Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки металлы в их составе

    Углеводы в форме крахмала являются важнейшими источниками энергии в пище. Для получения этой энергии мы либо употребляем в пищу зерна, в которых накапливается крахмал, либо скармливаем эти зерна животным, которые синтезируют мясные белки, а затем съедаем их. В любом случае потребляемая нами энергия в конце концов поставляется крахмалом, полимерным продуктом фотосинтеза. Целлюлоза входит в состав хлопка и льна, а также искусственных продуктов - ацетата целлюлозы и вискозного волокна. Дерево, из которого сделана наша мебель, также содержит целлюлозу. Бумага этой книги получена в процессе обработки целлюлозы. Даже деньги давно перестали делать из благородных металлов, заменив их целлюлозой. В этом разделе будет кратко рассмотрено, что представляют собой углеводы и как они используются. [c.308]


    При химическом взаимодействии атомов образуются молекулы. Молекулы бывают одноатомные (например, молекулы гелия Не), двухатомные (азота N2, оксида углерода СО), многоатомные (воды Н2О, бензола Се Не) и полимерные (содержащие до сотен тысяч и более атомов — молекулы металлов в компактном состоянии, белков, кварца). При этом атомы могут соединяться друг с другом не только в различных соотношениях, но и различным образом. Поэтому при сравнительно небольшом числе химических элементов число различных веществ очень велико. Состав и строение молекул определяют состояние вещества при выбранных условиях и его свойства. Например, диоксид углерода СО2 при обычных условиях — газ, взаимодействующий с водой, а диоксид кремния 8102 — твердое полимерное вещество, в воде не растворяющееся. При химических явлениях молекулы разрушаются, но атомы сохраняются. Во многих химических процессах атомы и молекулы могут переходить в заряженное состояние с образованием ионов — частиц, несущих избыточный положительный или отрицательный заряды. [c.18]

    К настоящему времени идентифицировано около двух тысяч ферментов. Из них многие выделены в виде чистых гомогенных препаратов и свыше 150 получены в кристаллическом виде. Оказалось, что ферменты состоят либо целиком, либо в основном из белков, т. е. являются полимерами, образованными из аминокислот и имеющими определенную пространственную структуру полипептидных цепей. В состав небелковой части фермента могут входить ионы металлов и некоторые органические вещества. Если последние обладают каталитической активностью, входя в активный центр фермента, то их называют коферментами. Например, в состав окислительных ферментов входят органические соединения железа (так называемый гем). [c.301]

    Вулканическая деятельность во всех ее проявлениях играла в этом отношении выдающуюся роль. Обогащая обширные зоны поверхности, в том числе и те, которые граничили с водоемами, соединениями металлов, вулканы способствовали развитию каталитических реакций. Вещества, выбрасываемые во время извержений, получаются в активном состоянии это, например, оксид кремния (IV) в форме высокопористой массы —пемзы, образующейся при застывании кислых лав (ее пористость достигает 80%) и др. Другой важной породой, которая могла функционировать и как адсорбент, фиксирующий на своей поверхности разнообразные частицы, и как катализатор, является глина. Глины относят к числу древнейших пород. Глинистые минералы (например, монтмориллонит) имеют пластинчатое строение силикатные слои, максимальное расстояние между которыми равно приблизительно 1,4 нм, разделены слоями молекул воды толщина этих слоев может изменяться в широких пределах. Глины обратимо связывают катионы и таким образом могут служить в качестве регулятора солевого состава окружающей водной среды. Скопление органических веществ на поверхности глинистых минералов, возможно, сыграло решающую роль в появлении предбиологических структур и возникновении жизни (Д. Бернал). По Акабори, из формальдегида, аммиака и циановодорода в абиогенную эру образовался амино-ацетонитрил, который подвергался гидролизу и полимеризации на поверхности глин, образуя вещества, близкие к белкам. Акабори показал, что нагревание аминоацетонитрила с кислой глиной ведет к появлению продукта, дающего биуретовую реакцию (реакция на белок). Твердые карбонаты, которые входят в большом количестве в состав земной коры, вероятно, катализировали процесс образования углеводов. Гидроксид кальция также может служить катализатором в таких процессах. Исходным веществом для синтеза углеводов служит формальдегид. Прямым опытом доказано (Г. Эйлер и А. Эйлер), что гликолевый альдегид и пентозы получаются из формальдегида в присутствии карбоната кальция. Схему образования углеводов из простейших соединений предложил М. Кальвин. [c.377]


