Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидрирование водяного газа

    Активность катализатора может сильно уменьшиться (и даже полностью исчезнуть) в присутствии определенных веществ — ядов серы и ее соединений (HjS, S , меркаптаны, тиофен и т. д.). As, Hg, Р, СО, H N и т. д. Чувствительность катализаторов к действию ядов зависит от природы катализатора, способа его приготовления и от рабочей температуры. Наибольшую чувствительность к ядам имеют катализаторы с большой адсорбционной способностью (Pt, Pd). Так, платиновые катализаторы теряют активность при концентрациях 0,0001 % HjS или 0,000001 % H N в то же время молибденовые катализаторы вообще нечувствительны к присутствию серы. При гидрировании водяного газа допускается содержание серы 0,1 г на 100 газа. [c.243]


    В третью пятилетку должны быть созданы заводы синтетического горючего на базе окиси углерода и водорода. Опыт полузаводской установки гидрирования водяного газа показал, что наряду с легким маслом, состоящим из бензиновых и лигроиновых фракций, образуются еще более тяжелое масло и твердые парафиновые углеводороды. Крекингом с хлористым алюминием нам удалось показать, что из парафинов получается до 60% бензиновой фракции, выкипающей от 24 до 145°, вполне предельного характера с достаточно высоким без прибавления ТЭС октановым числом. Эти, синтезом полученные парафиновые твердые углеводороды, представляют исключительно открытые цени углеродных атомов нормального строения. Когда же они подвергаются крекингу в вышеназванных условиях, то получаемый из них бензин состоит уже из углеводородов, среди которых находится значительное количество метановых углеводородов изостроения, так как только последние могли обусловливать высокое октановое число этого бензина. Поэтому приходится сделать заключение, что при крекинге имел место процесс изомеризации в сторону образования ветвистых цепей углеродных атомов. [c.350]

    В настоящее время изучаются процессы более рационального получения как водяного газа, так и продуктов его гидрирования. Как выяснилось, получать водяной газ из метана посредством неполного сжигания его в чистом кислороде при 15—17 ат более выгодно, чем разложением парами воды. С другой стороны, гидрирование окиси углерода легче осуществить, применяя катализатор в псевдоожиженном слое в этом случае катализатор является также и теплоносителем, что позволяет точно поддерживать температуру. В таком процессе применяют железные катализаторы при 315 °С и 16 ат, степень конверсии при этом достигает 90%, а выход бензина 80% (октановое число 80), считая на полученный конденсат. Выход продуктов реакции в единицу времени и на единицу объема катализатора также намного больше, чем в процессах с неподвижным слоем катализатора. Образуются и кислородсодержащие продукты. [c.256]

    Таким образом для этих реакций гидрирования не представляет интереса применять простые катализаторы, наоборот, оказалось, что наиболее активные катализаторы будут бинарные и тернарные смеси металлов высокого атомного веса с металлами малого веса. Таким образом то, что в этих синтезах из водяного газа Фишер ранее открыл в результате длительного экспериментального опыта, нашло себе также и теоретическое подтверждение и объяснение. - [c.460]


    Способы переработки каменного угля неполное сгорание, гидрирование, сухая перегонка. Продуктом неполного сгорания является оксид углерода (II), входящий в состав генераторного газа, водяного газа и синтез-газа. Гидрирование угля осуществляется при 400—600 °С и давлении водорода до 25 МПа (катализатор— оксиды железа). В результате образуется жидкая смесь углеводородов. Продукты, образующиеся при сухой перегонке угля, приведены на схеме 2, а при переработке древесины — на схеме 3. [c.223]

