Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо, комплексы с группой

    Гиромагнитное отношение и ковалентность в комплексах группы железа. [c.155]

    Распределение спиновой плотности в комплексах группы железа по данным радиоспектроскопических исследований [c.177]

    Сведения о спиновой плотности на координирующих атомах лигандов могут быть получены также и путем прямых измерений констант сверхтонкого взаимодействия неспаренных электронов с ядрами этих атомов из спектров ЭПР и ЯМР. Полученные таким путем данные о спиновых плотностях для ряда комплексов группы железа приведены в табл. 20. Из таблицы видно, что значения спиновых плотностей на координирующих атомах N и О лежат в пределах 0,01—0,1, что согласуется с оценками значений р , полученными из спиновых плотностей на центральном атоме. Следует отметить, что спиновая плотность па ионах галоидов попадает в тот же интервал значений, что и для атомов азота и кислорода. [c.178]


    ИК-спектры всех полученных комплексов в области валентных колебаний 8—0 (1055 см- ) содержат ряд полос, среди которых полосу 950— 960 по-видимому, следует отнести к колебаниям координированной на железо сульфоксидной группы. Таким образом, в результате координации частота 8—О понижается примерно на 100 сл1 . Из этого можно сделать вывод, что координация с железом в полученных комплексах осуществляется с участием кислот)ода, а не серы сульфоксидной группы [5, 6]. [c.184]

    Как правило, атака я-аллильного лиганда комплексов никеля и палладия окисью углерода, ртутью, нонакарбонилом железа осуществляется со стороны незамещенного наиболее экранированного атома углерода (Сз) я-кротильной группы. [c.111]

    Например, для всех растений жизненно важное значение имеет зеленый координационный комплекс магния, известный под названием хлорофилла. Комбинация магния и координированных вокруг него групп придает хлорофиллу электронные свойства, которыми не обладает данный металл или его ион в частности, хлорофилл способен поглощать видимый свет и использовать его энергию для химического синтеза. Все организмы, которые дышат кислородом, нуждаются в цитохромах, координационных соединениях железа, которые играют важную роль в процессах расщепления и сгорания пищи, а также в накоплении высвобождающейся при этом энергии. Более сложные организмы нуждаются в гемоглобине-еще одном комплексе железа благодаря координированным к железу группам гемоглобин связывает молекулы кислорода, не окисляясь при этом. Многие области биохимии на самом деле представляют собой не что иное, как прикладную химию координационных соединений переходных металлов. В данной главе мы познакомимся со строением и свойствами некоторых координационных соединений. [c.205]

    Атомы железа обычно образуют комплексы с октаэдрической координацией. Что же происходит с двумя координационными положениями выше и ниже плоскости порфиринового цикла В цитохроме с группа гема находится в углублении на поверхности молекулы белка (рис. 20-23). От каждой стенки этого щелевидного углубления к гему направлено по одному лиганду с одной стороны атом азота с неподеленной парой, принадлежащий гистидиновой группе белка, а с другой стороны атом серы с непо- [c.257]

    Сильное поле. Правило Гунда применяется к каждой группе -уровней, и образуется низкоспиновый комплекс. Так, например, в октаэдрических комплексах железа мы находим [c.17]


    Если теперь вернуться к рассмотрению механизма влияния алкильных групп в бензоле, то следует в первую очередь отметить, что их накопление приводит к уменьшению потенциала ионизации и увеличению электронодонорности кольца, а это облегчает образование Л-комплексов. Следовательно, стабильность я-комплексов возрастает от бензола к мезитилену. Между тем считают , что гидрирование протекает тем легче, чем устойчивее комплекс катализатора с гидрируемым веществом. Данные, полученные при гидрировании на каталитических системах триэтилалюминий — ацетилацетонаты железа и никеля, подтверждают это предположение. Однако в случае каталитических систем триэтилалюминий — ацетилацетонаты хрома и молибдена увеличение числа алкильных групп л бензольном кольце приводит к увеличению кажущейся энергии активации, хотя устойчивость я-комплексов при этом должна расти в том же ряду (рис. 8). [c.147]

