Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотон фотохимический

    Белки связаны с липидами и с большинством пигментов. Их поверхность нередко образована гидрофильными и гидрофобными участками [10]. Благодаря амфифильному характеру они образуют в водных средах очень прочные соединения (агрегаты) между собой или с другими гидрофобными либо амфифильными молекулами. Главные белки ламелл хлоропластов представляют собой белково-хлорофильные комплексы, обеспечивающие захват и передачу фотонов, фотохимические центры, где происходят первичные реакции фотосинтеза, звенья цепей передачи электрона, которые создают градиент pH между двумя сторонами ламелл, и, [c.239]


    Организмы, содержащие хлорофилл Фотоны Фотохимическое восстановление неорганических соединений (0<Н) [c.474]

    В соответствии с законом квантовой эквивалентности число осуществленных фотохимических актов пропорционально не количеству подведенной общей энергии излучения, а числу поглощенных фотонов. Фотохимические элементарные акты в фотосинтезе растений могут осуществлять только фотоны определенной энергии, которые соответствуют длинам волн от 300 до 750 нм. Энергия фотонов излучения с длинами волн больше 750 нм уже недостаточна для осуществления элементарного фотохимического акта фотосинтеза, а энергия фотонов с длинами волн меньше 300 нм настолько велика, что вызывает разрушение белковых молекул фотосинтезирующих структур. [c.321]

    Фотосенсибилизация. Когда фотохимические реакции нельзя инициировать непосредственно светом, так как вещество не поглощает волн доступной длины, можно инициировать реакцию, используя вещества, способные поглощать свет и передавать энергию реагентам. Такой процесс известен как фотосенсибилизация очень эффективным сенсибилизатором является ртуть. Атомы ртути сильно поглощают излучение, соответствующее длинам волн 1849 и 2537 Л, которое легко получить с высокой интенсивностью в ртутных лампах. Полученные таким путем возбужденные атомы ртути могут передавать свою энергию и осуществлять сенсибилизированную реакцию (1 фотон при 2537 А равен 112 ккал/моль, а при 1849 А —154 ккал/моль). Таким путем можно получать атомы Н из Нг [71—74] и углеводородов [4] и зарождать цепные реакции при температурах, при которых обычное зарождение цепей невозможно. Подобные исследования дали очень важные сведения о кинетической природе радикалов. [c.101]

    Присутствует также и моноксид углерода, образующийся в автомобилях. Цикл фотохимического смога начинается расщеплением N02 фотоном на N0 и атомарный кислород О. Последний реагирует с молекулами кислорода, образуя озон, - так же как и в стратосфере  [c.419]

    В соответствии с законом эквивалентности Штарка-Эйнштейна, поглощаемый фотон вызывает фотохимическое возбуждение одной молекулы. Количественной мерой превращения служит квантовый выход реакции, равный отношению числа частиц, претерпевших превращение в результате фотохимической реакции, к числу поглощенных фотонов. В предельном случае для первичных процессов выход должен равняться единице, в экспериментах, в зависимости от длины волны, интенсивности света и температуры и типа вещества, выход может принимать значения от 10 3 до 10. Так как энергия активации химических реакций лежит в пределах 40-420 кДж/моль, можно сделать вывод (сравнивая ее с энергией одного моля фотонов, равной Nab-/1 )0 действии на реакции видимых, ультрафиолетовых и рентгеновских лучей. [c.177]


    Выбор типа излучения зависит от многих факторов. Поглощение ионизирующего излучения веществом неселективно в отличие от поглощения в фотохимических процессах, где поглощение фотонов обусловлено наличием тех или иных поглощающих групп в молекулах вещества. [c.191]

