Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ацилирование реакции присоединения

    Эти углеводороды также мало склонны к реакциям присоединения, но легко вступают в реакции электрофильного замещения - нитрование, сульфирование, галогенирование, ацилирование и алкилирование. [c.149]

    По-видимому, в этих условиях параллельно проходят две реакции присоединения и ацилирования аниона бензоксазолинтиона акрилоилхлоридом, причем первая является превалирующей. Аналогичное направление реакции известно для других тионов [7]  [c.82]


    Бензол является простейшим представителем ароматических соединений и его свойства могут рассматриваться как типичные. Наиболее важные из них следующие легкость образования ароматических колец в самых различных реакциях, устойчивость к действию окислителей, трудное протекание реакций присоединения по кратным связям, легкость замещения водорода различными группами в реакциях электрофильного замещения (нитрования, сульфирования, галогенирования, ацилирования, алкилирования, мер-курирования и т. д.). Характерными свойствами обладают и некоторые заместители в ароматических системах (имеются в виду кислые свойства ароматического гидроксила, ослабленная основность аминогруппы, устойчивость диазосоединений, способность к реакциям азосочетания, малая реакционность галогена в ядре и др.). [c.557]

    Из обсужденных данных очевидно, что арсониевые илиды должны бы вступать во многие реакции, которые характерны для илидов фосфония и упомянуты в гл. 3, такие, как алкилирование, ацилирование, окисление, присоединение по Михаэлю и др., хотя большинство этих реакций не исследовалось. Нет никаких оснований предполагать, что направление этих реакций будет сильно отличаться в случае илидов мышьяка, но это требует доказательств. [c.312]

    Первый успешный синтез полипептидов, осуществленный Фишером, был основан на трудоемкой ступенчатой реакции присоединения остатков аминокислот, по одному в каждой стадии. Для этого сначала защищали аминогруппу аминокислоты путем ацилирования эфиром хлормуравьиной кислоты, затем карбоксильную группу аминокислоты превращали в хлорангидридную группу и далее конденсировали полученный хлорангидрид с другой молекулой аминокислоты, в результате чего образовывалось производное дипептида  [c.180]

    Реакции внутримолекулярного алкилирования, ацилирования и присоединения по карбонильной группе [c.324]

    Для получения соединений, в молекулы которых кроме гидрофобных входят функциональные группы с гидрофильными свойствами, можно применять реакции введения гидрофильной группы в молекулу углеводорода (например, окисление, сульфирование илп присоединение органических или неорганических кислот) или введения гидрофобной группы в молекулы некоторых функциональных соединений (например, алкилирование и ацилирование фенолов или аминов). [c.340]

    Реакции, характерные для ароматических соединений (сульфирование, нитрование, ацилирование), протекают с замещением атомов водорода, стоящих в а-положении. В качестве примера может служить реакция сульфирования. Как показал А. П. Терентьев, эта реакция может быть осуществлена с фураном, тиофеном, пирролом и рядом их гомологов путем нагревания сульфируемого соединения с продуктом присоединения серного ангидрида к пиридину (пиридинсульфотриоксид)  [c.580]


    Содержание побочных продуктов снижается при проведении реакции в кислой среде, очевидно, благодаря протонированию первичного амина, затрудняющему его присоединение по связи =N. Этот подход пригоден только в отношении катализаторов, не реагирующих с кислотами. Практически применяют оксид платины и как растворитель уксусную кислоту высокие выходы первичных аминов (до 90 %) могут быть получены при использовании палладия, нанесенного на уголь, и спирта в присутствии 1-3 эквивалентов минеральной кислоты (НС1, H2SO4, H IO4). Аналогично, но за счет ацилирования, подавляется присоединение первичного амина к ненасыщенному интермедиату при гидрировании нитрилов в уксусном ангидриде продукт реакции в этом случае представляет собой N-ацетилпроизводное первичного амина  [c.63]

