах в Руре газ с высоким содержанием водорода, полученный при термическом разложении газа коксовых печей, смешивали с водяным газом, и вследствие этого уменьшалось количество водяного газа, подлежавшего конверсии. [c.282]

    Процессы глубокого охлаждения коксового и водяного газов. Вместо каталитических процессов отделение водорода от смеси других газов можно производить путем сжижения. Такой метод первоначально применялся различными заводами для получения водорода из водяного газа. Хотя процесс сжижения был почти полностью заменен каталитическим процессом в тех местах, где водяной газ служит источником водорода, все же он нашел себе большое применение при получении водорода из газов коксовых печей. [c.168]

    Основными источниками азота и сырьем для получения азотных удобрений являются коксохимический аммиак, который образуется в результате улавливания отходящих газов коксовых печей, горючих сланцев, нефти, природных газов синтетический аммиак, получаемый из азота и водорода атмосферного воздуха. Азот и водород атмосферного воздуха подвергают сильному сжатию в несколько сот атмосфер и воздействию вы- [c.85]

    В настоящее время разрабатывается метод получения стали непосредственно из руд прямым восстановлением железных руд при умеренных температурах. Этот метод заключается в том, что измельченную железную руду восстанавливают углеродом или газами при 800—1000° (для руд трудно восстанавливаемых — при 1200°), а затем после отделения на магнитном сепараторе части пустой породы и золы восстановителя полученную железную губку перерабатывают в электрических или пламенных печах на сталь. Для восстановления может быть применено любое твердое топливо (древесный уголь, каменный уголь, торф и даже шелуха подсолнухов), а также газообразное топливо (водород, естественные газы, генераторные газы, газ коксовых печей и др.). Таким образом, прямое восстановление железных руд в отличие от доменного процесса не требует обязательно кокса или древесного угля и может поэтому развиваться в самых различных районах независимо от наличия коксующихся углей и лесных массивов. [c.445]

    Краткий обзор случаев применения охлаждения к промышленным процессам должен включать такие производства, как сжижение хлора, получение твердой углекислоты, рекуперацию растворителей, получение бензина из натурального газа, конденсацию паров летучих жидкостей, подобных сероуглероду, этиловому эфиру и четыреххлористому углероду, кристаллизацию солей из раствора, дегидратацию газов и удаление загрязнений из них, кондиционирование воздуха при производстве вискозы, фотографической пленки, желатина и кон-фект, выделение парафинового вара из нефти регулирование скорости реакции для таких органических реакций, как нитрация и диазо-тирование получение кислорода и азота из воздуха и водорода из газа коксовых печей и из других газов, сжижение и хранение природного газа. [c.482]

    Из отходящих газов коксовых печей. Это наиболее дешевый способ получения водорода. При коксовании каменного угля выделяются летучие продукты, содержащие более 50% водорода, 40% окиси углерода, аммиак, который можно перерабатывать в сульфат аммония (стр. 192), примеси метана,  [c.184]

    В самом деле, большая часть промышленной продукции синтетического бензина в Европе была получена из смесей водорода и окиси углерода состава 2 1, которые готовились смешением водяного газа (состава Н, СО = = 1 1) с газами, богатыми водородом, такими, нанример, как газы коксовых печей, или частичной конверсией водяного газа. Специальное упоминание о природном газе в заголовке данной статьи имеет целью подчеркнуть, что бензин, свойства которого рассматриваются в данной статье, будет синтезироваться из природного газа на первой промышленной американской установке для получения синтетического бензина. [c.235]


    Синтетический аммиак получается путем каталитической реакции между азотом и водородом при повышенных температурах и давлении [67, 83, 143, 159, 184, 195]. Водород получают преимущественно путем реакции смеси пара и воздуха с углеродистыми веществами, такими, как кокс, горючие масла, природный газ и нефтезаводской газ. Из других способов получения водорода можно указать на выделение его из нефтезаводского газа и из газа коксовых печей, на получение водорода как побочного продукта при производстве хлора и едкого натра и при электролизе воды. [c.32]

    Источниками получения низкомолекулярных углеводородов служили газы коксовых печей и газообразные продукты гидрирования угля. Коксовый газ разделяли на установке Линде на водород, метан, этан, этилен н т. д. [c.126]