    Электронное возбуждение полимерной сетки может быть вызвано электромагнитным излучением (свет, ультрафиолетовое излучение, -излучение) или облучением частицами. Для передачи энергии соударения частиц или кванта излучения электрону необходимо, чтобы энергия оказалась достаточной для перехода последнего в возбужденное состояние н чтобы существовал механизм взаимодействия. При облучении светом в видимой части спектра фотон, скажем, длиной волны 330 нм обладает достаточной энергией для разрыва С—С-связи.. Однако фотон не будет поглощаться алканами, и в них нет электронных состояний с такой же или меньшей энергией возбуждения. Для эффективного разрыва связей фотон должен поглощаться и взаимодействовать с электроном связи. Подобное взаимодействие происходит либо непосредственно, либо косвенно с помощью механизмов переноса энергии путем диффузии экситона, одноступенчатой передачи или поглощения флюоресцентного света, испускаемого той же самой или другой (примесной) молекулой [11]. Природа и последовательность этих важных процессов, которые определяют фотохимическую стабильность (или нестабильность) полимеров, не будут здесь подробно рассматриваться. Интересно, однако, определить уровни энергии, на которых начинается возбуждение электронов или ионизация молекул, и изменения энергии связи, вызванные в свою очередь возбуждением или ионизацией. [c.109]

    Фотохимическая деградация, по-видимому, является наиболее важным фактором внешних условий. В монографиях [196—203, 207—209] детально рассматриваются основные процессы поглощения фотона, возбуждения электрона, передачи энергии через экситоны, люминесценция, фосфоресценция и безызлучательные переходы, разрыв цепей и образование свободных радикалов, вторичные реакции, стабилизация и защита материала. [c.319]

    Характернейшей особенностью этих реакций является то, что они часто идут не в сторону понижения химического потенциала, как обычные реакции, а в сторону ее повышения. Но это не удивительно, потому что все они предопределяются поглощением фотонов, т. е. притоком энергии извне. Во многих случаях фотохимические реакции протекают при участии твердого вещества или в самом твердом веществе. В связи с этим рассмотрим в общих чертах роль последнего в крайне важных процессах зрительного восприятия и фотосинтеза. Выше мы познакомились с некоторыми особенностями природы фоточувствительного вещества его состав сложен и включает атомы элементов, сравнительно легко меняющих свое валентное состояние, а структура имеет вид матрицы — остова, образованного атомами, связанными прочными межатомными связями, к которому сравнительно более слабыми связями присоединены атомы или группы атомов — функциональные груп- [c.134]

    Фотохимические реакции протекают п соответствии с законами фотохимии. Согласно им, для расщепления молекулы на свободные радикалы необходимо воздействовать на нее импульсом света с определенной длиной волны Х, энергия е фотона которого равна энергии Е разрушаемой связи рассматриваемой молекулы  [c.133]

    Из выражения (59) следует, что число Л/м молекул, прореагировавших в результате действия на систему Л Ф фотонов, равно Ыы = Это значит, что для реакции 1 моль вещества (соответствует Ыа = 6,022-10 частиц) в систему должно поступить Л Фм = Л/ л/т фотонов. Их суммарная энергия ет равна молярной энергии Qm, потребляемой системой при протекании в ней фотохимической реакции, и, согласно выражению (58), равна  [c.133]

    Как показывает опыт, энергия обычной химической связи в большинстве случаев составляет 209,3—418,7 кДж/моль. Таким образом, на химическую реакцию может оказать влияние только излучение, имеющее энергию фотонов не ниже указанных величин. Фотоны, энергия которых лежит в пределах этого интервала, носят название фотохимических. [c.174]

    Из этой таблицы видно, что квантовый выход не для всех фотохимических реакций равен единице. Объясняется это тем, что в ряде случаев вслед за собственно фотохимической реакцией происходят вторичные так называемые темновые реакции, в результате чего на один поглощенный фотон приходится в конечном итоге не одна, а несколько молекул продукта реакции. Например, в указанной в табл. 21 реакции взаимодействия водорода и хлора на один поглощенный фотон приходится до 100 000 прореагировавших [c.174]

    Наряду с реакциями, квантовый выход которых больше единицы, известны фотохимические реакции с квантовым выходом меньше единицы (табл. 21). Причины этого явления могут заключаться в том, что часть фотонов поглощается посторонними веществами, находящимися в смеси с реагирующими веществами. В некоторых случаях пониженный квантовый выход обусловливается обратимостью химической реакции, а также передачей энергии некоторыми молекулами, поглотившими фотоны, другим молекулам в процессе взаимных столкновений. [c.175]