    Реакция. Присоединение по Михаэлю ацилированного аминомалонового эфира к а,р-ненасыщенной альдегидной группе, сопровождающееся циклизацией с образованием а-гидроксипирролидина. [c.556]

    При взаимодействии бензоксазолинтиона с акрилоилхлоридом протекают две параллельные реакции присоединения и ацилирования, причем превалирует первая. Изучена реакция присоединения некоторых нуклеофильных реагентов к 3-акрилоилбензоксазолинтиону и его кислородному аналогу. Отмечено, что 3-акрилоилбензоксазолинон более склонен к реакциям присоединения, чем его сернистый аналог. Лит.— 13 назв., ил.— 2. [c.154]

    Связь О—Н в спиртах довольно прочна, хотя она, полярна и кинетически лабильна. Значения энергии гомолитической диссоциации связи (D°) для i—Сгалканолов лежат в пределах 427—436 кДж-моль . Гомолитическое отщепление гидроксильного атома водорода радикалами для первичных и вторичных спиртов в растворе обычно не встречается в этих случаях, как правило, протекает предпочтительно атака по а-атому углерода. С другой стороны, депротонирование с образованием алкоксида легко осуществляется при обработке спирта сильно электроположительным металлом или сильным основанием. Реакционная способность понижается от первичных к третичным спиртам в соответствии с порядком изменения кислотности в жидкой фазе (см. табл. 4.1.4). Гетеролиз связи О—Н также следует за электрофильной атакой по гидроксильному атому кислорода, например при алкилировании и ацилировании спиртов. Вследствие высокой электроотрицательности и низкой поляризуемости кислорода спирты являются только слабыми и относительно жесткими основаниями (см. табл. 4.1.4) и лищь умеренно реакционноспособны в качестве нуклеофилов. Реакции присоединения спиртов к ненасыщенным соединениям обычно требуют участия катализатора или использования активированных субстратов. Нуклеофильность самих спиртов может быть активирована путем (а) превращения их в алкоксиды или (б) путем замещения гидроксильного атома водорода электроположительной или электронодонорной группой. Первый, более распространенный подход, находит применение, например, при нуклеофильном замещении алкилгало-генов, нуклеофильном (по Михаэлю) присоединении к активированным алкенам и при нуклеофильных реакциях присоединения-элиминирования в процессе переэтерификации. Второй, менее популярный подход, включает использование ковалентного средине- [c.60]

    Лактамы — это циклические амиды с различным размером цикла от небольших —а-, р- и у-лактамы (3, дг = 1, 2 и 3 соответственно) до значительно больших циклов. Методы получения этих соединений обычно аналогичны уже описанным для ациклических аналогов [4]. Поскольку малые циклы а- и р-лактамов являются напряженными, существует ряд трудностей получения этих соединений обычными методами. Однако недавно опубликовано несколько обзоров [5, 6, 216], в которых подробно описываются специальные методы, применяемые для их синтеза. Основные методы синтеза лактамов включают внутримолекулярное ацилирование аминов [образование связей (а) и (б) в формуле (3)], перегруппировки Бекмана и Шмидта и реакции присоединения к кетенам и изоцианатам. Дальнейшую модификацию полученных лактамов можно проводить алкилированием по атому азота или, в ряде случаев, по атому углерода, находящемуся в а-положении к карбонильной группе, в условиях, аналогичных алкилированию ациклических амидов. [c.414]