    Такие циановые соли принадлежат к группе координационных соединений (Вернер) или соединений высшего порядка. Остатки циана симметрично сгруппированы в пространстве вокруг центрального атома, координационного центра (в нашем случае — железа), с которым образуют внутреннюю сферу , или комплекс. Последний настолько [c.233]

    В таких комплексах центральный атом и связ анные с ним группы расположены в одной плоскости. Аналогично построенные, но менее прочные / п+ -комплексы аминокислот часто обладают свойством повышать содержание сахара в крови, подобно гормону поджелудочной железы глюкагону (стр. 885). Комплексы аминокислот с тяжелыми металлами могут стабилизоваться при участии боковых [c.354]

    В рассматриваемом аспекте для химизма, механизма, кинетики и термодинамики процесса карбонизации большое значение имеет присутствие в нефтяном сырье различных функциональных групп, содержащих кислород, серу и азот, и их термическая стабильность (химическая активность), металлов, их соединений и комплексов, обладающих каталитическим действием на реакции распада, дегидрирования, полимеризации, конденсации и другие. С этой точки зрения,особо следует отметить такие металлы, как ванадий, никель, хром, молибден, кобальт, алюминий, железо и другие. [c.11]

    Высокая катодная поляризация при восстановлении ионов никеля и других металлов этой группы (Со, Ре) объясняется с различных точек зрения, согласно которым затруднение процесса восстановления обусловлено большой склонностью к гидратации ионов никеля, замедленностью их разряда и перехода гидратированных ионов металла в промежуточные активированные комплексы, адсорбирующиеся на катоде и, т. д. В последнее время А. Т. Ваграмяном с сотр. было высказано [39] предположение, что трудность восстановления ионов металла группы железа связана с адсорбцией чужеродных частиц на поверхности электрода в процессе электролиза. [c.406]

    Винная кислота СООН — СНОН—СНОН —СООН образует со многими металлами очень прочные комплексные соединения, в которых ионы металла замещают атомы водорода как карбоксильных, так и спиртовых групп. Так, например, железо образует комплекс следующего строения  [c.107]

    Следует напомнить, что методы рентгенографического структурного анализа не позволяют провестп различия между атомалш двухвалентного и трехвалентного железа. Кроме того, не установлено твердо н положение групп СН. Однако есть основанпе предполагать, что группы СН расположены вдоль ребер куба, п еслп атом углерода и атом азота связаны с атомами железа, то мы должны 1юлучить бесконечный трехмерный комплекс, в основе которого лежит группа Ре — С—N — Ре, а не отдельные атомы железа и группы Ре(СН), . Повидимому, это предположение согласуется с плохой растворимостью таких комплексных цианидов и с том фактом, что из берлинской лазури [c.517]

    Известно, что азосоединения каталитически окисляются перекисью водорода, причем катализаторами являются ионы хрома, меди и железа [1]. Особенно быстро, по уравнению первого порядка окисляются азосоединения, полученные на основе хромотроповой кислоты (1,8-диоксинафталин-3,6-ди-сульфокислоты) и Н-кислоты (1-амино-8-нафтол-3,6-дисульфокислоты). Сделано предположение, что реакции окисления азосоединений предшествует связывание иона катализатора в комплекс группами  [c.251]

    Лаки 1-нитрозопроизводных арилидов 2-окси-З-нафтойной кислоты. Нафтол AS и его аналоги в спиртовом растворе, пр действии различных количеств железной соли в присутствии азотистой кислоты, образуют железные комплексы двух основных типов, представленные (VIII) и (IX). В образовании комплекса первого типа принимает участие амидная группа в имидольной форме это подтверждается тем, что N-бензил-Нафтол AS образует, даже при избытке хлорного железа, комплекс только типа (IX) [c.452]