    Из этой формулы видно, что скорость фотохимической реакции пропорциональна интенсивности действующего на вещество света, растет с ростом концентрации реагентов и длиной пути луча в веществе. Скорость реакции растет с понижением частоты света, что объясняется увеличением числа фотонов, происходящим из-за уменьшения их энергии. [c.313]

    При избытке молекул брома свг, можно считать постоянной, а концентрация фотонов /,v характеризуется интенсивностью поглощенного света /. Поэтому скорость фотохимического зарождения цепи должна быть пропорциональна величине У. Ввиду того что все последующие стадии процесса предполагаются одинаковыми, выражение для скорости суммарной реакции отличается заменой концентрации молекулярного брома на интенсивность поглощенного света. [c.315]

    Скорость фотохимических реакций пропорциональна интенсивности действующего света, растет с ростом концентрации вещества и длины пути луча света в растворе. Она обратно пропорциональна частоте света. Это объясняется тем, что рост частоты (V) увеличивает энергию /IV каждого фотона и уменьшает их число. Скорость таких реакций мало зависит от температуры. При увеличении температуры на 10 град она изменяется в 1,2—1,5 раза. Малое значение температурного коэффициента скорости объясняется тем, что за счет поглощения света приобретенная энергия в первичных реакциях настолько большая, что повышение температуры может изменить ее незначительно. [c.279]

    Решение. Скорость фотохимического инициирования выражается формулой (1.2). Согласно (1.15) энергия одного моля фотонов при длине волны 219 нм равна [c.11]

    Отдельно следует рассмотреть фотохимические реакции (протекающие с участием света) координационных соединений. Одна из основных их характеристик — квантовый выход — представляет собой отношение числа прореагировавших молекул или ионов к числу поглощенных фотонов. [c.377]

    Данная эквивалентность справедлива лишь для первичных реакций. Количество молекул, участвующих в фотохимической реакции, может сильно отличаться от числа поглощенных фотонов. Величина у, равная отношению числа Пр прореагировавших молекул к числу поглощенных фотонов, называется квантовым выходом [c.257]

    Отсюда видно, что скорость фотохимической реакции пропорциональна интенсивности света, действующего на вещество, растет с ростом концентрации вещества и длиной I пути луча в растворе. Скорость реакции обратно пропорциональна частоте света. Последнее объясняется тем, что рост V увеличивает энергию hv каждого фотона и уменьшает их количество /o/hv. [c.257]

    Действительно, при избытке молекул Вга величину можно считать постоянной. Концентрация фотонов hv характеризуется интенсивностью поглощенного света /, поэтому скорость фотохимического зарождения цепи должна быть пропорциональной величине /. Ввиду того что все последующие стадии процесса предполагаются одинаковыми, итоговое кинетическое уравнение обычного синтеза НВг должно отличаться от итогового уравнения фотохимического синтеза заменой концентрации молекулярного брома на интенсивность поглощенного света. [c.259]

    Фотоны, энергия которых лежит в пределах указанного выше интервала, могут быть названы фотохимическими. Они способны существенным образом влиять на состояние химических [c.143]

    Фотохимические фотоны отвечают очень узкой области длин воли электромагнитного излучения —всего в один порядок величин, а именно А,—10 —10" слг = 10 ООО ч- 1000 А, что и отвечает квантам с энергиями порядка десятка электронвольт. [c.144]

    Следовательно, энергия излучения, вызывающая радиационно-химические превращения, во много раз превосходит энергию световых фотонов (1 —12 эб), обусловливающих реакции фотохимические. Поэтому, если световые фотоны в основном только возбуждают, то радиационно-химические одновременно и возбуждают и в большей степени ионизируют атомы и молекулы облучаемого вещества. Это обусловливает ряд особенностей радиационно-химических реакций, в процессе которых имеет место превращение (трансформация) энергии излучения в химическую энергию. [c.393]

    Фотохимическое окисление СО в 0. может быть осуществлено под воздействием излучения с длиной волны Д, = 1470 А. Какой частотой обладает это излучение Чему равна энергия его фотона в электрон-вольтах  [c.67]

