Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Индукционный теория

    Молекулы, попав в поле соседних частиц (молекул, атомов, >онов), поляризуются, в них возникает индуцированный дипольный момент. Взаимодействие индуцированных диполей тем значительнее, чем легче деформируется молекула. Энергия взаимодействия таких молекул возрастает с увеличением р, и быстро уменьшается с ростом г, но от температуры ие зависит, так как Наведение диполей происходит при любом пространственном расположении молекул. Теория (Дебай, 1920 г.) дает для энергии индукционного взаимодействия двух одинаковых полярных молекул следующее соотношение  [c.136]


    Наличие индукционного периода окисления можно объяснить теорией цепных и вырожденных разветвлений реакций, согласно которой вырожденное разветвление может довести скорость реакции до измеримых величин только по мере постепенного накопления промежуточного продукта, вызывающего разветвление это накопление происходит за счет нераз-ветвленных цепей, зарождение которых обусловлено относительно медленной реакцией окисления исходных веществ. При [c.8]

    Согласно оксидно-пленочной теории, критический потенциал — это. потенциал, необходимый для создания в пассивирующей пленке электростатического поля, способного стимулировать проникновение ионов С1 к поверхности металла [40]. Другие анионы также могут проникать в оксид, в зависимости от их размера и заряда. Примеси этих анионов улучшают ионную проводимость и благоприятствуют росту оксида. В конечном счете оксид или разрушается из-за конденсации мигрирующих вакансий, или его катионы растворяются в электролите на границе раздела сред в обоих случаях начинается питтинг. Предшествующий питтингообразованию индукционный период зависит от времени, которое требуется С1 для проникновения через оксидную пленку. [c.87]

    Согласно современным теориям адсорбция обусловливается дисперсионным, ориентационным и индукционным взаимодействием. [c.234]

    Гидроксильная теория имеет ряд недостатков. Всякая реакция окисления углеводородов начинается не сразу, а лишь по истечении некоторого времени, или периода индукции . Сторонники теории гидроксилирования не могут дать удовлетворительного объяснения периода индукции они рассматривают его как время, необходимое для появления некоторого определенного количества альдегида, остающегося затем постоянным. Это, однако, не вскрывает природы индукционного периода. [c.180]

    Перекисные теории в своей первоначальной и более совершенной позднейшей формах значительно полнее объясняют механизм сгорания, чем гидроксильные теории. Однако обе эти теории не учитывают кинетической стороны процессов окисления, ограничиваясь качественным определением индукционного периода, как медленной, и процесса окисления, как быстрой реакции. [c.182]

    Теория химического строения ввела в науку представление о взаимном влиянии атомов в молекулах, которое явилось чрезвычайно плодотворным. Оказалось, что в молекуле взаимодействуют не только непосредственно связанные атомы, но существует взаимное влияние всех атомов. Разумеется, эффект взаимного влияния непосредственно не связанных атомов в молекуле — индукционный эффект — сравнительно невелик. Однако в ряде случаев он значителен. Так если в третичном бутиловом спирте [c.105]


    В соответствии с основной идеей теории возмущений волновая функция реагирующей системы строится из волновых функций исходных (невозмущенных) реагентов. Полная энергия этой системы складывается из энергий отдельных реагентов и членов возмущения, составляющих так называемую энергию взаимодействия. Знак и величина последней определяются конкретным видом параметра возмущения в выражении типа (1.77) для полной энергии. В общем случае этот член должен включать все виды энергетических взаимодействий между двумя сближающимися молекулами (ионами, радикалами) кулоновские, индукционные, обменное отталкивание, перенос заряда, дисперсионные. Конкретный вид получаемых [c.330]