    Все известные ферменты представляют собой длинные цепи из а-амино-кислот (относительная молекулярная масса порядка 0,5 млн), свернутые в компактную форму, в которых имеется несколько реакционноспособных участков. Изучение природы ферментов показало, что, помимо белка, многие из них содержат и другие соединения. Так, например, в составе окислительных ферментов были обнаружены органические соединения железа. Эти соединения у различных окислительных ферментов оказались одинаковыми по составу. Кроме того, было выяснено, что такие же соединения железа входят и в гемоглобин крови, переносящий кислород в организме человека и животных. Комплексное соединение железа (гем) можно отделить от белка. Однако после этого ни белок, ни гем не проявляют ферментативных свойств. Отсюда следует, что высокая активность и специфичность свойственны только сложной системе, состоящей из белка и гема. В состав различных ферментов входят и комплексные соединения других металлов. В некоторых ферментах обнаружены медь, цинк, марганец, хром и другие элементы. Для некоторых ферментов уже известна первичная структура, т. е. последовательность аминокислот в длинной цепи. Вторичная структура — общий характер спирали, образуемый цепью, приближенно установлена для нескольких ферментов. О третичной структуре, т. е. природе реакционноспособных поверхностных участков молекулы, известно очень мало. [c.149]

    Из курса биологии известно, что азот играет огромную роль в жизни. Об азоте говорят он более драгоценен, чем самые редкие из благородных металлов. Мы знаем, что он входит в состав белковых веществ — основы жизни (содержание азота в белках достигает 16—18%), а также в состав других органических соединений, в том числе хлорофилла. При недостатке азота рост растений задерживается, листья приобретают сначала бледно-зеленую окраску, затем желтеют и процесс фотосинтеза прекращается. Между тем растения не могут усваивать свободный азот из воздуха и азот органических веществ из почвы. Они извлекают азот из почвы в виде ионов аммония NH + и нитратных ионов NOa . Эти ионы образуются при участии бактерий из органических соединений азота. Однако, некоторые бактерии переводят азот в свободное состояние. [c.59]

    Высокая интенсивность полосы может быть обусловлена наличием связи между ионом металла и атомом 5 остатка метионина, входящего в состав белка [c.17]

    Особенно опасными оказываются металлы, не входящие в состав биомолекул, т. е. ксенобиотики ртуть, кадмий и свинец. Все они образуют особо прочные соединения с концевыми тио-группами белков, и поэтому их называют тиоловыми ядами. Попадание больших количеств ртути в организм высших животных, включая человека, приводит к тяжелым нарушениям в центральной нервной системе (крайним выражением этого является болезнь Минамата). Нейротоксическое действие оказывают также соединения свинца. Кадмий вызывает нарушение кальциевого обмена, и в тяжелых случаях отравление им приводит к болезни итаи-итаи. [c.245]

    Очень часто присутствие того или иного нона металла или аннона (например, С1 ) оказывается необходимым для работы фермента. В ряде случаев ион металла связывается с ферментом в определенном центре на его поверхности или внутри молекулы. Влияние иона на катализируемую реакцию может быть обусловлено присутствием сильного электрического заряда. Некоторые ионы металла способны обратимо окисляться и восстанавливаться. Благодаря этому свойству железо, медь и кобальт входят в состав активных центров многих ферментов, катализирующих окислительно-восстановительные процессы. Важное значение имеет также способность ионов металлов влиять на взаимную ориентацию разных участков молекулы белка или других макромолекул. Связывание иона металла может вызывать радикальные изменения в конформации молекулы (гл. 4, разд. В. 8.в). [c.156]