    В два последовательно расположенных реактора 4 и 5. Туда же поступает водяной газ, нагретый в подогревателе 7. Температура реакции поддерживается 150—180° при помощи рубашки, заполненной кипящей водой под давлением. Выходящие из верхней части второго реактора продукты оксосинтеза проходят холодильник 8, сепаратор высокого давления 9 и сепаратор низкого давления 11. Часть газа возвращается в реактор циркуляционным насосом 6, а часть выпускается в атмосферу после промывки в скруббере 10 спиртом-сырцом. Отделенные от газа жидкие продукты подаются в нижнюю часть первого реактора гидрирования 15, где происходит гидрирование альдегида в спирт. Затем продукт вместе с водородом попадает во второй реактор гидрирования 16, верхняя часть которого является горячим сепаратором. Гидрированный продукт выходит из реактора снизу, а газ — сверху и после охлаждения и сепарации попадает в печь метанирования 20 для гидрирования выделившейся в реакторах окиси углерода в метан по реакции [c.346]

    К. м. используют для получения металлич порошков, покрытий, монолитных форм как катализаторы и инициаторы хим процессов [гидрирование, гидроформилирование, гидрокарбоксилирование, полимеризация, изомеризация и диспропорционирование олефинов (метатезис), конверсия водяного газа и др ], для получения металлоорг. соединений. Карбонилы Мп антидетонатор моторных топлив См. также Железа карбонилы. Кобальта карбонилы. Марганца карбонилы. Никеля тетракарбонил. Хрома карбонилы О кар>бонилах W и Мо см соотв Вольфрам и Молибден. [c.325]

    P. . используются как катализаторы в р-циях гидрирования непредельных соед., альдегидов, кетонов, СО, гидроформилирования, конверсии водяного газа и др., а также для получения пленок металлич. Ru. [c.288]

    Электролитический водород в баллонах достаточно чист, содержит лишь незначительную примесь кислорода и может при--меняться непосредственно для гидрирования без предварительной очистки. Однако в баллонах может поступать в лаборатории и так называемый печной водород, получаемый из водяного газа. Такой водород содержит довольно много примесей сероводород, мышьяковистый водород, фосфористый водород, кислород, окись углерода, углекислый газ и др., большинство которых отравляет катализаторы гидрирования. Для очистки печной водород пропускают через 50%-ный раствор едкого кали или через трубку с натронным асбестом, затем через две промывных склянки с раствором марганцовокислого калия, одну склянку с щелочным раствором гидросульфита натрия и, наконец, через трубку с медной сеткой или с платинированным асбестом, нагреваемую при 550—400°, после чего, если нужно, газ высушивают. Для гидрирования под давлением в автоклавах, где указанную очистку два ли можно применить, печной водород использовать нельзя. [c.240]

    Электролитический водород в баллонах достаточно чист и может применяться для гидрирования без предварительной очистки. Водород, полученный из водяного газа, может содержать различные примеси предельные и непредельные углеводороды, кислород, азот, окись и двуокись углерода, мышьяковистый водород, сероводород и другие. Для очистки такой водород пропускают через 50% раствор едкого кали, затем через две промывные склянки с раствором марганцовокислого калия (для окисления сероводорода и мышьяковистого водорода), одну склянку с щелочным раствором гидросульфита натрия, через трубку с медной сеткой или с платинированным асбестом, нагретую до 350—400 °С (для удаления кислорода) и, наконец, через склянку Тищенко (для сухого вещества) или и-образную трубку с хлористым кальцием. [c.94]

    У нас в стране действуют комбинированные схемы синтеза метанола с производством чистого водорода, применяемого в процессах гидрирования [179]. В качестве исходного сырья используют газовую смесь, полученную в результате газификации кокса или полукокса. Образующийся в результате реакции водяного газа исходный газ очищается от соединений серы, проходит стадии конверсии избыточного оксида углерода, компримирования, очистки от диоксида углерода и синтеза метанола. Для обеспечения глубокой переработки оксида углерода и получения газа, обогащенного водородом, на стадии синтеза метанола поддерживают высокое соотношение Н2 СО в исходном и циркуляционном газах. Состав газовых потоков следующий (% об.)  [c.212]