    Запасы азота в атмосфере буквально неисчерпаемы — над каждым гектаром земной поверхности в воздухе его имеется свыше 70 тыс. т. Если превратить только это количество азота в аммиак, а последний в аммиачную селитру, то можно получить более 200 тыс. т ценнейшего удобрения такое количество селитры достаточно для удобрения растений на площади около 2 млн. га. Следовательно, для удовлетворения нужд сельского хозяйства нашей страны в азотном удобрении, при посевных площадях, близких к 200 млн. га, достаточно было бы ежегодно использовать азота из воздуха над площадью всего лишь 100 га. Однако для получения аммиака необходим не только азот, но и водород, которого в атмосфере практически нет. Наиболее доступный способ получения водорода — улавливание и очистка отходящих газов коксовых печей, состоящих наполовину из водорода. Водород можно получать и при действии воды на раскаленный уголь при этом вода разлагается на водород и кислород. Кислород сгорает, в результате чего образуется углекислый газ, а водород освобождается. В настоящее время водород получают также из природного газа — метана. [c.71]

    Экономия от снижения стоимости сырого бензола не покрывает расходов на сжатие газа при использовании установок малой единичной мощности, оснащенных поршневыми компрессорами. Абсорбция под давлением становится рентабельной, если в дальнейшем коксовый газ используется при повышенном давлении (передача газа в сеть дальнего газоснабжения, фракционная конденсация газа с выделением водорода, использование коксового газа для вдувания в доменные печи). Использование газа при повышенном давлении высокорентабельно на установках большой единичной мощности, оснащенных центробежными компрессорами, и особенно в случае использования газотурбинного привода [21]. Оптимальным давлением, как показано технико-экономическим анализом [22], является 0,8 МПа. [c.154]

    После успешного внедрения в промышленность начавшего развиваться примерно с 1894 г. производства ацетилена из карбида кальция вни,мание к пиро-генетическому способу на время ослабло. Только значительно позднее интерес к этому методу снова возрос в связи с увеличивающимся предложением дешевого органического сырья, как например природный газ. с.месь газообразных парафинов и олефинов крекинга, сырая нефть и различные ее погоны, тяжелые смолы и асфальты. Транспортировка метана, являющегося главной составной частью природного газа, невыгодна для многих районов его добычи, а применение его как топлива и источника сажи ограничено. Поэтому и были начаты поиски способов превращения метана в другае углеводороды. Однако для быстрого разложения метана требуется настолько высокая температура, что образование при этом парафинов и олефинов в больших количествах становится невоз.можньш хогя даже ароматические углеводороды могут быть получены при 1200°, все-таки наиболее важным способом использования. метана обещает быть конверсия его в ацетилен. Вследствие этого высокотемпературный крекинг метана и привлек к себе больше внимания, че.м другие пирогенетические процессы, предложенные для получения ацетилена. В некоторых странах Европы, не богатых запасами природных газов, была изучена также возможность пиролиза газов коксовых печей, водяного газа и содержащих метан смесей, получаемых из окисей углерода и водорода, нередко являющихся дешевыми побочными продуктами. Некоторый интерес как потенциальный источник ацетилена представляет крекинг дешевых нефтяных остатков, асфальтов и смол. Газообразные парафины и олефины и низкокипящие погоны представляют ценность для других целей, поэтому на них как на сырье для получения ацетилена обращалось меньше внимания. [c.38]

    Другим источником получения угольного газа в некоторых странах был коксовый газ — неизбежный побочный продукт нагревания каменных углей в коксовой печи при получении металлургического кокса в чугуноплавильном и сталелитейном производствах. Делались также попытки вырабатывать низкокалорийный газ в процессе газификации угля, чтобы затем из промежуточного газа синтеза (смеси окиси углерода и водорода) получать такие промышленные химические вещества, как аммиак и метанол. Однако эти разработки не нашли широкого применения в основном по двум причинам цены на уголь, особенно после Второй мировой войны, во многих районах земного шара, в частности в Европе, поднялись до уровня, намного превышающего цены на импортируемое жидкое нефтяное топливо открытие месторождений природного газа с высоким содержанием метана привело к замене им угольного газа во многих существующих газораспределительных сетях, например на юге Франции и в Италии. [c.13]

    Влияние способа нагрева. Как уже было сказано, во время данного исследования система нагрева батареи коксовых печей была изменена с целью улучшения равномерности коксования по высоте. Из рис. 188 и 189 видно, что это изменение практически не повлияло на весовой баланс. Разве что при новом способе нагрева получают чуть меньше пирогенетической влаги, но замеченные расхождения невелики. Но при новом способе нагрева (более высокой температуре в верхней части камеры) зафиксирован несколько больший объемный выход газа, немногим меньшая высшая теплота сгорания и некоторые различия в химическом составе газа. В частности, газ содержит немного больше водорода. [c.512]