    В зависимости от вида отмываемых поверхностей в состав моющего раствора входят разные вещества эмульгирующие жиры и омыляющие жирные кислоты — едкая щелочь пептизирующие белки и снижающие жесткость воды — тринатрий-фосфат и др. предотвращающие коррозию металла — жидкое стекло и ПАВ. Количество каждого компонента определяется видом и свойствами отмываемых поверхностей. [c.214]

    При обработке растительных материалов холодной водой в состав получаемой вытяжки переходят белки, сахара, слизи, камеди, некоторые пектиновые вещества, многие органические кислоты, растворимые соли металлов и органических оснований, в том числе алкалоидов, многие гликозиды, дубильные вещества, пигменты, следы эфирного масла. [c.58]

    Растворение белков в воде связано с гидратацией каждой молекулы, что приводит к образованию вокруг белковой глобулы водных (гидратных) оболочек, состоящих из ориентированных в определенной форме в пространстве молекул воды. По химическим и физическим свойствам вода, входящая в состав гидратной оболочки, отличается от чистого растворителя. В частности, температура замерзания ее составляет —40°С. В этой воде хуже растворяются сахара, соли и другие вещества. Растворы белков отличаются крайней неустойчивостью, и под действием разнообразных факторов, нарушающих гидратацию, белки легко выпадают в осадок. Поэтому при добавлении к раствору белка любых водоотнимающих средств (спирт, ацетон, концентрированные растворы нейтральных солей щелочных металлов), а также под влиянием физических факторов (нагревание, облучение и др.) наблюдаются дегидратация молекул белка и их выпадение в осадок. [c.26]


    Молекула белка обычно представляет собой цепь, состоящую из нескольких десятков или даже сотен молекул аминокислот. Многие белки выполняют роль естественных катализаторов, ускоряющих химические реакции в десятки и даже сотни миллионов раз. В настоящее время известно около тысячи подобных ферментов. В их состав входят металлы — Мд, Ре, Мп и др. [c.353]

    В состав клеточных мембран входят в различных соотношениях липиды, белки п углеводы. Кроме того, важными мембранными компонентами являются ионы металлов и в неменьшей степени вода. Обычно в мембранах преобладают белки (табл. 2.1), но, например, в случае миелиновой оболочки (гл. 4) три четверти массы могут составлять липиды. По химической структуре липиды классифицируют как фосфолипиды, гликолипиды и стерины данные табл. 2.1 и 2.3 свидетельствуют о значительных [c.36]

    Следует заметить, что живые организмы имеют механизмы детоксикации в отношении тяжелых металлов. Так, в ответ на токсическое действие РЬ , С(1 и печень и почки человека увеличивают синтез ме-таллотионинов - низкомолекулярных белков, в состав которых входит цистеин. Высокое содержание в последнем сульфгидрильных 8Н-групп обеспечивает связывание ионов металлов в прочные комплексные соединения. [c.103]

    Гемопротеины относятся к сложным белкам, в состав простетической группы которых входят ион металла и порфириновое ядро. Порфиринсодер-жащие соединения занимают центральное положение в различных процессах жизнедеятельности, например, хлорофилл (магниевый комплекс замещенного [c.410]

    Металлопротеиды — сложные белки, в состав которых входят какие-либо металлы. К этой группе относятся в основном белки, обладающие ферментативными свойствами. Таковы каталаза, пероксидаза, цитохромы, представляющие собой белки, содержащие железо аскорбатоксидаза, п-дифенолоксидаза, в состав которых входит медь. Иногда металлопротеиды объединяют в одну группу с хромопротеидами. [c.222]

    У белков, в состав которых входит металл, играющий существенную роль в каталитической активности, к фотоинактивации приводит его выбивание из макромолекулы. Такая ситуация имеет место при УФ-облучении карбоксипептидазы, теряющей в результате разрушения существенного триптофанила атом цинка. Наконец, Л. П. Каюшиным было обнаружено, что свет, поглощаемый триптофаном, может сенсибилизировать разрыв пептидной связи. [c.266]