    Термин конденсация — один из тех, для которых современные учебники дают разные определения. В обычной практике этот термин используется довольно неопределенно для описания реакций различного типа. Например, сложноэфирная конденсация Кляйзена или конденсация Дикмана в действительности представляют собой реакции ацилирования сложных эфиров (см разд. 5.2.2 и 7.1.1). Альдольная конденсация , бензоиновая конденсация , конденсация Михаэля —это три разных типа реакций присоединения (см. разд. 5.2.4.1, примечание в разд. 5.6.2 и разд. 5.1.5), приводящих к совершенно различным продуктам. Конденсации Кляйзена — Шмидта и Кнё-венагеля — Дёбнера представляют собой реакции присоединения — отщепления общего типа (3.15). В данной книге, где внимание сосредоточено на продуктах реакций, во избежание недоразумений использование термина конденсация ограничивается только реакциями этого последнего типа. Такие реакции будут в дальнейшем рассмотрены в разд. 5.1.4, 5.2.4 и 7.1. [c.42]


    Ферменты, переносящие остатки уксусной кислоты СНзСО-—, а также остатки молекул других жирных кислот, называются ацилтрансферазами. Это двухкомпонентные ферменты, в которых активная группа — довольно сложное соединение (кофермент А). Кофермент А построен из остатков аденозина, нантотеновой кислоты и тиоэтаноламина. Реакции ацетилирова-ния (или ацилирования) требуют большого количества энергии. Она необходима для присоединения остатка уксусной кислоты или остатка другой жирной кислоты к коферменту А. Донатором энергии служит АТФ. Так как активным началом сложной молекулы кофермента А является группа — 5Н, и именно к ней присоединяется ацильный радикал, то сокращенно кофермент А обозначают как КоА—5Н. Схематически реакцию присоединения остатка уксусной кислоты к коферменту А можно представить следующим образом  [c.62]

    По химическим свойствам ферроцен более ароматическое соединение, чем бензол, в том смысле, что ои имеет большую склонность к электрофильному замещению и труднее вступает в реакции присоединения. Характерными для ферроцена реакциями замещения являются. ацилирование по Фриделю — Крафтсу, сульфирование, меркурнрование и металлирование бутиллитием и фенилнатрием ферроцен проявляет также высокую реакционную спосо бность лри свободнорадикальном арилировании солями диазония. Нуклеофильные реакции замещения ферроцена не описаны. О высокой реакционной способности ферроцена свидетельствуют его взаимодействие с Ы-метилформанилидом, приводящее к образованию ферроценальдегида, и реакция с бис-(диметиламино)-метаном в присутствии фосфорной кислоты с образованием N,N-димeтилaминaмeтилфeppoцeнa I. [c.475]

    Наиболее характерные реакции замещения у атомов азота гетероциклического ядра протекают, таким образом, под действием электрофильных реагентов. К их числу относятся прежде всего реакции алкилирования нуклеозидов и нуклеотидов. При этом атомы азота гетероциклических ядер могут выступать в качестве нуклеофильных агентов в реакциях замещения у насыщенного атома углерода в алкилгалогенидах или алкилсульфатах, реакциях раскрытия кольца а-окисей и эпиминов, реакциях присоединения по поляризованной связи С —С (например, цианэтилирование компонентов нуклеиновых кислот под действием акрилонитрила), связи С=Ы (например, взаимодействие с карбодиимидами) или связи С=0 (например, ацилирование). Весьма характерной реакцией замещения у атомов азота гетероциклического ядра является также образование Ы-окисей под действием перкислот эта реакция, вероятно, также протекает по механизму электрофильного замещения у атомов азота. [c.359]

    Ангидриды нуклеозид-2, 3 -циклофосфатов с карбоновыми кислотами представляют собой ацилирующие агенты, т. е. нуклеофильная атака направлена на карбонильную группу с замещением более устойчивого аниона циклического фосфата (болеесильная кислота). Так, 5 -0-(3,5-динитробензоил)уридин-2, З -циклофосфат был получен при действии 3,5-динитробензоилхлорида на уридин-2, З -циклофосфат как в диоксане, так и в пиридине, причем ацилирование облегчается способностью карбонильной группы к реакциям присоединения. Таким же путем при обработке циклофосфата уксусным ангидридом получается 5 -0-ацетильное производное. [c.514]