    Наряду с ориентационным и индукционным взаимодействием существует еще один вид взаимодействия, который объясняется перемещением электронов в атоме или в молекуле, вызывающим возникновение мгновенных диполей в молекулах и атомах. С этим связана возможность перевода вешеств, состоящих из неполярных молекул (водород, азот, кислород, метан и др.) и атомов (благородные газы), в конденсированное состояние. При достаточном сближении частиц мгновенный диполь в одной из них, имеющий определенное направление в данный момент, вызывает ответный диполь в соседней частице, что может привести к синхронному полю во всей системе (рис. 34, в). От этого произойдет небольшое уменьшение энергии системы, воспринимаемое как очень слабое взаимодействие. Его количественная характеристика была предложена Ф. Лондоном (1930) на основании теории рассеяния (дисперсии) света. Энергия этого взаимодействия, названного дисперсионным, находится как [c.92]

    Поскольку теория Оствальда, о пересыщенном состоянии базируется на различиях в растворимости, то упомянем также правило Оствальда по сопоставлению стабильных и метастабильных кристаллогидратов. Согласно этому правилу, в процессе кристаллизации из раствора сначала выделяются метастабильные кристаллогидраты, имеющие большую растворимость или большее значение давления водяного пара, чем стабильные кристаллогидраты. Ступенчато или через ряд промежуточных превращений гетерогенная система пересыщенный раствор — метастабильный кристаллогидрат переходит в систему насыщенный раствор — стабильный кристаллогидрат. Например (рис. 4.17) в системе раствор—соль в результате изменения растворимости или при химическом осаждении достигается концентрация пересыщенного раствора (кривая /), соответствующая растворимости метастабильной соли, т. е. кристаллизация протекает при наличии концентрационного напора т — относительно растворимости стабильной соли (линия 2). При растворении метастабильной соли изменение концентрации раствора несколько отличается (кривая 3). Это отличие может сказаться на индукционном периоде кристаллизации. [c.101]

    Для диполь-дипольного взаимодействия, индукционного и дисперсионного взаимодействий часто используют значение т = 6, хотя при более точных расчетах необходимо принимать во внимание квадрупольные составляющие энергии, которым отвечает т = 8. Что касается энергии отталкивания, то величину п можно приближенно оценить по температурной зависимости вязкости газов т). В кинетической теории газов используется соотношение а 1п 7] 1 2 [c.251]

    Происхождение ориентационной и индукционной составляющих связано с асимметрией электронной оболочки молекул и может быть объяснено в рамках чисто электростатической теории при рассмотрении молекулы как совокупности точечных электрических зарядов, создающих в заданной точке потенциал [c.275]

    Как показывает теория, при г > составляющие сил притяжения обратно пропорциональны различным степеням г. Различают (см. напр., [7, 15]) три вида этих сил ориентационные, индукционные и дисперсионные. Следовательно, в выражении для энергии решетки член, соответствующий притяжению, состоит из трех слагаемых  [c.49]

    Индукционные силы имеют также электростатическую природу, но в отличие от сил ориентационных индукционные силы возни-кают вследствие того, что одна из молекул, обладающая диполем (мультиполем), поляризует другую молекулу и индуцирует,в ней дипольный момент, притяжение которого к диполю (мультиполю) и обусловливает взаимодействие молекул. Теорию этого эффекта впервые развил Дебай (1920 г.). Если одна из электрически нейтральных молекул обладает дипольным моментом а другая неполярна, то средняя энергия этого взаимодействия, как показал Дебай, [c.50]

    Индукционный нагрев металлических тел основан на теории процессов, происходящих в телах, помещенных в переменное электромагнитное поле. Исходными уравнениями для исследования электромагнитных процессов при нагреве металлических тел (в пренебрежении токами смещения) являются уравнения Максвелла  [c.101]

    Основными недостатками теорий микроскопического подхода являются предположение аддитивности дисперсионных взаимодействий, пренебрежение индукционной и ориентационной составляющими ван-дер-ваальсовской энергии, непоследовательный учет влияния среды и некоторые другие малообоснованные положения, лежащие в основе расчета параметров, входящих в выражение константы Лондона. [c.49]


    П. играет определяющую роль в оптич. активности и нек-рых др. оптич. св-вах в-в. Она является осн. понятием в теории дальнодействующих сил притяжения (дисперсионных и индукционных) между нейтральными атомами и молекулами (см. Дисперсионное взаимодействие). [c.67]

