Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо технология

    В качестве примера технологии таблетированных катализаторов можно привести схему производства железо-хромового катализатора (рис. У.З). Согласно описанию [7], сульфат железа (II) и хромовый ангидрид растворяют в воде и готовый раствор насосом перекачивают в осадитель 2, снабженный во( душным барботером для [c.179]


    Твердый остаток центрифугирования смеси нефтешлама и растворителя, содержащий 70 % мехпримесей (состоящих из окислов кремния - 59,6 %, алюминия -12,5%, кальция -19,9 %, магния -1,7 % и железа - 9 %), 14,6 % нефтепродукта и 15,3 % воды, считаем целесообразным рекультивировать в смеси с донным нефтешламом по технологии биоразложения в почве. [c.81]

    Для выбора рациональной технологии очистки газа от сероводорода нами испытано несколько методов с использованием в качестве поглотителей сероводорода девонской воды, водных растворов аммиака, каустической соды, моноэтаноламина, хлорного железа, окиси железа, гидрата окиси железа. [c.27]

    На основе использования в качестве поглотителя гидроокиси железа институтом МИНХ и ГП им. И.М.Губкина разработана технология и построена опытно-промышленная установка по очистке газа от сероводорода. [c.27]

    Согласно патенту М, очистка нефтепродуктов, в частности, минеральных масел, от меркаптанов и серосодержащих соединений осуществляется на катализаторе, состоящем из окислов железа. Процесс очистки осуществляется без использования водорода. Однако известный катализатор быстро отравляется и плохо регенерируется. Кроме того, технология приготовления самого катализатора и технология очистки на нем довольно сложна. [c.41]

    Некоторые технологи, использующие окись железа, применяют также конечный защитный аппарат с окисью цинка. Благодаря этому уменьшается возможность проскока сероводорода из системы сероочистки в трубы парового риформинга. Поскольку, однако, для максимальной эффективности парового риформинга необходимо, чтобы концентрация серы была незначительной, надежность стадии сероочистки должна быть одним из основных критериев. Отсюда понятно, почему в фирме Ай-Си-Ай предпочитают использовать одну окись цинка в качестве поглотителя серы. [c.72]

    При синтезе аммиака из азота и водорода в качестве катализатора применяется железо 0,01 % серы в железе заметно снижает каталитическую активность железа, а при 0,1% серы железо полностью теряет каталитические свойства. Некоторые веш,ества отравляют одни катализаторы и не отравляют другие. В обш,ем каждый катализатор имеет свой список ядов. Каталитические яды ограничивают, снижают срок службы катализаторов. В технологии очень важно тш,ательно предохранять катализаторы от отравления, предъявляя специальные требования к аппаратуре и очистке исходных веществ. Иногда действие яда удается использовать для ведения процесса в желательном направлении. Так, например, гидрирование хлористого бензоила в бензольном растворе над платиной приводит через ряд последовательных стадий к образованию толуола  [c.430]


    Изучением металлов вначале в основном занимались геохимики [342], затем, после того как стало известно о вредном действии металлов на технологию переработки и эксплуатационные свойства топлив, ими начали заниматься химики и технологи (табл. 110). Изучение распределения микроэлементов по нефтяным фракциям также выявило определенные зависимости, важные для технологических процессов [344] (табл. 111). Например, железо, кобальт, хром, марганец, рубидий в повышенных концентрациях обнаружены во фракциях тяжелых нафтеновых нефтей. Ртуть, сурьма, скандий, наоборот, обнаружены в более высоких концентрациях в сравнительно легких метановых нефтях. Независимо от типа нефти выделены микроэлементы, для которых отмечена четкая приуроченность, с одной стороны, к легким фракциям, а с другой— к тяжелым (кобальт, хром, железо). [c.300]