    Гетеролитические реакции, т. е. те, в которых электронная пара перемещается без разобщения электронов, носят название кислотно-основных. Катализаторами их служат кислоты и основания. К этой группе относятся реакции присоединения и отщепления полярных молекул (гидратация, дегидратация, гидро-хлорированйе, каталитический крекинг, алкилирова-ние, изомеризация, конденсация, ацилирование и т. п.). [c.61]

    Существование изомерии у производных ферроцена создает впечатление, что барьер вращения отдельных колец вокруг оси симметрии пятого порядка невелик. Ферроцен летуч, устойчив при нагревании, легко окисляется, ноне восстанавливается. Он не склонен к реакциям присоединения, но легко вступает в реакции электрофильного замещения, например сульфирования и ацилирования по Фриделю — Крафтсу [611. В этих реакциях первые два заместителя входят в разные кольца. Одпако при наличии в одном из колец алкильного заместителя ацильная группа частично входит в это же кольцо в положения 2 и 3. Отсюда можно сделать вывод, что ферроцен обладает аро.матичностью. Пока пе совсем ясно, каким образом анионный заряд колец переходит к железу, не нарушая делокализации. Очевидно, что этот процесс происходит с участием З -орбиталей атома железа. [c.177]

    С другой стороны, синтезы с мед. К нно реагирующими веществами требуют внешнего обогрева, и необходимая температура определяется скоростью течения самой реакции. Для реакций алкилирования, ацилирования или для большинства реакций присоединения температура выше 90° редко бывает необходимой, тогда как в хгроцессах конденсаций, сопровождаемых дегидратацией и дегидрогенизацией, часто температура под-д( рживается в пределах до 200°. Реакции, требующие высоких температур, обычно проводятся в присутствии жидкой смеси Na ]—Al lg. [c.885]

    Реакция ацилирования. При взаимодействии аминов с хлораи-гидридами, ангидридами или сложными эфирами образуются амиды кислот. Процесс начинается так же, как и алкилирование, со взаимодействия свободной электронной пары азота с электрофил 1iIh.im ценгром реагента, однако в отличие от алкилированин за присоединением здесь следует отщепление  [c.229]

    Продукт присоединения образуется за счет взаимодействия свободной электронной пары азота с карбонильным углеродом, на котором вследствие поляризации связи С=0 имеется йстич-ный положительный заряд. При этом электронная пара азота переходит в совместное владение с карбонильным углеродом. Но последний уже до реакции имел заполненный октет на внешней электронной оболочке и принять еще пару электронов не может. Поэтому одновременно с установлением связи между азотом и карбонильным углеродом подвижная электронная пара я-связи С=0 оттесняется на атом кислорода, который приобретает таким образом отрицательный заряд (стадия 1). В создавшейся промежуточной структуре имеется разделение зарядов — на азоте положительный заряд, на кислороде отрицательный, что повышает энергию структуры. Стабилизация происходит за счет отщепления хлороводорода (стадия 2). Окончательным результатом является введение к азоту ацильной группы вместо атома азота — ацилирование амина. [c.230]

    Трудность исследования процессов замещения у олефинового атома углерода заключается прежде всего в том, что множество реакций, формальный результат которых сводится к замещению у олефинового атома углерода, на самом деле протекают через стадию присоединения с последующим отщеплением. Так протекает, например, сульфирование с помощью комплексно-связанного серного ангидрида, ацилирование в условиях реакции Фриделя — Крафтса, азосочетание с диазосоединениями. Для большого числа других реакций точно не установлено, осуществляются ли они путем прямого замещения или нет это относится к нитрованию олефинов, галогенированию с помощью бромсукцинимида, к реакции Мейервейна (взаимодействие с диазосоединениями). Наиболее подходящими для изучения пространственной направленности реакций замещения у олефинового атома углерода являются реакции обмена металлов в металлоорганических соединениях типа X—СН = СН—МеХ. [c.452]