    При пересчете приведенного состава газа на чистый водяной газ оказалось, что содержание водорода должно составить 37,7 об, %, в то время как карбюрированный водяной газ содержит лишь 35,9 об. % водорода. Полученное расхождение указывает на участие водорода в реакциях гидрирования.  [c.319]

    Для получения альдегидов желательно применение смеси СО и На, по составу аналогичной водяному газу, так как повышенное содержание водорода в газе увеличивает глубину гидрирования, а повышенное содержание окиси углерода способствует реакции изомеризации. [c.427]

    КИ. Однако в баллонах может поступать в лаборатории и так называемый печной водород, получаемый из водяного газа. Такой водород содержит довольно много примесей сероводород, мышьяковистый водород, фосфористый водород, кислород, окись углерода, углекислый газ и другие, большинство которых отравляет катализаторы гидрирования. Для очистки печной водород пропускают через 50%-ный раствор едкого кали или через трубку с натронным асбестом, затем через две промывных склянки с раствором марганцовокислого калия, одну склянку с щелочным раствором гидросульфита натрия и, наконец, через трубку с медной сеткой или с платинированным асбестом, нагреваемую при 350—400° С, после чего, если нужно, газ высушивают. [c.313]

    Получение водороду необходимого для синтеза аммиака, гидрирования угля, жиров и т. п., из водяного газа по термохимическому уравнению [c.241]

    В качестве базовых топлив применяют продукты различных процессов переработки нефти, а именно прямой гонки, термического и каталитического крекинга, каталитического риформинга, гидрирования каменноугольной смолы и тяжелых нефтяных остатков, синтеза из окиси углерода и водорода (водяного газа), переработки сланцев. [c.267]

    Роль водорода в кругообороте веществ в природе. Использование водорода дает возможность возвращать в кругооборот природы из энергетических тупиков карбонатный углерод [71]. Диоксид углерода в процессе гидрирования может быть превращен в метан, по реакции водяного газа — в окснд углерода, а при последующем гидрировании — в метанол или жидкие углеводороды. [c.44]

    Важное значение имеют также каталитические свойства рубидия и его солей при синтезе метанола из водяного газа при гидрировании углеводородов и других синтезах органических соединений. [c.231]

    К промышленным горючим газам с относительно высоким содержанием свободного водорода следует отнести а) водяной газ б) коксовый газ в) так называемый бедный газ гидрирования г) метан-водородные фракции, получаемые нри разделении некоторых газовых смесей д) отходяш ие газы установок каталитического риформинга легких нефтяных дистиллятов. Составы указанных газов приведены в табл. 16. [c.254]

    ЗЖ рекомендуется иСпользовать для защиты от коррозии мокрых газгольдеров, предназначенных для хранения водяного, воздушного, отопительного и углеводородных газов, смеси углеводородных газов с водяным газом в различных концентрациях. богатых и бедных газов гидрирования, а также смеси сероводорода, окиси и двуокиси углерода в различных концентрациях и других газов, применяемых в промышленности. [c.429]

    Дегидрогенизация спиртов Дегидратация уксусной кислоты Гидратация ацетилена Превращение спиртов в кетоны Дейтеро-водородный обмен Конверсия водяного газа Гидрирование аллилового спирта [c.376]

    Процесс получения синтетических спиртов методом оксосинтеза основан на реакции присоединения водяного газа (СО + Нг) к непредельным углеводородам (реакция гидроформилирования), где в качестве первичного продукта образуются альдегиды, содержащие на один атом углерода больше, чем исходный углеводород [1]. Альдегиды далее подвергаются гидрированию, в результате чего получаются соответствующие спирты. Реакция гидроформилирования проводится при повышенных температурах и давлениях в присутствии гомогенных катализаторов, в частности карбонилов кобальта. [c.447]