    Если же говорить о химической технологии, то наиболее емкое определение было дано Д. И. Менделеевым почти 100 лет назад Технология — учение о выгодных (т. е. поглощающих наименее труда людского и энергии природы) приемах переработки природных продуктов в продукты, потребные для применения в жизни людей... Дело, например, химии изучать получение железа из его руд.., а дело технологии изучить выгоднейшие для этого способы, выбрать из возможностей наиболее приемлемую по выгодности — к данным условиям времени и места... (Брокгауз Ф. А., Ефрон И. А. Энциклопедический словарь.— С.-П., 1901.— Т. 33.— [c.165]

    Принцип использования производственных отходов (комплексное использование сырья, безотходная технология). Превращение отходов в побочные продукты производства позволяет полнее использовать сырье, что в свою очередь снижает стоимость продукции и предотвращает загрязнение окружающей среды. Например, из полиметаллических сульфидных руд при комплексной переработке получают цветные металлы, серу, серную кислоту и оксид железа (III) для выплавки чугуна. Комплексное использование сырья служит основой комбинирования предприятий. При этом возникают новые производства, перерабатывающие отходы основного предприятия, что дает высокий экономический эффект и является важнейшим элементом химизации народного хозяйства. [c.167]

    При попытках предсказать, как будут использоваться обычные виды топлива в черной металлургии, следует учитывать ожидаемые изменения в технологии и конструкциях установок. Они могут быть самыми разнообразными увеличение размеров технологических агрегатов, повышение термического к. п. д. доменных печей (как в Японии) внедрение метода прямого восстановления железа [c.311]

    В ближайшие 10—15 лет газ может найти широкое применение в черной металлургии (табл. 61). Надежность прогноза всегда снижается из-за неопределенности ряда факторов экономического положения производителя стали, использующего более дешевые и более богатые руды подъема экономики после спада с соответствующим ростом потребности в стали степени развития технологии и масштабов роста производства стали из скрапа, снижающих потребность в рудном сырье для доменного процесса времени, необходимого для вытеснения доменного процесса методом прямого восстановления железа ресурсов и цен на конкурирующие виды топлива (природный газ, нефть, кокс, уголь) выделения заводов для производства специальных сталей из состава заводов полного металлургического цикла и передачи их в руки независимых производителей. [c.312]

    Возможно разложение ПХД при контакте ОСМ с льюисовскими кислотами типа галогенидов металлов (хлориды и бромиды алюминия, железа, кальция и ряда других, а также их смеси). Процесс идет в присутствии спиртового раствора гидроксида металла, при температуре > 100°С. При высокой эффективности метода, обеспечивающего снижение содержания ПХД, например в отработанном трансформаторном масле с 500 до < 1 млн , его недостатком является сложность технологии. [c.362]

    Большое значение имеет также удаление из сырья тяжелых металлов (никель, ванадий, железо), содержащихся в виде металлорганических соединений. Указанные металлы отлагаются на катализаторе и снижают его активность. Разработан ряд технологий, позволяющих существенно (на 80-90%) снизить концентрацию тяжелых металлов в сырье гидрокрекинга. Наиболее эффективным методом является предварительное гидрогенизационное облагораживание. [c.258]

    Технология извлечения ионов двухвалентного железа из кислых шахтных вод второго состава состоит в нейтрализации исходной воды известковым молоком до величины рН=8,5+9,0 с [c.122]

    По известной технологии с добавкой высшего оксида железа на основе российских коксов можно изготавливать рядовые графитированные электроды сечением до 350 мм. Нарушения с введением добавки обусловливают снижение сортности и выходов годного. Более широко используется прокаленная смесь коксов СПЗ Сланцы , где снижение серы до 1,0% достигается разбавлением перед прокаливанием российских коксов прикаспийскими. [c.158]


    Технология металлургического производства за последние десятилетия коренным образом изменяется. Так, широкое использование кислорода вызвало быстрое развитие конверторного производства стали. Наряду со значительным увеличением производительности при этом способе уменьшается содержание азота, который в обычных марках стали является вредной примесью. При воздушном дутье парциальное давление азота = 0,79 ат (воздух содержит 79 мол. % N2). Поэтому в соответствии с уравнением (V. 15а) при 1600° С равновесное содержание азота в железе [N1 = 0,043 0,79 == 0,038. Эта величина уменьшается при дутье, обогащенном кислородом. Если, например, оно содержит 40о/ Оз н 60% N2, то -= 0,6 и [N1 = 0,043/6 0,033%. [c.123]