    Ре(С0)5 взаимодействует с фторолефинами с образованием производных (олефин)Ре(СО)4, которые могут быть я- или ст-связанными [42], а с перфтор-бутадиеном дает С4РвРе(СО)4 (ср. стр. 187), для которого нет никаких доказательств Сандвичевой структуры [43], но связь между двумя наиболее далеко отстоящими от железа фторуглеродными группами приближается по своему характеру к двойной. При облучении УФ-светом перфторцикло-пентадиена и пентакарбонилжелеза образуется комплекс, в котором два атома железа связаны фторуглеродным мостиком [3]  [c.230]


    Циклогептатриен замещает в пентакарбониле железа три группы СО. В гексакарбониле хрома он также замещает три карбонила (Уилкинсон), образуя комплекс, который, теряя гидрид-анион, отбираемый, например, катионом трифенилметила (Добен, Хоннен), превращается в тропилийтрикарбонилхром  [c.468]

    Во- первых, в пероксидазе не обнаружено взаимодействия железа гем-группы с остатком молекулы гистидина в белке, а это означает, что пятое координационное место железа либо занято другим лигандом, либо вакантно, что является существенным признаком, отличающим строение активных центров пероксидазы и каталазы. Это влияет на характер и прочность связи железа с Н2О2 и вторым субстратом АНг- Кроме того, для пероксидазы показано, что по мере образования комплексов с обоими субстратами по схеме [c.214]

    Как уже упоминалось, сомнительно, чтобы большинство элементов входило в первичные соединения нефти. Однако ванадий, медь, никель и отчасти железо образуют особую группу. Эти металлы способны давать комплексы с ниррольными пигментами, происходящими из хлорофилла и гемоглобина, с образованием устойчивых соединений, растворимых в нефти, [c.45]

    Как видно из приведенных выше экспериментальных данных, путем подбора соответствующих катализаторов можно синтезировать полидиены с любой микроструктурой. В первую очередь, микроструктура полимеров определяется природой переходного металла катализатора. Как правило, соединения металлов VIII группы (кобальта, никеля, родия, железа), а также титана и ванадия являются более подходящими для синтеза 1,4-полибутадиенов комплексы металлов V и VI групп (хрома, молибдена, вольфрама, ниобия) и палладия дают полимеры с боковыми винильными звеньями. В то же время стереоселективность катализаторов может быть существенно изменена путем введения в состав каталитических комплексов различных лигандов. [c.105]

    В отличие от карбоксилсодержащих каучуки со сложноэфирными группами могут получаться полимеризацией не только в кислой, но и в слабощелочной среде (предпочтительно при pH < 10), что позволяет использовать такие доступные биодеструктируемые эмульгаторы, как мыла синтетических жирных кислот, обычно в количестве 4 ч. (масс.) на 100 ч. (масс.) основных мономеров. Применяются обычные инициирующие системы — гидроперекись+ + ронгалит + трилоновый комплекс железа (для БЭФ и БСЭФ) и персульфат-4-триэтаноламин (для БНЭФ) при температуре полимеризации 5—10 и 30 °С соответственно. В отличие от других функциональных каучуков (карбоксилсодержащих, метилвинилпи-ридиновых) каучуки со сложноэфирными группами не содержат ионизируемых при коагуляции групп, вследствие чего процесс их выделения идентичен выделению аналогичных каучуков без функциональных групп. [c.406]

    Одним из веществ, обнаружение которых в метеоритных образцах убедительно подтверждает гипотезу существования внеземной жизни, является порфин (рис. 20-18), а также его производные, порфирины. Порфирины представляют собой плоские молекулы, обладающие свойствами тетраден-татных хелатных групп для металлов Mg, Fe, Zn, Ni, Со, u и Ag, с которыми они образуют плоско-квадратные комплексы, показанные на рис. 20-19. Один из таких комплексов с железом, имеюпщй боковые цепи, изображен на рис. 20-20 и называется группой гема. Порфириновый комплекс магния с органической боковой цепью, показанный на рис. 20-21, представляет собой х.юрофилл. [c.253]