    В доменном процессе на каждую тонну чугуна образуется около 2000 газа, содержащего горючие компоненты оксид углерода и водород, которые можно и целесообразно использовать в первую очередь для отопления агрегатов, работающих в металлургическом производстве, в том числе для коксовых печей. В связи с низкой теплотой сгорания доменного газа и ее колебаниями коксовые печи отапливают смесью доменного газа с 1,5—15% коксового или природного. В результате теплота сгорания доменного газа повышается до 4160-5408 кДж/м , близкой к показателю генераторного. [c.132]

    Коксовый газ применяют для обогревания коксовых печей (при сгорании 1 м выделяется около 18 ООО кДж), но в основном его подвергают химической переработке. Так, из него выделяют водород для синтеза аммиака, используемого затем для получения азотных удобрений. [c.305]

    Коксовый газ используется для обогревания коксовых печей (при сгорании 1 выделяется 4300 ккал), но основные количества его подвергаются химической переработке. Из него выделяют водород для синтеза аммиака, из которого затем получают азотное удобрение — сульфат аммония  [c.364]

    При анализе коксового газа, идущего на отопление коксовых печей, определяют теплоту сгорания, плотность газа и содержание в нем углекислоты, сероводорода, углеводородов, кислорода, окиси углерода, водорода, метана и азота. [c.123]

    Коксовый газ разделяют на легкое масло, фенолы, пиридиновые основания и аммиак поглощением, соответственно, поглотительными маслами, щелочами и кислотами, а также на обратный коксовый газ Легкое масло коксового газа является основным источником каменноугольного бензола Оно содержит также толуол, ксилолы, нафталин Аммиак далее переводят в сульфат аммония (азотное удобрение) или превращают окислением в азотную кислоту Обратный коксовый газ, состоящий в основном из водорода и метана (52% и 32% соответственно), используют в качестве высококалорийного топлива (обогрев коксовых печей) или как источник водорода (при синтезе аммиака) и метана [c.424]

    СК.ОР.О разложения метана, а также койверсйй его На водород имеют шансы на практическое применение к природным газам и избыточ-ньм газам коксовых печей. [c.256]

    Г а 3, содержащий метан и его высшие гомологи, непредельньве углеводороды (главным образом этилен) и водород. В газе коксовых печей лри ЮОО—П00° иропорция этилена заметно увеличивается.  [c.384]

    Сырье для многих производств германских синтетических масел поступало с установок Фишера-Тропша, эксплуатировавшихся во время войны. Процесс Фишера-Тропша для каталитического гидрирования окиси углерода слишком сложен и имеет слишком много разновидностей, чтобы его можно было здесь рассматривать [17]. Уголь или кокс и газ коксовых печей частично окисляются водяным паром при определенных условиях до образования окиси углерода и водорода, которые затем вступают в реакцию в присутствии катализатора с образованием углеводородов от С4 до С50. Эти реакции могут быть суммированы следующим образом. [c.243]

    При проведении процесса водяной газ из кокса, несколько обогащенной водородом (до содержания двух объемов водорода на один объем окиси углерода), или газ коксовых печей, состав которого изменяется соответствующим образом, обрабатывают для удаления серы и затем пропускают при атмосферном давлении над никель-ториевым, кобальт-ториевым или никель-алюминий-марганцовьш или чаще над кобальтовым катализаторами на таком носителе, как, например, кизельгур, при температурах, варьирующих между 200 и 275°. Выход углеводородов достигает 72% от теоретического при теоретическом выходе из 1 газа (2И + СО) должно получаться 208 г углеводородов, а в промышленном процессе при однократном контактировании получается 140 г. [c.708]

    Большой интерес представляет процесс Linde-Bronn, применяемый в Германии и в Бельгии для разделения составных частей йза коксовых печей, так как ЧЭН служит иллюстрацией потенциальных возможностей низкотемпературного фракционирования. Bronn i"- приводит описание этого процесса, который состоит в том, что газ коксовых печей охлаждается под давлением, причем сперва выделяются легко сжижаемые примеси, а затем получается конденсат, содержащий этилен и метан. В этой стадии сжижения газ коксовых печей охлаждают ж идким воздухом или жидким азотом. При фракционировании этилен-метанового конденсата получается практически чистый этилен. Полное отделение метана и окиси углерода от сопутствующего водорода может быть достигнуто охлаждением газа коксовых печей, после удаления смеси этилена и метана, до температуры около —209° при давлении в 10 ат. Для получения этой температуры жидкий азот поддерживается при пониженном давлении. [c.157]