    Это объясняется большой распространенностью железных руд в природе, сравнительной легкостью получения металла из руд, что определяет дешевизну железа, а также высокой прочностью и универсальностью свойств, которыми могут обладать сплавы железа, в зависимости от добавляемых к нему присадок и технологии обработки. [c.152]

    Явление полиморфизма имеет большое значение и в технике. Например, ос- и у-железо значительно отличается по механическим, магнитным и другим свойствам у-структура, обладающая более высокими механическими свойствами, устойчива при температуре выше 910° С, но может сохраниться при быстром охлаждении стали до низких температур. В этом состоит сущность закалки стали. Продолжительное нагревание ниже 910° С ускоряет обратное превращение у->а (отжиг). Переходы кремнезема из одной полиморфной формы в другую при нагревании имеют большое значение в технологии обжига керамических изделий и кремнистых огнеупорных минералов. Широко известным примером полиморфных превращений в технике является оловянная чума —переход белого олова в серое. [c.54]

    Известняковые горные породы обычно содержат различные примеси, главным образом, глинистых веществ, доломита, кварца, оксидов железа и т. д. Количество примесей колеблется в довольно значительных размерах. Даже сравнительно чистые известняки содержат 2—3% примесей. В технологии вяжущих веществ наиболее широко применяют плотные известняки и мел. [c.196]

    Если же говорить о химической технологии, то наиболее емкое определение было дано Д. И. Менделеевым почти 100 лет назад Технология — учение о выгодных (т. е. поглош ающих наименее труда людского и энергии природы) приемах переработки природных продуктов в продукты, потребные для применения в жизни людей... Дело, например, химии изучать получение железа из его руд.., а дело технологии изучить выгоднейшие для этого способы, выбрать из возможностей наиболее приемлемую по выгодности — к данным условиям времени и места... (Брокгауз Ф. А., Ефрон И. А. Энциклопедический словарь.— С.-П., 1901.— Т. 33.— С. 132). Обратите внимание, что главным является не просто получение целевого продукта, чем мог бы довольствоваться химик-исследователь, а массовое получение продукта при минимальных затратах ресурсов труда, сырья, энергии, минимальных капитальных вложениях и минимальном ущербе для человека и окружающей природной среды. [c.165]

    Новейшим направлением в производстве стали является прямое восстановление железной руды водородом, природным или генераторным газом, минуя доменные процессы. При этом получают губчатое железо, состав которого в отличие от доменного чугуна очень близок к стали. Мартеновский способ в настоящее время также устарел. Гораздо более прогрессивными являются конверторный и электроплавильный. Происходит бурное развитие технологии непрерывной разливки стали благодаря ее исключительно высокой эффективности. Основными направлениями экономического и социального развития до 2000 г. предусмотрено увеличить выплавку конверторной стали и электростали в 1,3—1,4 раза, разливку стали непрерывным способом не менее чем в 2 раза и выпуск металлических порошков более чем в 3 раза. [c.182]

    Кремниевая кислота Н2510з легко образует пересыщенные растворы, в которых она постепенно полимеризуется и переходит в коллоидное состояние — гель. При его высушивании образуется пористый продукт — силикагель. Размер и распределение пор, форма зерен силикагеля зависят от технологии его производства. Отечественная промышленность выпускает силикагели марок КСМ, МСМ, ШСК. Первая буква марки силикагеля указывает на размер зерен К — крупный (2,7—7 мм), М — мелкий (0,25— 2 мм), Ш — шихта (1,5—3,6 мм) последняя буква —на пористость силикагеля М — мелкопористый К — крупнопористый. Косвенной характеристикой размера пор может служить насыпная плотность у мелкопористого она достигает 700 г/л, у круп-нопористого — 400—500 г/л. Удельная поверхность пор в зависимости от марки составляет 100—700 м /г. Механическая прочность выше у мелкопористого силикагеля. Качество силикагеля зависит, кроме того, от содержания примесей. Наличие в составе силикагеля оксидов металлов (алюминия, железа, магния и т, п.), являющихся активными катализаторами, вызывает нежелательные явления при регенерации — разложение адсорбированных веществ, образование смол, кокса и т. д., что резко снижает активность силикагеля. [c.89]