Рис. 20-20. Комплекс железа с порфи-рином. Комплекс, имеющий указанные здесь боковые группы, называется группой гема. Рис. 20-20. <a href="/info/1687">Комплекс железа</a> с <a href="/info/191165">порфи</a>-рином. Комплекс, имеющий указанные здесь <a href="/info/97185">боковые группы</a>, называется группой гема.
    С помощью МБ-спектроскопии были исследованы некоторые системы со спиновым равновесием между высоко- и низкоспиновыми комплексами железа(П). Типичными являются результаты [20], полученные для гексадентатного лиганда 4-[(6-Я)-2-пиридил]-3-азабутенил замина. Спектры соединений с двумя или тремя метильными группами К характеризуют при 77 К низкоспиновое железо (II) (М1), тогда как при 294 К большой изомерный сдвиг и большое квадрупольное расщепление характерны для высокоспинового железа (П) ( Т2). При промежуточных температурах в спектре наблюдаются обе формы. Эти данные говорят [c.302]

    Отравление ионами металлов свойственно платиновым, палладиевым и другим катализаторам из металлов VIII группы и благородных металлов других групп. Было обнаружено, что каталитическая активность платиновых и палладиевых катализаторов гидрирования понижается в присутствии ионов ртути, свинца, висмута, олова, кадмия, меди, железа и других. Сравнение токсичности ионов различных металлов по отношению к платиновым катализаторам гидрирования приводит к заключению, что токсичность свойственна, по-видимому, тем металлам, у которых все пять орбит d-оболочки, непосредственно следующих за s- и р-валептными орбитами, заняты электронными парами или по крайней мере одиночными -электронами. По мнению Мэкстеда, отсюда вытекает, что отравление платины и подобных ей катализаторов ионами металлов включает, вероятие, образование адсорбционных комплексов, которые можно рассматривать как интерметаллические соединения с участием d-электронов в образовании интерметаллических связей. [c.54]

    Соли Ре + во мнбгом похожи на соли Mg +, что обусловлено близостью радиусов ионов (у Nig + г, = 66 пм, у Ре + п — 74 пм] , Это сходство относится к свойствам, определяемым, в основном, межионными и ион-дипольными взаимодействиями (кристаллическая структура, энергия решетки, энтропия, растворимость в воде, состав и структура кристаллогидратов, способность к комплексообразованию с лигандами, обладающими слабым полем). Наоборот, не проявляется аналогия в свойствах, связанных с электронными взаимодействиями (способность к реакциям окисления-восстановления, образование комплексов со значительной долей "ковалентной связи). На рис. 3.127 сопоставлены энтропии кристаллических соединений Ре + и М +. При сравнении рис. 3.127 и 3.125 прослеживается степень сходства и различия двухвалентных состояний элементов семейства железа между собой и между Ре и Мд, принадлежащим к разным группам периодической системы элементов. [c.562]

    Метод основан на образовании окрашенного комплекса ионов железа с сульфосалициловой кислотой. В зависимости от pH раствора возможно образование трех комплексов различного состава, имеющих различную устойчивость и окраску моно — фиолетовый, ди—красный, три — желтый. Комплексообразова-нне протекает за счет о-гидрокси-о -карбокси- функциональноаналитической группы, сульфо-группа является аналитико-ак-тивной группой. Соответствующие реакции комплексообразования можно представить следующими условными схемами  [c.70]