    Особое место среди способов получения из угля жидкого топлива путем гидрогенизации занимают такие методы, когда непосредственным сырьем для гидрирования является не самый уголь, а легко получаемая из пего техническая смесь горючих газов, так называемый водяной газ . Этот газ образуется из угля действием на него водяного нара нри температуре около 1000° по реакции  [c.509]

    В мировой промышленности жидких углеводородов задолго до появления контактно-каталитического крекинга стали известны различные формы каталитического гидрирования, в том числе деструктивного. Но эти процессы не были специфичны для нефтепереработки и их появление связано либо с жировой промышленностью (отверждение растительных и животных жидких масел и жиров), либо с вовлечением в переработку на жидкое топливо и смазочные масла твердых природных видов сырья (различных углей, торфа, сланцев) и продуктов их термической первичной переработки ( амепноугольных,, торфяных и сланцевых смол, водяного газа и т. п.). [c.38]

    Керосиновая (200—300°) и лпгроино-керосиновая (65—300 ) фракции требуются не только для дизельмоторов, по п для получивших распространение в конце 2-п мировой войны воздушных и жидкостных реактивных двигателей. Для первых использовались преимущественно парафиновые углеводороды бензина, синтезировавшегося из водяного газа, для вторых — аробин (ароматический бензин с содержанием ароматических углеводородов выше 40%) или ксилольную фракцию каменноугольной смолы или, наконец, ароматизированный бензин деструктивного гидрирования угля, причем каждый из этих компонентов брался в смесп с аминами, пирокатехином или другими инициаторами воспламенения, осуществлявшегося смешением с азотной кислотой [6]. В некоторых рецептурах были использованы также смеси спиртов (метилового п этилового) с жидким кислородом или перекисью водорода. [c.13]

    Лепна-Берке водород и для гидрогенизации и для синтеза аммиака получается из водяного газа в генераторах, работающих на буро-угольных брикетах. Для получения чистого водорода водяной газ очищается от сернистых соединений, для чего нередко используются алкацидные растворы. Окись углерода конвертируется в углекислоту, легко отмывающуюся в скрубберах. Гидрирование проводится в две фазы в автоклавах высокого давления, внешним видом напоминающих гигантские орудийные стволы. В первой — жидкой фазе, мелко раздробленный и суспендированный в антраценовом масле или в смоле уголь подвергается гидрированию над подвижным или плаваю-щим> катализатором — окислами железа (болотная руда, отходы производства алюминия и т. д.). При этом угольные компоненты молекулы угля, имеющие, как можно считать в первом приближении, вид пчелиных сот, распадаются. Более мелкие четырех- и трехкольчатые осколки (типа фенантрена и других ароматических углеводородов с конденсированными кольцами), насыщаясь водородом (кольцо за кольцом), будут превращаться вследствие распада образовавшихся жирных колец сначала в двухкольчатые углеводороды (гомологи нафталина) и, наконец, в гомологи бензола или даже, в зависимости от условий гидрирования, в гомологи циклогексана и циклопентана. Само собой разумеется, что при понижении температуры гидрогенизации (проводимой в пределах 550 —380°) и повышении гидрирующей эффективности катализатора, деструктивная гидрогенизация может быть остановлена и на стадии гомологов [c.154]

    Из водяного газа получают синтетичес]<П11 метанол, который затем окисляют в формальдегид. Из формальдегида и окисп углерода при высокой температуре под давлением получают гликолевую кпслоту, которую этери-фицируют метиловым спиртом. Метиловый эфир гликолевой кислоты переводят каталитическим гидрированием в гликоль и метанол. Выпускаемый на рынок этой фирмой антифриз иод названием зерекс и является этиленгли-колем, который производят именно этим способом [134]. [c.405]

    Примеры обратимого и необратимого отравлений уже приводились. Следует добавить, что современная каталитическая химия разработала отравостойкие катализаторы, инертные по отношению к сернистым соединениям, которые еще совсем недавно были бичом многих каталитических процессов. При гидрировании над MoS,, NiS, WSj, oS, дегидрировании над ZnS на пемзе и при синтезе метанола из водяного газа над Zn r-катализаторами сернистые соединения, имеющиеся в системе, не снижают активности этих катализаторов. [c.69]