    Действие света облегчает или вообще делает возможным протекание химических реакций. Широкое применение фотохимических реакций для синтетических целей, избирательность поглощения и высокая энергия поглощаемых фотонов, установление связи между особенностями фотохимических реакций и процессами взаимопревращения электронных состояний — все это вызвало огромный интерес к фотохимии. [c.132]

    Для ряда фотохимических процессов наблюдается поглощение более чем одного кванта излучения одиночной молекулой. Некоторые из этих процессов подчиняются закону Штарка — Эйнштейна они связаны с возбуждением достаточно высоких энергетических состояний молекулы при последовательном поглощении двух или более квантов света, причем каждая ступень такого возбуждения требует одного кванта. В то же время возможно одновременное поглощение более чем одного фотона, что происходит при условии достаточно интенсивного облучения (многоквантовое поглощение, см. разд. 3.9). Наблюдение многоквантовых процессов стало возможным с развитием мощных источников излучения (лазеров). Свет тем не менее и в этом случае поглощается квантованными порциями. [c.12]

    Идея многоквантовых процессов на первый взгляд кажется противоречащей основам квантовой теории. Эйнштейн показал, что наблюдающийся фотоэлектрический эффект согласуется с представлением об излучении как о потоке фотонов, чья энергия определена частотой или длиной волны интенсивность излучения измеряется числом фотонов (в единицу времени), но не влияет на энергию каждого отдельного фотона. Подобные рассуждения применимы и к фотохимическим изменениям. Приведенный в разд. 1.2 закон Штарка — Эйнштейна служил следующим подтверждением идей квантования. Только один фотон необходимо поглотить частице, чтобы вызвать ее различные фотохимические превращения. Следовательно, фотоны с энергией меньшей, чем необходимо для какого-то определенного превращения, например диссоциации, не могут быть эффективны, как бы ни была высока их интенсивность. Очевидно, что если частота излучения не соответствует разнице между двумя энергетическими уровнями молекулы или атома, то поглощение и, следовательно, реакция не могут произойти. Однако в последнее время выполнено большое число экспериментов, [c.73]

    Концентрация энергии двух раздельно поглощенных квантов на одной молекулярной частице была продемонстрирована 1 аиболее четко в экспериментах по сенсибилизированному антистоксовому излучению, хотя этот эффект характерен для всех процессов кумуляции энергии. Объяснение этого кажущегося нарушения закона зависимости энергии кванта от частоты света (соотношения Планка), а также закона Штарка — Эйнштейна приводит к пониманию первичных процессов фотосинтеза, где именно такая концентрация энергии фотона необходима для протекания фотохимических реакций. [c.138]

    Ж. Фотохимические методы. КвантовыЁ выход. Закон фотохимической эквивалентности Эйнштейна гласит, что свет поглощается молекулами отдельными порциями, причем одна молекула может поглотить в один акт только один квант. Путем измерения интенсивности света и длины волны можно количественно определить число фотонов света, поглощенных на протяжении реакции. Данные анализа продуктов такой реакции позволяют вычислить [c.100]

    Ехли реакция идет в газах, находящихся под малым давлением, с участием возбужденных молекул, то возникшие активные молекулы могут дезактивироваться путем испускания света до того, как они столкнутся с реагирующими молекулами. При фотохимическом разложении аммиака квантовый выход зависит от температуры. При изменении температуры от 20° до 500° С величина у изменяется от 0,2 до 0,5. Это объясняется следующими обстоятельствами. Первичный процесс поглощения фотона сопровождается отщеплением одного из атомов водорода  [c.233]

    В фотохимических реакциях, т. е. реакциях, идущих под дсйстбисм спета, главным источником активации молекул реагирующих веществ является световая энергия. Рассматривая поглощение света как взаимодсйстЕис фотонов с молекулами поглощающего вещества и приняв за меру интенсивности света данной длины волны число соответствующих фотонов ослабление света в поглощающем слое толщины х можно выразить уравнением [c.156]