    И а г о р н ы й В. Г., Т е р е щ е н к о Л. Я., 3 у б о в В. В., Химическая технология, Республикан. межвед. сборник, вып. 7, Киев, 1967, стр. 50. Очистка газов от сероводорода абсорбцией растворами солей железа. [c.273]

    Плавленые катализаторы делятся на два типа окиспйе и металлические. Технологию производства плавленых окисных катализа- торов лучше всего рассмотреть на примере производства катализаторов синтеза аммиака, получаемых путем сжигания железа в пламени кислорода с образованием расплава магнитной окиси железа. По патентам Баденской анилиновой и содовой фабрики (22 ] катализатор готовят сжиганием в кислородном пламени железа высокой степени чистоты с добавками специальных промоторов. Получаемый сплав размельчают до частиц нужных размеров. [c.185]

    При необходимости высокой степени очистки и при небольших количествах серы выгодно использовать жидкофазные процессы. Для выяснения влияния различных факторов на длительную работу таких установок сероочистки, в СевКавНИИгаз и ВНИПИГаз проведены опытно-промышленные исследования на установках очистки нефтяного и природного газов в Дагестанской АССР и Узбекской ССР (месторождение Сарыташ) раствором гидроокиси железа [73]. Однако низкое качество серы, получаемой в процессе регенерации раствора, и унос Рв(ОН) значительно снижают технико-экономические показатели установки сероочистки. ВНИИГаз разработал несколько технологий, позволяющих проводить обработку серных шлаков с получением из них товарных продуктов и возвращения в цикл очистки унесенной гидроокиси железа [74]. [c.137]

    ВНИИУСом предложено применять абсорбент на основе водного комплексоната железа [30]. Согласно разработанной технологией, кислый газ непрерывно обрабатывается абсорбентом в эжекторе и прямоточном абсорбере. Доочистка газа осуществляется в сепараторе, в который также подается небольшое копичество абсорбента. Насыщенный абсорбент поступает в регенератор, где происходит окислительная регенерация кислородом воздуха [18]. [c.137]

    ТатНИПИнефть усовершенствовал эту технологию [19] (рис. 4.28). Кислый газ I под давлением не менее 0,15 МПа поступает через трубчатый распределитель в куб абсорбера 1 специальной конструкции, заполненный абсорбентом V (водный раствор комплексоната железа и этилеидиаминтетрауксусной кислоты). [c.138]

    Оставшаяся негазифицированная часть угля, которая представляет собой достаточно реакционноспособную форму обожженного угля, выводится со стороны поддона и направляется в генератор водорода. Последний работает в обычном режиме подачи парокислородной смеси в псевдоожиженный слой обожженного угля при отсутствии кислорода работа генератора возможна и на одном паре, однако в этом случае необходим электронагрев слоя. Действующая в исследовательском центре Института Газовой Технологии установка работает именно в этом варианте. Исследуется третий возможный метод производства водорода, основанный на взаимодействии пара с железом и последующем восстановлении железа обожженным углем. [c.162]

    Физические и химические свойства. Железо имеет ряд полиморфных видоизменений. Полиморфные превращения железа имеют очень большое значение в технологии металлов, так как они обусловливают структуру и свойства сплавов. Устойчивое при обычной температуре а-железо характеризуется объемноцептри-рованной кубической решеткой при 769°С оно теряет свои магнитные свойства — происходит 3-превращение без изменения структуры решетки при 908°С осуществляется переход в -железо с гранецентрированной кубической решеткой, при 1390°С переход в 6-железо с объемно центрированной кубической решеткой, а прн 1534°С плавление. [c.300]