    Первые количественные теории молекулярных сил смогли возникнуть, однако, только после выяснения строения атомов и молекул. На основе представлений о молекулярных диполях появились теории ориентационных сил Дебая и индукционных сил Кеезома. При этом оставалось непонятным молекулярное взаимодействие недипольных молекул, в особенности молекул благородных газов со сферически симметричным строением электронной оболочки. Только использование квантовой механики позволило Лондону [4] объяснить существование этих сил и создать в первом приближении общую количественную теорию молекулярных сил. Эта общая теория уточнила также классические формулы для взаимодействия полярных молекул. [c.60]

    Однако перекисная теория в ее первоначальном виде не могла объяснить ряда фактов, наблюдавшихся в процессах автоокисления. Так, было замечено, что видимому окислению всегда предшествует более или менее продолжительный период, в течение которого не происходит каких-либо заметных изменений окисляемого углеводорода под действием кислорода воздуха. По окончании этого периода процесс развивается достаточно интенсивно. Наличие такого индукционного периода нельзя объяснить с точки зрения нерекисной теории. Кроме того, было отмечено, что в ряде случаев наличие чрезвычайно малых количеств примесей некоторых веществ препятствует автоокислению углеводородов. [c.63]

    Простой ЛКАО МО расчет методом теории возмущений с использованием коэффициентов с > (табл. 3) и при допущении, что фенильные группы влияют на длинноволновый переход только в результате сопряжения (пренебрегая в первом приближении индукционным эффектом), приводит только к батохромным сдвигам. Этот результат согласуется с результатом более сложного расчета обычным методом ЛКАО МО [167] в том, что касается последовательности и относительной величины ожидаемых сдвигов. Наибольшие сдвиги предсказываются для положений 1,4 и 6. [c.245]

    Существенно, что даже в тех случаях, когда электростатический барьер снят (С > ПБК) и первая стадия протекает как быстрая коагуляция, процесс затормаживается и на некоторое время останавливается. Это непосредственно приводит к выводу, что устойчивость латексов определяется не только электростатическим барьером. Формирование в ходе первой стадии насыщенных адсорбционных слоев эмульгатора на поверхности агрегатов или укрупненных частиц сопровождается появлением нового стабилизирующего барьера неэлектростатической природы. Этим могут быть вызваны и отклонения от линейной зависимости gW — lg С, предусматриваемой теорией ДЛФО. Как отмечено выше, в самом начале коагуляционного процесса зависимость gW — lg С линейна, что свидетельствует об отсутствии осложняющих обстоятельств, влияющих на протекание коагуляции. Новые явления обнаруживаются по мере приближения к той границе, где завершается первая стадия и возникает промежуточный индукционный период. [c.215]

    Поскольку решить уравнение Шредингера для системы молекула — твердое тело невозможно, прибегают к различным, довольно грубым, приближениям. Первое приближение — разделение межмолекулярного потенциала взаимодействия на несколько составляющих, а именно, на энергию отталкивания, дисперсионную энергию, индукционную и электростатическую энергию. Следующее приближение заключается в том, что адсорбционный потенциал представляют как сумму парных взаимодействий. Предположение об аддитивности обосновано только для взаимодействий, описываемых во втором приближении теории возмущений, а не для взаимодействий первого порядка, к которым относится энергия отталкивания. Поэтому применение адсорбционного потенциала в виде суммы парных взаимодействий может быть оправдано лишь тем, что, во-первых, такая запись потенциалов более удобна для вычислений и, во-вторых, рассчитанные величины достаточно хорошо соответствуют результатам эксперимента. [c.28]