    Смеси окиси углерода с водородом и сам водород в современной химической технологии имеют огромное и разностороннее применение. Например, синтез метанола, высип-1х спиртов, синтина основан на водяном газе синтез аммиака, гидрирование растительных масел, процессы деструктивного гидрирования—па водороде. Необходимы мощные газогенераторы, снабжающие заводы этими газами, и достаточные запасы соответствующего доступного и дешевого сырья. [c.228]

    Гидрирование в отдельных случаях проводят при средних дав.ю-ниях. Эти процессы занимают положение среднее между гидрированием при нормальном и высоком давлениях. Во многих случаях очень удобно и рационально пользоваться давлением 10—50 ат. М. Броше [25] впервые применил этот метод для гидрирования нафталина в тетралин, а Г. Цфетер [26]—для гидрирования фенола в циклогексанол. Синтез при средних давлениях (5—15 ат) применялся в Германии для получения углеводородов из водяного газа над кобальтсодержащими катализаторами. [c.348]

    В синтез-газах, полученных частичным окислением содержащего серу углеводородного топлива, в качестве важнейшего органического сернистого соединения присутствует сероокись углерода, которая в присутствии некоторых катализаторов легко прелращается в сероводород в результате реакций гидрирования илп гидролиза. Окиспожелезные катализаторы обладают активностью одновременно в реакциях водяного газа и превращения сероокиси углерода в сероводород, тогда как окисные алюмохромовые и алюмо-хром-медные катализаторы можно использовать для избирательного гидролиза сероокиси углерода в присутствии больших количеств окиси углерода. Кроме того, разработаны катализаторы, содержащие окислы меди, хрома и ванадия, для удаления сероводорода п органических сернистых соединении пз синтез-газа. [c.327]

    О к и с н о ж е л е 3 и ы катализаторы. Типичные катализаторы, иримепяемые в очисп е азото-водородных смесей синтеза аммиака для одновременного проведения реакций конверсии СО и превращения сероокиси углерода в сероводород, содер кат, помимо окиси железа и небольшого количества инертного связующего, 5—15% окиси хрома. Эти катализаторы промотируют как гидрирование, так и гидролиз сероокиси углерода. Относительная интенсивность ги фирования и гидролиза сероокиси углерода определяется главным образом характером одновременно протекающей реакции водяного газа. В тех случаях, когда равновесие реакции водяного газа не достигнуто, преобладает гидрирование, но если в реакции водяного газа достигнуто равновесие, то обе реакции (гидрирования и гидролиза) протекают с приблизительно одинаковой интенсивностью. [c.327]

    При производстве карбюрированного водяного газа масло подвергают крекингу в атмосфере, богатой водородом, при этом водяной пар и окись углерода играют роль инертных газов и оказывают такое же разбавляющее действие, как и в случае производства высококалорийного газа. Водород также действует как разбавитель, но, кроме того, он может вступать и в химические реакции гидрирования ненасыщенных углеводородов, предотвращая тем самым протекание реакций полимеризации. Таким образом, водород способствует минимальному образованию циклических соелчнений и препятствует реакциям дегидрирования. Нсследование составов карбюрированного водяного газа показывает, что содержание водорода в газе занижено по отношению к содержанию окислов углерода. Типичный состав (в об.%) карбюрированного водяного газа приведен ниже  [c.319]