    Второй тип контракта относится к случаю, когда клиент создает технологию, а подрядчик должен воплотить ее в "железе". Примерную форму такого контракта можно найти в [1СЬешЕ,197ба]. В таком случае лишь малая доля ответственности по обеспечению безопасности производства лежит на подрядчике, в основном обеспечение безопасности - это обязанность клиента. Подрядчик обычно мало знает о технологическом процессе, чаще всего ему специально не дают возможности полностью ознакомиться с технологией, чтобы не происходила утечка информации к конкурентам. Конечно, подрядчик может внести свою лепту в обеспечение безопасности, например, в плане уменьшения производственного травматизма, но обеспечением безопасности технологического процесса занимается клиент. [c.521]

    Выбранные условия осаждения (вблизи нулевого заряда суспензии) обеспечивают получение продукта с минимальным содержанием хемосорбированных ионов, благодаря чему достигается высокая чистота носителя от натрия. Низкое содержание железа достигается очисткой алюминатного раствора. Технологией предусмотрено (если это требуется) введение фтора — либо при осаждении (добавка НР к НК Оз при горячем осаждении), либо отмытую лепешку ренуль-пируют и вводят в пульпу нужное количество НР, которая полностью поглощается осадком (136, 137, а. с. СССР 167840]. [c.66]

    Малая стоимость катализатора— определяющий фактор как для неподвижного, так и для взвешенного слоя, несмотря на то, что стоимость израсходованного катализатора (потери его) составляют, как правило, лишь незначительную часть себестоимости продукта. Снижение себестоимости катализатора достигается, в основном, заменой дорогостоящих пЛаТинБГ, серебра и других металлов, входящих тг сисгав "ксжтятшШЗГмасс, менее активными, но и более дешевыми окислами железа, хрома, ванадия и т. д. Тонкое диспергирование катализатора носителе также позволяет снизить стоимость. Большое значение в стоимости катализаторов имеет рационализация технологии, полное использование всех видов сырья, применение современной, интенсивной, непрерывно работающей аппаратуры [I]. [c.61]

    В качестве природных катализаторов для ряда процессов (кре кинг, этерификация, полимеризация, производство серы из серии стых газов и другие) могут быть использованы боксит, кизельгур железная руда, различные глины [200—206]. Природные катализа торы дешевы, технология их производства сравнительно проста Она включает операции размола, формовки гранул, их активацию Применяют различные способы формовки (экструзию, таблетиро ввние, грануляцию на тарельчатом грануляторе), пригодные для получения гранул из порошкообразных материалов, увлажненных связующими. Активация исходного сырья заключается в удалении из него кислых или щелочных включений длительной обработкой растворо м"щелочи йли кислоты при повышенных Температурах. При активации, как правило, увеличивается поверхность контактной массы. Наибольшее применение в промышленном катализе нашли природные глины монтмориллонит, каолинит, бейделлит, бентониты и др. Они представляют собой смеси различных алюмосиликатов и продуктов их изоморфных замещений, а также содержат песок, известняк, окислы железа, слюду, полевые шпаты и другие примеси. Некоторые природные алюмосиликаты, например, каолин, обладают сравнительно высокой каталитической активностью в реакциях кислотно-основного катализа уже в естественном виде, после сушки и прокаливания. Большинство других требует более глубокой предварительной обработки кислотой при соответствующих оптимальных условиях (температура, концентрация кислоты, продолжительность обработки). В активированных глинах возрастает содержание SiOa, а количество КагО, СаО, MgO, AI2O3 уменьшается. Часто для уменьшения потерь алюминия в глинах к активирующему раствору добавляют сол , алю.мниия [46]. [c.168]

    Иониты так называемого ядерного класса, изготовляемые по специальной технологии, характеризуются высокой степенью чистоты и содержат < 200 mz a железа, < 100 mz .i меди, < 100 мг1л свинца и других тяжелых металлов. К ионитам этого класса относятся, помимо указанных в таблице, также иониты Bio-Rad A. G. и Bio-Rex, изготовляемые фирмой 1 для нужд лабораторий. [c.164]