    Донорно-акцепторное взаимодействие подразумевает комплементарную пространственную упорядоченность центров связывания в доноре и акцепторе. Поэтому в любом синтетическом до-норно-акцепторпом комплексе центры связывания (полярные и дипольные) и стерические барьеры должны быть локализованы определенным образом, чтобы структуры обоих компоиентов соответствовали друг другу. Свойства существующих в природе акцепторов, мицелл и циклодекстринов рассмотрены в следующих разделах данной главы. Простетические группы гемоглобина, хлорофилла или витамина В12 также принадлежат к этой категории, поскольку селективно связывают ионы железа, магния и кобальта. [c.267]

    При pH 9—11,5 образуется комплекс, растворы которого окрашены в желтый цвет (Ямакс = 416 нм, е = 5,8-]0 ). Относительно состава данного соединения ранее существовала тачка зрения, что при его образовании присоединяется третья молекула сульфосалициловой кислоты. Однако в более поздних исследованиях высказывается точка зре ния, что третья молекула реагента не присоединяется, а лишь отщепляется ион водорода оксигруппы и в результате упрочнения связи железа с кислородом этой группы наблюдается сдвиг максимума поглощения в коротковолновую область спектра. [c.57]

    Вторая группа. Осаждаемый металл предварительно связывают в прочный комплекс так, чтобы после прибавления осадителя не происходило реакции. Затем создают условия, чтобы комплекс медленно разлагался. В качестве примера можно назвать осаждение сернокислого бария. Соль бария смешивают с этилендиаминтетрааце-тато.м натрия в щелочной среде. В этих условиях прибавление сульфат-ионов не вызывает осаждения сернокислого бария. Далее постепенно подкисляют раствор анионы комплексообразователя связываются в молекулу этилендиаминтетрауксусной кислоты. Комплекс бария довольно медленно разлагается освобождающиеся ионы бария постепенно реагируют с сульфат-ионами. Образуется крупнокристаллический осадок сернокислого бария. Кроме замедленного процесса кристаллизации здесь имеет значение связывание многих посторонних ионов, например железа, в прочные комплексы стем же комплексообразователем. Таким способом получаютчистыйосадок сернокислого бария даже в присутствии больших количеств железа. [c.80]

    Водородные ионы спиртовых групп винной кислоты очень прочно связаны. Прибавляя щелочь, облегчают отрыв этих водородных ионов от аниона винной кислоты и таким образом облегчают образование виннокислых комплексов металлов. Поэтому комплексные соединения многих металлов с винной кислотой обычно образуются и становятся более прочными именно в щелочной среде. Таким образом, при введении гидроокиси аммония или щелочи в раствор, содержащий ионы железа и соль винной кислоты, не происходит осаждения гидроокиси железа, а образуется прочный виннокислый комплекс железа. Никель образует с винной кислотой непрочный комплекс, и поэтому присутствие виннокислых солей не мешает осаждению диметиглиоксимата никеля. [c.107]

    Хлоридные комплексы металлов. Один из наиболее точных методов определения ряда примесей в сталях основан на экстрагировании. Из 6 н. раствора соляной кислоты трехвалентное железо экстрагируется диэтиловым зфирсм в виде комплексного соединения HlFe lJ. Большая часть хлоридов других металлов (Ni, Со, А1, Сг, Ti и т. д.) остается в водной фазе. Главные трудности при этом связаны со значительной диссоциацией комплексов в водной фазе, а также со ступенчатым характером их образования. Ион трехвалентного железа образует с ионами хлора ряд групп комплексного характера, в зависимости от концентрации свободных ионов хлора в растворе. [c.115]


Смотреть страницы где упоминается термин Железо, комплексы с группой: [c.127]    [c.109]    [c.223]    [c.401]    [c.347]    [c.214]    [c.38]    [c.347]    [c.467]    [c.468]    [c.587]    [c.302]    [c.210]    [c.369]   
Успехи стереохимии (1961) -- [ c.281 ]




ПОИСК





Смотрите так же термины и статьи:

Железа комплексы



© 2024 chem21.info Реклама на сайте