    Обычно в состав простетических групп в растительных и животных системах входят порфириновые ядра, представляющие собой хелатные структуры с включением ионов металлов (Ре , Со ", и т. д.). Так, гемоглобин животных содержит такую группу с Ре " , присоединенную к белковой половине (глобин). Эта группа аналогична по структуре простетической группе, содержащей в хлорофилле растений и одноклеточных животных. Молекулярный вес белков обычно лежит в пределах от 30 ООО до 80 ООО. Однако молекулярный вес может быть и меньше и значительно больше этих величин. Ферменты являются очень специфичными катализаторами. Зачастую их активность может проявляться только в какой-либо одной реакции. Так, например, фумараза катализирует только обратимую реакцию превращения малеиновой кислоты в фумаровую [98]  [c.561]

    Следовые компоненты могут быть чисто органическими (ПАУ, ХОС, ПХБ, ПХДД) или неорганическими (радионуклиды, тяжелые металлы), либо иметь смешанный состав (металлоорганическис соеданения, комплексы металлов с органическими лигандами, белками, ДНК и др) Заметим, что последние играют важнейшую роль в биологии, но для их определения на уровне следовых количеств обычно применяют специфические биохимические методы. [c.153]

    Ферментативный катализ. Биологические катализаторы имеют белковую природу. Ферменты (от лат. fermentum — закваска) — это либо высокомолекулярные белки (в их состав в различных сочетаниях входит 20 основных аминокислот), либо сочетание белков с комплексными соединениями металлов или с другими веществами небелковой природы. [c.159]

    Азот и некоторые его соединения. Азот входит в состав белков и других органических соединений, селитр (например, чилийской NaNOa), многих природных и искусственно получаемых соединений. В свободном состоянии (N2) содержится в атмосфере (75,5 вес.%). Энергия связи N=N очень велика (225 ккал моль), поэтому молекулы N2 весьма пассивны в обычных условиях. Как относительно инертный газ, обладающий довольно высокой теплопроводностью, он применяется для наполнения мощных осветительных ламп. Обычные осветительные лампы наполняются смесью 86% Аг и 14% Nj. При повышенной температуре азот становится активным и соединяется с металлами, образуя нитриды МёзЫг, BagNj, AIN и др. О нитридах переходных металлов см. гл. ХП. [c.300]

    Хро.матографические Ж. а. Действие их основано на разл. сорбционной способности компонентов, входящих в состав анализируемой жидкости. Последняя фракционируется в зтих приборах, и затем разделенные компоненты детектируются посредством оптич., электро- и термохйм. и др. методов. Области применения анализ белков, антибиотиков, витаминов, углеводородов, спиртов, нуклеиновых к-т, нефти определение содержания металлов в жидких средах, бензола и толуола в сточных водах и т. д. (см. также, напр.. Жидкостная хроматография, Тонкослойная хроматография, Эксклюзионная хроматография). [c.151]

    Установление количеств, зависимости св-в кристаллич. в-в от их структуры пока оказывается возможным лишь в редких случаях (напр., расчет энтальпий сублимации орг. соединений). В настоящее время возможны гл. обр. качественные оценки, к-рые тем не менее имеют существ, практич. значение, напр., при изучении влияния малых добавок на синтез и св-ва монокристаллов (лазерных, люминесцентных, полупроводниковых и др. материалов), в вопросах физики и хи-Мин металлов и сплавов, полупроводников и др. Активно изучается влияние кристаллич. структуры на хим. р-ции в твердом теле. Кристаллохим. подход используется в техн. материаловедении (неорг. материалы, металлы, сплавы, цементы, бетоны, композиты, полимеры и др.). Изучение строения комплексов белок - субстрат, структуры нуклеиновых к-т в кристаллич. состоянии позволило модифицировать хим. состав белков с целью улучшения их бнол. ф-ций, что важно для биохимии, медицины и биотехнологии. [c.536]