    Наплавку выполняют по установленной технологии, чтобы избежать коробления деталей с подогревом детали до 400— 500 °С, со ступенчатым и разбросным наложением наплавленных валиков. Присадочным материалом могут служить стальная напла1В0Чная проволока (ГОСТ 110543— 82), смеси порошков для наплавки (ГОСТ 4 1546—75) марок С-2М, ФБХ6-2, БХ, КБХ, состоящих из железа, хрома, марганца, кремния и бора. Порошки применяют для дуговой наплавки износостойкого [c.266]

    Железооксидные катализаторы обладают высокой механической прочностью, технология их получения проста. Для их приготовления могут быть использованы широко доступные реактивы, при этом входяище в состав последних примеси, за исключением ионов хлора, не оказывают влияния на каталитическую активность полученного оксида железа в окислении сероводорода. Каталитические свойства оксида железа зависят от температуры прокаливания образцов. С ее повышением значительно уменьшается удельная поверхность катализаторов и удельный объем пор. При этом снижается активность, однако, возрастает селективность в образовании элементной серы. По известным в настоящее время сведениям, оптимальной температурой прокаливания для железооксидных ка-гализаторов является 600-700 С. Для предотвращения спекания оксида железа в процессе приготовления катализаторов может быть применен метод нанесения актив юй массы на пористый носитель. При этом в катализаторе сохраняются поры среднего диаметра, о гспечивающие высокую каталитическую активность. Нанесенные катализаторы имеют перед массовыми еще и то преимущество, что они проявляют более высокую селективность и обладают высокой механической прочностью. [c.66]

    Па технологию и качество карбида кремния влияют примеси, содержащиеся в шихте. Они способствуют переходу окиси крем-ння в устойчивую форму и снижают скорость реакции. Вредными примесями в шихте являются окислы алюминия, железа, магния, кальция и других металлов, а также сера. Окиси глинозема, магния и кальция склонны к образованию силикатов, способствующих спеканию шихты, а окись железа приводит к образованию сплавов железа с кремнием. Расход электроэнергии на 1 т карбида кремния— от 8000 до И ООО квт-ч, что составляет 25—347о всех затрат. Суммарный расход углеродистого материала (аитрацит + иефтяной кокс) мало зависит от сорта производимого карбида кремния и колеблется, в сравнительно узких пределах (1200—1300 кг/т готового продукта). Из этого количества 50% падает на нефтяной кокс. В дальнейшем предполагается увеличение этой доли, что диктуется экономическими соображениями. Стоимость углеродистого материала составляет 25% от заводской себестоимости, поэтому затраты на восстановитель весьма ощутимо сказываются на стоимости готового продукта. [c.32]

    Технология изготовления. Конструкция теплообменника зависит от требований технологии производства, в частности от технологии соединения труб с трубными досками. Наиболее перспективными, по-видимому, являются гелиеводуговая сварка и высокотемпературная пайка тугоплавким припоем — сплавом железа, хрома, никеля, кремния и бора с точкой плавления около 1100° С. Для осуществления пайки твердым припоем необходима атмосфера водорода при отсутствии влаги (см. гл. 2). В некоторых теплообменниках применена сварка, в других используется пайка, некоторые теплообменники были сначала сварены, а затем пропаяны. Для выявления лучшей технологии были проведены испытания на длительную прочность соединений. Обнаружилось, что повреждения были одинаковыми как в случае сварки, так и в случае пайки — в обоих вариантах имели место случайные свищи. Одной из наиболее существенных конструктивных проблем является вопрос концентрации напряжений в основании сварного шва в трубной доске. На рис. 2.5 показана фотография микрошлифа такого шва, на которой ясно видны места сильной концентрации напряжений на конце трещины, упирающейся в сварочный шов. Хотя влияние такой концентрации напряжений можно уменьшить путем развальцовки трубы в трубной доске, последнюю операцию не всегда легко осуществить при малом диаметре труб. Возникающие в стенке трубы при вальцовке остаточные напряжетшя сжатия имеют тенденцию к релаксации при высоких температурах, особенно в условиях переменных температурных режимов, связанных с резкими изменениями температуры жидкости, текущей в трубах. Следовательно, имеются весьма веские доводы в пользу припаивания труб к трубной доске твердым припоем. При последнем способе получается хорошее со всех точек зрения металлическое сцепление трубы с трубной доской. Было выявлено, что если трубы свариваются, а затем еще и пропаиваются, то при этом достигается высокая монолитность конструкции. Действительно, более 7000 сваренных, а затем пропаянных соединений труб с трубной доской были подвергнуты длительным испытаниям, при этом не обнаружилось ни одного свища [14]. [c.271]

