Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радиусов отношение влияние его

    Степень перегрева кипяшей жидкости будет зависеть от средней величины радиуса закругления неровности стены или пузырьков газа, пристающих к стенке, на которой может происходить испарение жидкости. Изучение влияния, которое оказывает на образование паровых пузырьков качество поверхности нагрева, показало, что поведение жидкости по отношению к поверхности нагрева, т. е. в основном поверхностное натяжение жидкости и смачиваемость поверхности нагрева должны иметь большое значение. Если учесть, что пузырьки пара на поверхности нагрева имеют форму, изображенную на фиг. 45, причем соотношение размеров изображенных пузырьков ориентировочно соответствует действительным отношениям, то становится ясным, что возникновение паровой пленки в случае Ь едва ли возможно или же ее возникновение значительно затруднено по сравнению со случаем а, когда сама форма пузырька пара содействует соединению отдельных пузырьков и образованию слоя пара. Пузырьки именно такой формы а образуются при кипении, например, ртути. [c.104]


    Численные расчеты показали, что потоки, даваемые формулой (13.129), для двух рассмотренных методов, приводящих к разным выражениям для ф,, дают максимальное расхождение (5 %) в щироком диапазоне изменения параметров За и Зе. Поскольку (13.131) требует меньшего объема вычислений, то расчеты проводились по этой формуле. На рис. 13.39 приведены зависимости ф1 от отношения радиусов капель к для различных значений параметров молекулярного За и электрического 5" взаимодействия. Из приведенных зависимостей следует, что с увеличением и с уменьшением 3 влияние электрического поля на частоту столкновения уменьшается. Поскольку Зе не зависит от размеров капель, а 5 увеличивается с уменьшением размеров, то с уменьшением радиусов капель влияние электрического поля на частоту столкновения капель в турбулентном потоке снижается. [c.366]

    Итак, мы пе наблюдаем определенной связи между валентностью катионов примеси и степенью влияния. Причина, видимо, кроется в том, что в этом случае начинают играть более существенную роль величины ионных радиусов. Отношение — для пары равно [c.110]

    Значение многочлена —3/ — (2/ — 1)) имеет знак, противоположный знаку у колена S1V. В отношении влияния радиуса колена будут справедливы зависимости для колена S1V, но с обратными знаками. Для коэффициента сопротивления меньше чем / = 0,605 выгоден больший радиус колена, а при коэффициенте больше чем 0,605 выгоден меньший радиус. [c.65]

    Поверхностная активность щелочных металлов по отношению к ртути и ее рост с увеличением ионного радиуса были объяснены В. К. Семенченко влиянием электростатического потенциала кулоновских сил г г, зависящего от заряда е и радиуса г ионов растворителя (ртути), и растворенных в нем ионов [c.473]

    Влияние концентрационной диффузии и фильтрационного переноса на селективность процесса разделения газовых смесей в пористых мембранах исследовалось в работе [20]. На рис. 2.8 приведены результаты расчетов фактора разделения ац, как функции отношения давлений в дренажном и напорном каналах, для смесей N2 и СО2 при различных значениях эффективного радиуса пор, среднего давления газа в мембране и температуры процесса. Видно, что селективность процесса максимальна при малых размерах пор и низком среднем давлении в мембранах, т. е. в условиях, исключающих концентрационную диффузию и фильтрационный перенос и соответствующих свободномолекулярному течению газа в порах мембраны  [c.66]

    Многочисленные опыты, проведенные исследователями [11, 12, 159, 181 ], указывают на значительное влияние стенки на распределение порозности 8 слоя по радиусу сечения. Например, по кривой е (рис. 10.3) [159], видно, что при больших отношениях это влияние распростра- [c.271]


    При увеличении глубины слоя до определенного значения (50 эквивалентных диаметров частиц для БАВ и 240 для СА-1) зона влияния стенки также увеличивается по радиусу до 10 н- 12 для БАВ и до 30 35 для СА-1 (см. рис. 1, 2). При дальнейшем увеличении отношения ширина зоны влияния [c.97]

    В том случае, когда отношение диаметра колонны к характерному размеру заполняющих ее частиц меньше 7, влияние стенок можно оценить в соответствии с рекомендациями 19) с помощью специального корректирующего множителя М, входящего в уравнение Эргуна. Этот множитель, позволяющий учесть наличие стенок колонны при расчете гидравлического радиуса в рамках модели канала, [c.154]

Рис. 6.10. Данные, характеризующие влияние отношения длины диффузора к ширине его горла для прямоугольных диффузоров и к радиусу для конических диффузоров на величину угла раскрытия при достижении максимального к. п. д. Около каждой экспериментальной точки указа [а доля скоростного напора на входе, преобразованная в статическое давление [2 Рис. 6.10. Данные, <a href="/info/1061877">характеризующие влияние</a> <a href="/info/971337">отношения длины</a> диффузора к ширине его горла для прямоугольных диффузоров и к радиусу для <a href="/info/1366174">конических диффузоров</a> на величину угла раскрытия при <a href="/info/1522939">достижении максимального</a> к. п. д. Около каждой <a href="/info/705590">экспериментальной точки</a> указа [а доля <a href="/info/21772">скоростного напора</a> на входе, преобразованная в статическое давление [2
    Результаты анализа, выполненного в работах [38,39], позволили выявить определенные закономерности, связанные с влиянием условий перемешивания на степень сегрегации в реакторе. Установлено, в частности, что высокая степень сегрегации в аппарате с мешалкой может иметь место даже при высоких значениях кратности циркуляции, если объем зоны микросмешения мал. С другой стороны, при достаточно больших значениях (что соответствует малым отношениям радиусов аппарата и мешалки) условия в аппарате приближаются к микросмешению. В ряде работ [40,41,42] рассматривается взаимосвязь между интенсивностью смешения и локальными характеристиками турбулентности. [c.56]