    Общие сведения. К классу оксидорсдуктаз относится многочисленные ферменты, катализирующие реакции биологического окислении. Это- -сложные белки (протеиды), в состав простетических групп которых входят витамины группы В (рибофлапип, амид пикотиновой кислоты и др.), металлы (железо, медь), нуклеотиды. [c.121]

    Основное количество неспецифических органических веществ носту-нает в ночвы с растительным онадом и остатками корневой системы растений. Среди неснецифических органических веществ, поступающих в почву с остатками растительного ироисхождепия, преобладают углеводы, лигнин, белки и липиды. Общее содержание углеводов в почвах колеблется от 5 до 30 % от общего количества органических веществ, но их преобладающая часть находится в связанной форме. Углеводы входят в состав гумусовых кислот и гумипа. Углеводы, не связанные с гумусовыми кислотами, активно участвуют в химических превращениях. Они образуют комплексные соединения с ионами тяжелых металлов, вступают во взаимодействие с глинистыми минералами или подвергаются процессам минерализации. В почвах встречаются представители всех классов углеводов моносахариды, олигосахариды и полисахариды. Последние составляют главную массу углеводов во всех органических остатках и наиболее устойчивы в ночвах. Среди важнейших полисахаридов, встречающихся в почвах, следует назвать целлюлозу, крахмал, хитип. [c.49]

    Большинство из перечисленных металлов, за исключением непереходных цинка, кадмия, ртути и свинца, относятся к й-эле-ментам. Наличие вакансий в электронных оболочках -элементов обуславливает легкость их включения в комплексные соединения, в том числе и с биолигандами. Благодаря этому такие металлы с переменной валентностью, как Си, Со, N1, V, Сг, Мп, Ке, наряду с цинком и молибденом входят в состав простетических групп ферментов и некоторых белков. В составе комплексов с биомолекулами они участвуют в переносе кислорода, алкильных групп и во многих других жизненно важных процессах и реакциях. Однако индивидуальная потребность организмов в тяжелых металлах очень мала, а поступление из внешней среды избыточных количеств этих элементов приводит к различного рода токсическим эффектам. [c.244]

    Гистидин — а-имидазолил-а-аминопропионовая кислота — представляет собой третью наиболее слабую основную аминокислоту, входящую в состав белков. Подобно лизину и аргинину, он дает нерастворимые соли с рядом кислот и металлов, например, с фосфорно-вольфрамовой кислотой и с ионом серебра. [c.475]

    Молекула тропонина состоит из трех полипептидных цепей с мол. массами от 18 000 до 37 000 дальтон. Один полипептид (Т) прочно связывает тропонин с тропомиозииом в участке, расположенном приблизительно на одной трети расстояния от С- до N-конца, со стороны С-конца. Второй полипептид (I), входящий в состав тропонина, взаимодействует с актином в отсутствие ионов Са + и работает вместе с остальными двумя полипептидами, удерживая тропомиозин в таком положении, в котором он ингибирует гидролиз АТР. Когда третий полипептид (С-субъединица) присоединяет ионы кальция, то ингибирование прекращается и может начаться сокращение. Однако общая картина функционирования всей этой машины остается непонятной. По данным рентгеноструктурного анализа и электронной микроскопии [93, 94], при связывании кальция с тропонином тропомиозин отклоняется от S1 примерно на 20°, открывая активный центр для взаимодействия миозин — АТР—актин (рис. 4-24). Возможно, тропомиозин катится наподобие ролика вдоль поверхности актина, открывая центры одновременно в семи молекулах актина Если это действительно так, то какого рода мотор используется при этом и что не позволяет ролику упасть с актина Обо всем этом мы может только догадываться. Вполне возможно, что боковые цепи отдельных аминокислотных остатков тропомиозина, выступающие наподобие зубцов на субмикроскопической шестеренке, входят в комплементарные углубления актина. Тогда возникает вопрос почему связывание иона кальция с тропомиозииом приводит к тому, что тропомиозии начинает катиться , как ролик, по актину Мы знаем, что присоединение металлов к белкам может приводить к очень сильным конформационным изменениям (разд. В.8.в). Не исключено, что конформационное изменение С-субъединицы тропонина [c.325]