    Как видно из табл 6.2, маслоотходы после регенерации по рассмотренной технологии имензт низкие значения зольности, коксовых чисел, снижено содержание железа в мылах, улучшилось эмульгирующее свойство масел. [c.195]

    При проведении процесса на катализаторах группы железа, изменяя условия процесса, можно получать УНТ диаметром от 7-10 нм и до 7-10 im можно получить спиралевидные вьющиеся волокна и пучки волокон строго определенной направленности. Используя другие катализаторы, в частности Zn или фуллереновые пленки, можно получить на подложке плотные пленки из УНТ. Однако эти пленки не всегда имеют хорошее сцепление с поверхностью подложки и часто отслаиваются. Разработанная авторами технология позволяет получать ориентированные в одном направлении УНТ (диаметром 2-15 нм длиной 1,5 (im) на медной подложке. [c.211]

    В 1976-1980 гг. на заводе был осуществлен и ряд других технологических разработок. Так, вместо пропитки дефицитным льняным маслом под руководством В.П.Фокина была разработана пропитка химанодов водной эмульсией лака ГФ-61. В производстве графитированных электродов стал применяться новый, неплохого качества нефтяной кокс Красноводского НПЗ. Было освоено использование в ниппельном соединении конструкции со стопорными пробками, препятствующими развинчиванию. Технологи начали использовать в рецептуре электродов добавки оксида железа. Первые же партии на КамАЗе показали неплохие результаты по удельному расходу электродов. [c.176]

    Непрерывно совершенствуется технология подготовки анодного материала и вводятся новые методы очистки растворов, в частности очистка никелевого раствора от меди и железа осуществляется экстракцией жирными кислотами. Осуществлен переход на обжиг в кипящем слое сульфида никеля (никелевой фракции, получаемой в результате селективной флотации файнштейна по методу И. Н. Масляницкого). [c.386]

    Гетерогенный катализ. Еще шире в технологии применяют гетерогенный катализ. Катализаторы на основе железа используют при фиксации азота, на основе никеля — при гидрировании органических соединений (в частности, растительных жиров), платйны — при окислении аммиака, меди и золота — при синтезе смол и пластмасс, хрома и цинка — при производстве метанола, ванадия — при производстве серной кислоты. Гетерогенный катализ используется при крекинге нефти, получении многочисленных органических соединений. [c.157]

    Аминобензол, анилин (СеНвЫНа), получают либо восстановлением нитробензола железом (или другим металлом) н кислотой, либо более современным способом каталитического гидрирования. Это ядовитая жидкость с Т. кип. 184 С является одним из основных исходных веществ в органической технологии. Большая часть анилина идет на производство 2-меркаптобензотиазола, который используется для ускорения вулканизации каучука. Анилин применяется также для выработки красителей, лекарственных препаратов и синтетических смол. [c.259]


Смотреть страницы где упоминается термин Железо технология: [c.50]    [c.157]    [c.4]    [c.251]   
Технология электрохимических производств (1949) -- [ c.504 ]




ПОИСК





Смотрите так же термины и статьи:

Железо в химии и технологии



© 2025 chem21.info Реклама на сайте