    В первой серии опытов для каждого спирта устанавливали оптимальную длительность активации карбамида. Карбамид, предварительно обработанный спиртом, оказался значительно актив- нее карбамида, активированного спиртом непосредственно перед комплексообразованием. Этому факту придается мало значения. Однако есть указания на то, что свежеприготовленные водные растворы карбамида менее актив(ны, чем растворы, приготовленные за несколько дней до опыта [12, с. 607 66]. Ригамонти и Па-нетти [48] наблюдали адсорбцию метанола карбамидом из раствора цетана в ксилоле сразу, тогда как образование камплекса цетана с карбамидом началось только после окончания индукционного периода. Другие спирты адсорбировались в меньших количествах. Результаты определения предварительной длительности активации карбамида спиртами приведены на рис. 87, из которого видно, что с ростом молекулярной массы спиртов длительность активации резко возрастает. Для более высокомолекулярных спиртов, начиная с н-пентанола, которые сами способны образовывать комплекс с карбамидом, предварительная длительность активации не влияет на выход парафина. Полученные результаты хорошо коррелируются с данными [48] об a д opбции спиртов карбамидам и подтверждают адсорбционную теорию действия активаторов, предложенную в работе [67]. При применении в качестве активаторов спиртов, способных образовывать комп- [c.218]

    Токи высокой частоты. Воздействие токами высоких частот или сокращенно ТВЧ (0,15-300 МГц) связано с возбуждением внешним электромагнитным полем в веществах в зависимости от их свойств, токов проводимости (вихревые токи Фуко) и токов смещения в диэлектриках. Протекание этих токов вызывает индукционный и соответственно диэлектрический нагрев материалов [14]. Существенный вклад в теорию и практику индукционного и диэлектрического нагрева внесли советские ученые В.П. Вологдин, Г.И. Бабат, A.B. Нету-шил, A.B. Донской и др. [c.82]

    Цепная теория является логическим развитием рассмотренных выше классических теорий окисления. Ни одна из этих теорий не в состоянии объяснить некоторые характерные особенности автоокисления углеводородов, например существование индукционного периода, предшествующего видимой реакции, резкое действие иногда ничтожных количеств тех пли иных примесей на скорость процесса, аналогичное влияние стенок сосуда, явлэния отрицательного катализа ири окислении и т. д. Истолкование этих фактов может быть проведено [c.349]

    Согласно адсорбционной теории, критический потенциал объясняют с точки зрения конкуренции адсорбции С1" и кислорода на пассивной пленке [32, 37]. Металл имеет большее сродство к кислороду, чем к ионам С1 , но если значение потенциала повышается, концентрация С1 возрастает, так что в конце концов ионы С1 могут заместить адсорбированный кислород. Наблюдаемый индукционный период — это время, которое требуется для успешной конкурирующей адсорбции на благоприятных участках поверхности металла, а также время проникновения С1" в пассивную пленку. Как было показано выше, в отличие от кислорода, адсорбция ионов С1" снижает анодное перенапряжение для растворения металла, чем объясняется более высокая скорость коррозии на участках, где произошло замещение. Другие анионы (например, ЫОз или 80 ), не разрушающие пассивную пленку и не вызывающие питттинг, конкурируют с С1" за места на пассивной поверхности. В связи с этим необходимо сдвигать потенциал до еще более высоких значений, чтобы увеличить концен- [c.87]

    Для светлых нефтепродуктов оценка времени релаксации дает значение т= 2с. Здесь индукционная зарядка становится эффективной, так как капля не успевает потерять заряд. В соответствии с теорией индукционной зарядки частиц, сферическая частица на электроде моделируется полуэллипсоидом вращения с соотношением осей в/а = с/а = 0,5 (а - длина полуоси в направлении перпендикулярном электроду, в - радиус сферической частицы) и величина заряда такой модели равна  [c.10]

    Молекулы взаимодействуют друг с другом. Для объяснения межмолекулярных взаимодействий были созданы химическая и физическая теории, предполагающие только химическую или только физическую природу межмолекулярных сил. Среди физических рассматривались ван-дер-ваальсовы силы, которые возникают в связи с ориентационным взаимодействием полярных молекул, обладающих постоянным моментом диполя, индукционным взаимодействием молекул, способных поляризоваться под действием соседних молекул, и дисперсионным взаимодействием мгновенных атомных диполей, имеющих постоянно меняющийся дипольный момент за счет несимметричного распределения зарядов колеблющихся ядер и двигающихся электронов. [c.25]