    В некоторых работах было показано, что при гидрировании сероорганических соединений в присутствии водяных паров параллельно основной реакции протекает гидролиз серусодержащих веществ. При этом эффективность сероочистки повыщается и исключается отложение углерода на катализаторе [5]. Относительная роль гидрирования и гидролиза сероокиси углерода а окисножелезном катализаторе, содержащем окись хрома, при очистке азото-водородных смесей синтеза аммиака определяется в основном характером одновременно протекающей реакции водяного газа (конверсии СО). В тех случаях, когда равновесие реакции водяного газа не достигнуто, преобладает гидрирование, но при достижении равновесия обе реакции (гидрирования и гидролиза) протекают с приблизительно одинаковой скоростью. В другом случае, по литературным данным, при очистке водяного газа катализатор из смеси сульфида меди и окиси хрома на активированном угле способствует протеканию главным образом гидролиза сероокиси углерода [3]. Активность катализатора заметно повышается при добавке водяного пара и обеспечивает практически полное удаление (98%) органических сернистых соединений (сероокиси углерода и сероуглерода) при температуре 250° С. [c.151]

    Применение. Водород используют в реакциях гидрирования и химических синтезах многих технически важных продуктов, таких как аммиак, метанол, хлороводород, бензин, сорбит (из глюкозы), жирные спирты (из жирных кислот), бутаидиол-1,2 (который перерабатывают в синтетический каучук), твердые жиры, для наполнения аэростатов и для получения высоких температур в специальных горелках, например при выработке синтетических драгоценных камней. Водород — составная часть промышленных газовых смесей — коксового, полукоксового и водяного газов. Хранят Н2 в стальных баллонах под давлением 15 МПа (150 атм). [c.265]

    Образующуюся при этом СОг поглощают водой (под давлением). Остаток окиси углерода (- 1 об.%) вымывают аммиачным раствором однохлорй-стой меди. Применяемый в этом способе водяной газ получают пропусканием водяного пара над раскаленным коксом и в последнее время все-больше используют взаимодействие водяного пара с пылевидным углем (превращение угольной пыли в газы). Получаемый этим способом водяной газ содержит обычно большое количество водорода. Выделяемый из водяного газа водород (содержащий азот) применяют главным образом для синтеза аммиака и гидрирования угля. [c.46]

    Процесс Фишера—Тропша. — В Германии синтетическое жидкое топливо производилось в больших количествах путем гидрирования так называемого водяного газа, т. е. смеси окиси углерода с водородом, которая получается при действии водяного пара на кокс при высокой температуре  [c.306]

    Кроме непосредственного гидрирования, применяется процесс получения жидкого топлива из угля непрямым путем. Так, по способу Фишера—Тропша (см. стр. 175), вначале при продувании водяного пара через слой раскаленного угля получают водяной газ (НгЧ-СО), который затем в присутствии соответствующих катализаторов превращают в смесь углеводородов (синтин). [c.30]

    История строптельства завода, хема установок завода. Получение газов (водяной газ, водород). Ката.дтттическая гндро-геннзация под давленне г. Переработка гидрированной смолы. Характеристика конечных продуктов, [c.248]

    В своем первоначальном виде метод гидрирования мог найти применение лишь в лабораторных исследованиях. Позднее, в связи с успехами химического машиностроения в вопросах конструкции и постройки крупных аппаратов высокого давления, метод гидрирования при высоких давлениях и температурах нашел применение в различных видах химической промышленност1г. Чтобы оценить его значение, достаточно вспомнить промышленный синтез аммиака из азота воздуха и синтез метилового спирта (метанола) из водяного газа. Громадное значение приобрело также промышленное гидрирование некоторых органических веществ, которое, как показал опыт, можно успешно производить при сравнительно невысоком давлении (около 2 ат) таковы, нанример, гидрирование ( отверждение ) жиров, гидрирование нафталина и т. д. [c.502]


Смотреть страницы где упоминается термин Гидрирование водяного газа: [c.524]    [c.540]    [c.295]    [c.82]    [c.504]    [c.86]    [c.483]   
Органическая химия Том 1 перевод с английского (1966) -- [ c.306 ]




ПОИСК





Смотрите так же термины и статьи:

Водяной газ, гидрирование



© 2025 chem21.info Реклама на сайте