    ГАЗ КОКСОВЫЙ — горючий газ, образуется в процессе коксования каменного угля (нагревании без доступа воздуха до 900—1100° С). Г. к. содержит водород, метан, оксид углерода, углеводороды и другие горючие комю-ненты. Г. к. используется для отопления коксовых и мартеновских печей, ка керамических и Других заводах, в качестве химического сырья для получения водорода и синтеза органических веществ. [c.62]

    Условия максимального использования этилена в газах коксовых печей для получения спирта были рассмотрены Gluud OM, S hneider oM и Ке11ег ,ом указавшими, что применение в качестве катализатора сернокислого серебра существенно улучшает возможность промышленного получения спирта из этого источника. Однако весьма важным является удаление присутствующих в сыром газе тяжелых газообразных углеводородов и уменьшение количества воды, необходимой для гидролиза этилсерной кислоты. В дальнейшем Герр и Попов " использовали каталитическую активность сернокислого серебра для получения спирта из этилена, содержащегося в крекинг-газах. Газ, содержащий 54% парафиновых углеводородов, 12,2% водорода и 33,8% непредельных углеводородов, проводился над хлористым кальцием, затем над древесным углем (для удаления высших гомологов этилена) и наконец через нагретую до 40° поглотительную трубку, содержащую стеклянные бусы или стеклянную вату в этой трубке этилен поглощался 94%-ной серной кислотой, содержавшей в растворенном состоянии 1% сернокислого серебра. Таким путем из 300 я газа получалось 33,8 г спирта. [c.367]

    В УХИНе автором книги были проведены работы по получению малосернистого кокса продувкой его паром или коксовым газом (в качестве наиболее доступного источника водорода) в коксовой печи или камере сухого тушения кокса. Эти работы имели целью сохранить углерод кокса, теряющийся при газификации. Так как потерю, как таковую, нельзя было устранить, то важно было процесс продувки оформить таким образом, чтобы за счет углерода кокса получить дополнительные ресурсы горю- [c.218]

    Процессы сжижения и последующего разделения газов приобре-тают все большее значение в промышленности. Производство кислорода, азота и аргона из воздуха с помощью низкотемпературных методов осуществляется давно и хорошо освоено, но будущие возможности для увеличения применения кислорода и обогащенного кислородом воздуха настолько велики, что желание получить более дешевые и более надежные методы разделения стимулируют непрерывную активность в этой области. Получение водорода низкотемпературными методами из водяного газа и газа коксовых печей хорошо известно за границей, но лишь в ограниченной степени практикуется в Америке. Значительным достижением в этой области является получение гелия из природных газов. Очень недавним усовершенствованием является сжижение и хранение природного газа для удовлетворения увеличивающейся в нем потребности зимой. Из этих немногих примеров очевидно, что область низких температур имеет такое техническое значение, что заслуживает большего места, чем мы можем посвятить ей в этой книге. Мы ограничимся только кратким ознакомлением с этой интересной областью. [c.524]

    Изыскиваются также способы получения железа и стали непосредственно из руд (бездоменный процесс)—прямым восстановлением железных руд при умеренных температурах. Этот процесс заключается в том, что измельченную железную руду восстанавливают твердым углеродом или газами при 800—1000° (для трудновосстановимых руд—при 1200°). Затем, после отделения на магнитном сепараторе части пустой породы и золы восстановителя, образовавшуюся железную губку проплавляют в электрических или мартеновских печах, получая железо или сталь. В качестве углеродсодержащего восстановителя может быть применено любое твердое топливо—древесный уголь, каменный уголь, торф и т. д. газообразными восстановителями могут служить водород, природные или генераторные газы, газ коксовых печей и др. [c.155]

    Ацетилен. . . Доменный газ. Генераторный газ Водяной газ. . . Газ подземной гази фикацин. ... Газ коксовых печей Природный газ Водород. ... [c.29]

    Метод катализа, приготовление катализаторов, изучение их химической и физической природы представляют дело большой важности, так как удача опыта тесно связана с определенной активностью катализатора. Эту активность приходится регулировать тормозить в одних случаях или еще более усиливать в других введением различных добавок, ослабляющих или усиливающих поверхностную энергию катализаторов. Найти подходящий катализатор для данного химического процесса — это значит разрешить поставленную задачу. Так и был разрешен вопрос о синтезе жидкого топлива, исходя из прохмышлеяяых газов водяной газ, генераторный газ, газ коксовых печей. Эти газы богаты окисью углерода и водородом, определенная смесь которых при обыкновенном давлении и невысокой температуре (180—200°) в соприкосновении со специальным катализатором легко превращается в сложную смесь газообразных, жидких и твердых углеводородов, т. е. в тот искусственный продукт, который и представляет и д к о е топливо. Опыты показали, что при отношении один объем окиси углерода на два объема водорода получается наиболее подходящая смесь этих газов для наилучшего выхода жидкого топлива. Реакция протекает ири начальном обогреве смеси газов до 200° с большим выделением тенла. Получаемое топливо состоит из многих углеводородов различного состава с температурой кипения от О до 400°. [c.344]