    Роль фотонов, являющихся активирующим фактором в фотохимических реакциях, а также в реакциях, протекающих в электрическом разряде, играют быстрые электроны и в значительно меньшой степени — ионы. Активирующая роль быстрых электропов состоит в том, что при соударении электрона с молоку.той за счет эпергии электрона возникает возбужденная молекула, молекулярпый ион или происходит диссоциация молекулы па нейтральные или ионизованные осколки (атомы, радикалы, ионы). Вероятность передачи эпергии, т. о. вероятность активации электронным ударом, обычно характеризующаяся величиной соответствующего эффективного сечения, зависит от энергии электропов, являясь функцией ял, и строения молекулы (функция возбуждения или функция ионизации). [c.173]

    Опыт показывает, что иногда фотохимические процессы осуществляются под действием излучения, хотя оно совершенно не поглощается реагирующими веществами. Казалось бы, в данном случае имеет место отступление от закона Гроттуса. Однако исследования показали, что эти реакции происходят только тогда, когда п реагирующим веществам примешиваются некоторые посторонние примеси, которые, поглощая световую энергию, передают ее затем реагирующим веществам. Эти примесные вещества получили лазванпе сенсибилизаторов. Механизм действия сенсибилизаторов состоит в том, что молекула сенсибилизатора при поглощении фотона переходит в возбужденное состояние, а затем, столкнувшись с молекулой реагирующего вещества, передает ей избыток своей энергии, вызывая тем самым химическое превращение. Примеров сенсибилизированных реакций можно привести очень много. Так, путем добавления к фотоэмульсии некоторых веществ, выполняющих роль сенсибилизатора, можно значительно повысить ее чувствительность к красным лучам света. Известный всем хлорофилл также является сенсибилизатором фотохимических реакций образования органических веществ в зеленых растениях. [c.175]

    Наиболее важным законом фотохимии является закон фотохимической эквивалентности Штарка—Эйнщтейна. По этому закону каждая молекула, реагирующая под влиянием света, поглощает один квант излучения. Закон Штарка — Эйнщтейна справедлив лишь для первичных реакций. Число молекул, участвующих во всей фотохимической реакции, может сильно отличаться от числа поглощенных фотонов. [c.312]

    Присоединение кислорода к диенам в присутствии ряда красителей служит примером, на котором выясняется роль сенсибилизаторов в фотохимических процессах. Эта роль состоит в том, что сенсибилизатор в первую очередь поглощает фотон, переходя на возбужденный уровень 51. Интеркомбинационная конверсия переводит его далее на триплет-ный уровень. Затем происходит дезактивация сенсибилиза- [c.285]

    Реакции, которые протекают под действием света, называются фотохимическими. Под светом понимается видимый свет, ин-фракрасное и ультрафиолетовое излучения. Эффективность действия света зависит от его энергии чем короче длина волны (т. е. чем больше смещено излучение в ультрафиолетовую об ласть спектра), тем выше энергия излучаемых фотонов и тем сильнее воздействие кванта света на облучаемую частицу — атом, ион или молекулу. [c.47]

    Фотоэмульсия представляет собой суспензию мельчайших зерен бромида серебра (AgBr) в растворе желатины, более или менее равномерно распределенных по всей поверхности пленки. При съемке световые лучи, отраженные от снимаемого объекта (рис. 43, а), попадают на поверхность зерен бромида серебра. За счет энергии фотонов (/iv) происходит фотохимическая реакция разложения  [c.158]