    Для ацилирования ароматических соединений используются гало-генангидриды и ангидриды кислот, реже—сами карбоновые кислоты и их эфиры. Обычно эти реакции проводятся с катализаторами Фриделя — Крафтса, чаще всего с хлоридом алюминия, и этим напоминают уже рассмотренные (см. 6.1) реакции алкилирования. Однако активность галогенангидридов растет при переходе от фтор- к иодпроизводным, в то время как алкилгалогениды образуют обратный ряд. Это свидетельствует о том, что активация галогенангидридов хлоридом алюминия осуществляется по иному механизму. Вероятно он состоит в присоединении хлоридз алюминия к карбонильному кислороду с образованием биполяр-ного аддукта, который далее образует ионную пару  [c.130]

    Заслуживают внимания существующие методы получения а,р-не-насыщенных кетоиов. Одним из них является реакция Дарзана (1910). Так, например, взаимодействием при низкой температуре хлористого ацетила с циклогексеном в присутствии хлористого алюминия получают 1-ацетил-2-хлорциклогексан, который после отщепления галоидоводорода при помощи диметиланилина превращается в метилциклогек-сенилкетон. Виланд (1922) осуществил в этих условиях конденсацию циклогексена с хлористым бензоилом и показал, что продукт присоеди нения способен, хотя и с низким выходом, превращаться под действием хлористого алюминия в тетрагидробензофенон. Этот эксперимент был проведен для доказательства распространенного в то время мнения, что ацилирование по Фриделю—Крафтсу протекает по механизму присоединения — отщепления. [c.389]

    Среди очень важных в препаративном отношении методов создания новых С—С-связей сложноэфирная конденсация занимает особое глесто, поскольку образующиеся р-дикарбонильные соединения и их аналоги представляют собой вещества с тремя функциями. Поэтому из них можно получить множество других соединений, используя превращения кетогруппы [восстановление, см. разд. Г, 7.1.8.1 образование енаминов, см. схему (Г. 7.10в), реакции метиленовой группы (присоединение по Михаэлю, см, разд, Г. 7.4.3 ацилирование, см. разд. Г, 7.2.7 алкилирование, галогенирование, см. разд. Г, 7.2.9) и карбоксильной группы (омыление, кетонное расщепление, см. схему (Г.7.60) образование амидов, см, разд. Г, 7.1.5,2]. [c.164]

    Для ацилирования кетонов с целью чолучения р-дикетонов применяют два метода. При реакции типа t на кетон действуют сложным эфиром в присутствии основания, предпочтительно амида или гидрида натрия 133], а при реакции типг1 2 на кетон действуют ангидридом в присутствии трехфтористого бэра. В случае, когда в реакцию вступает либо симметричный кетон, либо несимметричный кетон, у которого имеется только одна реакционноспособная группа, присоединенная к карбонильной группе, как при реакции по типу /, так и при реакции по типу 2 получается один и тот же продукт. Однако при наличии двух различных реакционноспособ-ных групп (СНа и HjR) как по типу I, так и по типу 2 обычно образуются два неодинаковых продукта. Этот метод синтеза, для которого в качестве ацилирующих агентов используют самые различные этиловые эфиры и ангидриды, дает в основном выходы 30— 60%. [c.164]


Смотреть страницы где упоминается термин ацилирование реакции присоединения: [c.82]    [c.374]    [c.97]    [c.283]    [c.556]    [c.72]    [c.60]    [c.72]    [c.212]    [c.126]    [c.464]    [c.485]    [c.604]    [c.87]    [c.160]   
Основы органической химии (1968) -- [ c.430 ]

Основы органической химии 1 Издание 2 (1978) -- [ c.517 ]

Основы органической химии Часть 1 (1968) -- [ c.430 ]




ПОИСК





Смотрите так же термины и статьи:

Ацилирование

Реакции ацилирования

Реакции присоединения



© 2025 chem21.info Реклама на сайте