    Другими словами, расхождения, отмеченные в выходе (весовом) газа между батареей коксовых печей и ретортой Иенкнера, возможно, завышены из-за систематической ошибки в удельном весе газа, но они суш,ествуют и являются следствием различных химических составов газа в батарее и в реторте Иенкнера. Отмечается к тому же, что в реторте образуется газ, в котором всегда немного меньше этилена, СО2 и СО и немного больше СН4, чем в газе батарей. Кроме того, в реторте образуется немного меньше водорода при углях с выходом летучих меньше 30% и немного больше при углях с ббльшим выходом летучих веществ  [c.515]

    Для отопления коксовых печей, как правило, используют коксовый и доменный газы. Может применяться генераторный газ. В качестве добавки к газам с низкой теплотой сгорания (бедные газы) иногда применяют природный газ. На предприятиях, в составе которых есть производство аммиака из водорода коксового газа, для обогрева используется обезводороженный газ. Такой газ может поступать и от близкорасположенных заводов. Характеристики основных отопительных газов приведены в табл.5.1. , [c.131]

    В наилучших условиях, требующихся для производства светильного газа высокой теплотворной способности, нз самых лучших образцов каменного угля получается мягкий кокс невысокого качества. В условиях же, соответствующих образованию кокса, достаточно твердого для использования его при восстановлении окиси железа, светильный газ получается более низкого качества. В экономическом отношении высококачественный кокс выгоднее всего производить в коксовых печах с улавливанием побочных продуктов устройство печей позволяет получать каменноугольную смолу, аммиак и светильный газ, причем часть газа испол1ззуют как топливо для тех же печей, а остаток газа смешивают с природным или водяным газом и направляют в городской газопровод. Очищенный светильный газ, получающийся приблизительно, в количестве 0,317 на т каменного угля, состоит главным образом из водорода (52 объемн. %) и метана (32%) с небольшой примесью окиси углерода (4—9%), двуокиси углерода (2%), азота (4—5%), а также этилена и других олефинов (3—4%). Средняя теплотворная способность светильного газа 143,6 ккал/м . В процессе очистки гаэ пропускают через скрубберы для улавливания смолы и аммиака и через поглотители для выделения легкого масла, которое получается в количестве, достигающем 14,5 л на 1 г каменного угля, и содержит 60% бензола, 15% толуола, ксилолы и нафталин. При перегонке каменноугольной смолы получают дополнительно еще небольшое количество сравнительно легкого масла, но в современных условиях ОольШ  [c.152]

    В связи с большим содержанием в коксовом газе водорода в настоящее время нередко производится извлечение его, после чего объемная теплота сгорания газа повышается, хотя выход уменьшается примерно в 2 раза. В табл. 1У-2 и 1У-3 приведены выходы продуктов коксования на 1000 кг шихты, а также средний состав и теплота сгорания прямого, обратного и обезводо-роженного газа. Тепловой баланс коксовой печи приведен в табл. 1У-4. [c.91]

    Прямой м е т о д. Этот метод [14] устраняет необходимость предварительного выделения аммиака из водных растворов для его превращения в сульфат аммония. Горячие газы из реторт или коксовых печей при температуре, превышающей точку конденсации водяных наров, непосредственно пропускаются через концентрированную серную кислоту. Одновременно с абсорбцией аммиака из газа удаляется значительная часть смолы, что приводит к загрязнению не только сульфата аммония, но и кислоты и самой смолы. Кроме того, содержащийся в газе хлористый аммоний разлагается концентрированной серной кислотой, и выделяющийся хлористый водород вызывает чрезвычайно сильную коррозию оборудования. Частично эти недостатки процесса удается устранить включением весьма сложной системы выделения смолы. Однако некоторые трудности оказались практически непреодолимыми, вследствие чего рассматриваемый метод использован лишь на немногочисленных установках. Опубликовано [15, 16] детальное сравнение этого метода с косвенным и полупрямым процессами. [c.232]


Смотреть страницы где упоминается термин Водород из газа коксовых печей: [c.243]    [c.189]    [c.284]    [c.72]    [c.223]    [c.409]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.243 , c.311 , c.314 ]




ПОИСК







© 2025 chem21.info Реклама на сайте