    Обычно различают три типа процессов поглощение, вынужденное излучение и спонтанное излучение. Предположим, что химическая частица имеет два квантовых состояния I и т с энергиями е и вт- Если частица первоначально находится в нижнем состоянии I, то она может взаимодействовать с электромагнитным излучением и поглощать энергию, переходя в состояние т. В обычных процессах поглощение происходит одноступенчато, так что разность между исходным и конечным уровнями точно равна энергии одного фотона излучения следовательно, поглощение излучения происходит лишь при условии 8т—Е1 = Н условие Бора ), Процесс поглощения состоит в потере интенсивности электромагнитного излучения и получении энергии поглощающей частицей. Обратный процесс, когда частица, находящаяся в верхнем состоянии, отдает энергию электромагнитному излучению, известен как вынужденное излучение слово вынужденное указывает, что существует взаимодействие между излучением и возбужденными частицами, вызывающее потерю энергии. Хотя мы не рассматриваем природу взаимодействия частицы и излучения, ясно, что скорость (интенсивность) поглощения или вынужденного излучения пропорциональна скорости столкновений фотонов с поглощающими или излучающими частицами, т. е. изменение интенсивности пропорционально плотности излучения р и концентрации химических частиц. Коэффициент пропорциональности определяет так называемые коэффициенты Эйнштейна В , й/т — коэффициент для процесса поглощения, Вт1 — для вынужденного излучения согласно принципу микроскопической обратимости, Вш = Вт1, и этот же результат можно получить при строгом следовании теории излучения. Скорости поглощения и вынужденного испускания равны В/тПгр и Вт1Птр = = В1тПтр) соответственно, где щ и Пт — концентрации частиц в низко- и высоколежащих состояниях. В случае теплового равновесия Пт всегда меньше, чем П1 [см. уравнение Больцмана (1.4)], и вклад поглощения оказывается более существенным, чем вынужденного испускания. Различие вкладов поглощения и вынужденного испускания определяется соотношением между величиной (вт—е ) и температурой Т. Уже упоминалось, что характерными для фотохимии являются уровни энергии ът--е.1) >кТ и Пт<.П1, поэтому вклад вынужденного испускания в фотохимические процессы в условиях теплового равновесия пренебрежимо мал. Однако в неравновесных ситуациях вынужденным испусканием уже нельзя пренебрегать, и если инверсия заселенности (/гт> () возрастает, то процессы испускания начинают преобладать над поглощением, и в [c.29]

    Энергия фотона может быть значительно увеличена за счет двухфотонного поглощения (следует отличать от двухступенчатого поглощения см. разд. 3.9). Процессы многоквантового поглощения позволяют осуществлять те фотохимические реакции, которые на первый взгляд кажутся невозможными (хотя они вряд ли имеют значения для природных процессов). Как мы объясняли в разд. 3.9, высокая интенсивность лазерного излучения делает возможным одновременное поглощение двух фотонов, и наблюдаются процессы излучения с двухквантово-воз-бужденных уровней. Например, излучение паров цезия на переходе 920з/2- 62Рз/2 (Х = 584,7 нм) может быть возбуждено лазерным излучением с Я = 693,78 нм, хотя при нормальных условиях цези1г прозрачен для красного света этой длины волны. Однако излучение с Я = 693,78 нм соответствует точно половине энергии, требуемой для возбуждения состояния цезия [c.138]

    Этот закон фотохимической эквивалентности А. Эйнтшейна справедлив только для световых квантов, и его применение ограничивается лишь первичными процессами взаимодействия фотона с молекулой. На практике же фотохимическая реакция включает также последующие вторичные процессы, и для описания всей реакции вводится такая характеристика, как квантовый выход, который отражает эффективность реакции. Он удобен для описания экспериментальных фактов и полезен, когда нужно сделать заключение о механизме реакции. [c.155]

    Энергия фотонов видимого и УФ-излучения соответствует разностям молекулярных электронных уровней. Поэтому поглощение таких фотонов связано с переходом электрона с основного уровня Ед на уровень ,. При этом частица становится возбужденной, так как она обладает излишком энергии. Возбуждение существует очень короткое время (10 — 10" с). В одних случаях излишек энергии приводит к расщеплению молекулы и образованию новых веществ (фотохимическая реакция), в других излишек энергии превращается в теплоту, в третьих наблюдается люминесценция. Число возбужденных молекул мало по сравнению с общим числом молекул светопоглощающего вещества, поэтому теплота, выделяющаяся при их превращениях, неощутима. [c.288]


Смотреть страницы где упоминается термин Фотон фотохимический: [c.188]    [c.144]    [c.12]    [c.19]   
Общая химия ( издание 3 ) (1979) -- [ c.192 ]




ПОИСК





Смотрите так же термины и статьи:

Газ фотонный

Фотоны



© 2025 chem21.info Реклама на сайте