    Следовый компонент также может быть чисто органическим или иметь смешанный состав. Примерами соединений последнего типа являются а) металлорганические соединения с ковалентными связями металл — углерод (например, производные алкилртути) б) органические лиганды, образующие хелаты или комплексные соединения другого типа с неорганическими составными частями в) неорганические соединения, образующие более слабые связи с органическими молекулами, например с белками или ДНК. [c.15]

    Многочисленные белки связывают ионы металлов. Некоторые из них действуют как биологические хранилища металлов, в то время как другие служат для их транспорта. Ферритин запасает железо, главным образом в печени и селезенке, в виде оксигидро-ксифосфата Fe(HI) с приблизительным составом Fe(OOH)s, FeO, РО4Н2. Это соединение образует ядро диаметром 7 нм, окруженное 24 белковыми субъединицами, давая в результате сферическую молекулу общим диаметром около 12 нм. Трансферин, с другой стороны, является белком плазмы, переносящим ионы Fe + и Си +. Имеются данные, что в состав центра связывания металла входят тирозин и гистидин. Так, в спектре поглощения белка и-меется пик при 465 нм, соответствующий переносу заряда между фенолят- и Ре +-ионами. [c.561]

    Простые белки в свою очередь делятся на основании некоторых условно выбранных критериев на ряд подгрупп протамины, гистоны, альбумины, глобулины, проламины, глютелины и др. Классификация сложных белков (см. главу 2) основана на химической природе входящего в их состав небелкового компонента. В соответствии с этим различают фосфопротеины (содержат фосфорную кислоту), хромопротеины (в состав их входят пигменты), пуклеопротеины (содержат нуклеиновые кислоты), гликопротеины (содержат углеводы), липопротеины (содержат липиды) и металлопротеины (содержат металлы). [c.72]

    Флавопротеины содержат прочно связанные с белком простетические группы, представленные изоаллоксазиновыми производными —окисленными флавинмононуклеотидом (ФМН) и флавинадениндинуклеотидом (ФАД). Флавопротеины входят в состав океидоредуктаз —ферментов, катализирующих окислительно-восстановительные реакции в клетке. Некоторые Флавопротеины содержат ионы металлов. Типичными представителями флавопротеинов, содержащих также негемовое железо, являются ксантин-оксидаза, альдегидоксидаза, СДГ, дигидрооротатдегидрогеназа, ацил-КоА-дегидрогеназа и транспортирующий электроны флавопротеин. На долю двух последних приходится до 80% митохондриальных флавопро- [c.85]

    Хилле [10] провел серию элегантных экспериментов, позволяющих лучше понять механизм действия натриевого канала. Сравнивая проницаемость ионов щелочных металлов и органических катионов (табл. 6.2), он определил средний размер канала, составляющий 0,3-0,5 нм, и пришел к выводу, что канал окружен кольцом атомов кислорода, входящих в состав карбоксильных групп мембранного белка. Хилле считает, что селективность зависит не только от размеров проникающих ионов, но и от их способности образовывать водородные связи. Для подтверждения этой точки зрения ниже сравниваются три иона  [c.137]


Смотреть страницы где упоминается термин Белки металлы в их составе: [c.326]    [c.633]    [c.31]    [c.633]    [c.265]    [c.252]    [c.356]    [c.241]    [c.322]    [c.175]    [c.72]    [c.75]    [c.7]    [c.169]    [c.35]    [c.279]   
Основы органической химии 2 Издание 2 (1978) -- [ c.125 ]

Основы органической химии Ч 2 (1968) -- [ c.79 ]




ПОИСК





Смотрите так же термины и статьи:

Состав металлы



© 2025 chem21.info Реклама на сайте