    В соответствии с основной идеей теории возмущений волновая функция реагирующей системы строится из волновых функщ1Й исходных (невозмущенных) реагентов. Полная энергия этой системы склады вается из энергий отдельных реагентов и членов возмущения, составляющих так называемую энергию взаимодействия. Знак и величина последней определяются конкретным видом параметра возмущения в выражении типа (1.85) для полной энергии. В общем случае этот член должен включать все виды энергетических взаимодействий между двумя сближающимися молекулами (ионами, радикалами) кулоновские, индукционные, обменное отталкивание, перенос заряда, дисперсионные. Конкретный вид получаемых при этом уравнений зависит также и от особенностей принятого расчетного приближения (МОХ, ППП, NDO и пр.). Рассмотрим наиболее простой вариант, основанный на применении МО Хюккеля, — метод межмолекулярных орбиталей (ММО). [c.512]

    Показано, что азеотроп с минимальной температурой кипения образуется в том случае, если силы притяжения между разнородными молекулами в растворе меньше, чем между однородными. В обратном случае образуется отрицательный азеотроп с максимальной температурой кипения. На рис. 228 такие соотношения показаны схематически. Используя данные по азеотропам, собранные Лекатом [2] и Хорсли [25], Эвел, Гаррисон и Берг [26] создали теорию, по которой силы притяжеггия в основном обу-( ловлены водородными связями. Напротив, другие виды меж-молекулярного взаимодействия, такие, как дипольные и индукционные силы, их не определяют. На основании такого представления можно подразделить жидкости на пять классов по числу я силе водородных связей, суш,ествующих между молекулами. В приложении (см. стр. 601, табл. 1/6, раздел а ) приведены эти пять классов. Относя оба компонента разделяемой смеси к соответствующим классам по водородным связям, можно по табл. 1/6, раздел б , оценить направление и величину предполагаемых отклонений для смесей компонентов исходной смеси с добавляемым компонентом из другого класса и таким образом подобрать подходящую добавку. В разделе в табл. 1/6 перечислены вещества, образующие азеотропы с максимальной температурой кипения. [c.340]

    При исследовании воспламеняющей спо(Юбности электрических искр одинаковой мощности было найдено, что конденсированные искры эффективнее индукционных. Отличительной особенностью конденсированных искр является то, что разряд в них происходит значительно быстрее, чем в индукционных. Полученные в этих исследованиях результаты также согласуются с тепловой теорией. [c.132]

    Несмотря на большое число экспериментальных работ, направленных на создание более активных катализаторов путем модификации каталитических систем третьим компонентом, теории выбора лучшего модификатора пока нет. Однако некоторые авторы приводят определенные рекомендации по подбору модификаторов в конкретных условиях проведения полимеризации. Так, Ямадзаки [72] указывает, что для соединений электро-нодонорного характера (амины, фосфины и др.) способность выполнять роль активатора можно предварительно Оценить по константе кислотной диссоциации. Если в качестве активатора используются неорганические соли (МаС1, К2Т1Рб), то кроме указанной константы дополнительно требуется определить параметры кристаллической решетки. Другие авторы [73] указывают на возможность оценки реакционной способности активатора по индукционному эффекту. [c.62]

    С увеличением концентрации электролита возникает необходимость учитывать и некулоновскую часть межионного взаимод., для чего прибегают к нек-рым моделям. При этом наряду с индукционным, дисперсионным, обменным и др. видами межчастичных взаимод. некулоновский потенвдал учитывает сольватац. эффекты, связанные с влиянием р-ри-теля. В частности, учет некулоновской части взаимод. стабилизирует уменьшение коэф. активности иоиов с концентрацией и может объяснить их увеличение, наблюдаемое экспериментально. Наипростейшей ионной моделью Р. э. является модель заряженных твердых сфер (т. наз. примитивная модель). Первые попытки описания примитивной модели были выполнены в рамках теории Дебая - Хюккеля (второе приближение). Более корректно учет размера ионов и неку-лоновского взаимод. осуществляется на основе методов статистич. термодинамики (см. Жидкость). [c.192]

    Поскольку атомы не несут избыточных электрических зарядов и ие обладают постоянными дипольными моментами, силы притяжения не могут быть вызваны ни электростатическими, ни индукционными силами, рассмотренными в гл. VII. Единственной причиной возникновения этих сил может быть дисперсиопный эффект. Согласно теории Лондона (см. гл. IV), энергия притяжения пары одинаковых частиц, расположенных на расстоянии а, равна [c.336]

    Образование зародышей. В процессе зародышеобразования коллоидных частиц размером 10—20 А, которые затем растут посредством дальнейшего осаждения кремнезема из раствора, также можно наблюдать индукционный период. Согласно теории зародышеобразования, можно ожидать, что концентрация будет оказывать на него экстремальное влияние. По Нильсену [153], кажущийся кинетический порядок процесса образования зародышей может достигать значения 10. Как показано на рис. 3.56, можно связать точки перегиба с соответствующими концентрациями. Тогда из графика зависимости логарифма времени от логарифма концентрации будет видно, что порядок реакции равен 7 или 8. В этом отношении данное явление напоминает процесс зародышеобразования в других системах. На рис. 3.56 точки Е—Н представляют собой, по всей вероятности, моменты, после прохождения которых уже никаких дополнительных зародышей не образуется. Рост зародышей за счет расходования мономера и олигомеров продолжается вплоть до моментов, отмеченных точками /—L, после которых начинается созревание по Оствальду и устанавливается состояние равновесной растворимости зародышей с мономером. [c.370]

    Вообще говоря, можно было бы предположить, что молекула присоединяется к катализатору вдали от реагирующих атомов и влияние катализатора передается вдоль углеродной цепи, вызывая повышенную активность на другом конце молекулы (индукционный эффект). Однако, как известно из органической химии (см., например, [44]), вдоль алифатической углеводородной цепи индукционный эффект затухает очень быстро. Указанное выше постоянство энергий активации опровергает сделанное предположение о присоединении катализатора вдали от реагирующих атомов и доказывает ориентацию индексной группы к катализатору, требуемую мультиплетной теорией. [c.20]

    Поммераза б е оценки показывают, что диффузия к матрице НТФ из раствора протекает быстрее процессов на матрице и скорость синтеза лимитируется не сорбцией и десорбцией, а ферментативным процессом. В согласии с опытом теория показывает, что синтез должен идти без индукционного периода. [c.542]

    Реакционная способность производных бензола может быть качественно объяснена в рамках теории электронных смещений. Например, атом хлора, освобожденный от своих валентных электронов, имеет заряд +7, а аналогичный атом водорода — заряд +1. Следовательно, при замене водорода на хлор область относительно низкой плотности положительного заряда заменяется областью относительно высокой плотности, что приводит к сдвигу всей электронной системы молекулы по направлению к месту замещения. Этот сдвиг облегчает удаление протона из кислой группы в молекуле или атаку нуклеофильным реагентом (например, гидроксильным ионом при гидролизе эфиров). Одновременно затрудняется атака электрофильным реагентом, например ионом нитрония N02 при нитровании. Если замещению хлором или другим электроотрицательным элементом подвергается водород у насыщенного атома углерода, а место замещения настолько удалено от реакционного центра, что элиминируются короткодействующие влияния, связанные с объемом атома хлора, то общий эффект заместителя практически сводится к индукционному. [c.482]

    В последние годы Н. М. Эхмануэль показал, что процессы окисления жидких углеводородов [425, 426] и сжиженных углеводородных газов [427] могут быть значительно ускорены, если применять соответствующие инициаторы только в течение промежутка времени, когда реакция находится в индукционном периоде. Это явление было объяснено с точки зрения предложенной Н. Н. Семеновым [428] теории ценных реакций с вырожденными разветвлениями. В связи с этим Эмануэль [4251 обратил внимание на целесообразность осуществления ряда процессов окисления не в газовой, а в жидкой фазе при температурах, близких к критическим, и соответствующих давлениях. [c.236]


Смотреть страницы где упоминается термин Индукционный теория: [c.289]    [c.6]    [c.154]    [c.296]    [c.494]    [c.122]   
Физико-химические основы получения, переработки и применения эластомеров (1976) -- [ c.181 ]




ПОИСК







© 2024 chem21.info Реклама на сайте