    Обратимся к рис. 13.25 и определим отношение толщины заготовки /I,, (г) к радиусу Нр (г) и к объемному расходу. Если угол входа в экструзионную головку для формования заготовки 0 равен нулю, то в принципе можно оценить толщину заготовки по данным, полученным в экспериментах по разбуханию расплава, выдавливаемого через капилляр при том же напряжении сдвига на стенке. Но в таком случае нужно принимать во внимание следующие соображения. Первое — скорость течения (а следовательно, напряжение сдвига) изменяется во времени. И второе — только самый начальный участок заготовки характеризуется полной величиной разбухания экструдата остальная часть заготовки под влиянием силы тяжести подвергается действию постоянного растягивающего напряжения, которое препятствует разбуханию и вызывает продольную деформацию. В первое время эта деформация носит чисто высокоэластический характер. [c.579]

    Вследствие радиального действия электростатических сил в ионных кристаллах при отсутствии искажающего влияния поляризации ионов каждый ион окружается другими в соответствии с принципом наиболее плотной упаковки, т. е. наибольшим возможным числом ионов другого знака заряда. Координационные числа в таких случаях зависят от отношения так называемых эффективных ионных радиусов rv.trТак как радиус катиона обычно меньше радиуса аниона, то, например, для соединений типа АВ упаковка с координационным числом 12 в ионных решетках не достигается. Для ионных соединений типа АВ наиболее вероятна упаковка с координационным числом 8 ( s I) при ГК/га = 1—0,73 6 (Na l) — при гк/ал = 0,73—0,41  [c.129]

    ПРОСТРАНСТВЕННЫЕ ЗАТРУДНЕНИЯ СТАТИЧЕСКИЕ (стерические препятствия)— затруднения, или препятствия, для. такого размещения атомов в молекуле, при котором сохранялись бы нормальные валентные углы и межатомные расстояния, н частности для ароматических н сопряженных систем — планарное строение молекулы. П. з. с. возникают при отталкивании химически не связанных, но близко расположенных в пространстве атомов, расстояние между которыми ограничивается суммой их ковалентных радиусов. В таком случае П. 3. с. приводят к изменению нормальных валентных углов, к нарушению планарного строения ароматических и сопряженных систем, что можно наблюдать, например, по изменению окраски, отклонению дипольного момента и другим свойствам от рассчитанного значения. Молекулы, не имеющие П. з. с., могут проявлять их по отношению к другим молекулам, с которыми они реагируют, если возле реакционного центра молекулы близко расположены большие заместители, препятствующие доступу реагента к этому центру (П. з. динамические). При этом происходит снижение реакционной способности соединений без электронного влияния заместителей. П. 3. с. можно предвидеть заранее изучением моделей исследуемых молекул или построением их масштабных графических формул с учетом ковалентных радиусов близко расположенных атомов, [c.205]


    Для вычисления сигнала Рт из (2.47) применяют метод моделирования. Выделяют безразмерные параметры, от которых зависит решение, и строят систему кривых в безразмерных координатах. Если излучатель и приемник одинаковы, таких параметров четыре. Удобно выбрать следующие отношение расстояния между преобразователями г=х к длине ближней зоны Гб, Ь/а — отношение радиусов дефекта и преобразователя, ri/r — отношение расстояния дефекта от излучателя к расстоянию между преобразователями, у/а — отношение смещения дефекта от общей оси преобразователей к их радиусу. Однако параметр у/а можно исключить, если указывать на номограмме минимальные значения Рт/Рс, т. е. соответствующие наибольшему ослаблению сквозного сигнала при перемещении дефекта в плоскости MN. Такая постановка задачи вполне соответствует реальным условиям контроля, когда отыскивают минимум прошедшего сигнала. Параметр ri/r полагают равным 0,5, т. е. считают, что дефект расположен посередине между преобразователями. Позднее будет рассмотрено влияние изменения у/а и r /r. [c.153]

    На растворимость ионных соединений большое влияние оказывают радиусы ионов. Как показано К. Б. Яцимирским, в ряду солей с данным ионом растворимость обусловливается в первую очередь отношением радиусов катиона и аниона. Для солей типа [c.211]

    Для атомов галогенов характерно наличие сочетания ns np , причем, начиная с хлора, в их атомах появляются незаполненные d-орбитали. По мере роста числа внутренних электронов усиливается их влияние па химические и физические свойства галогенов уменьшается ионизационный потенциал, нарастают признаки, характерные для металлов. В результате элементы с небольшими массовыми числами атомов — фтор, хлор — проявляют чисто неметаллический характер, в то время как иод и астат во многих отношениях схожи с металлами. Фтор, имеющий наименьший радиус атома и семь электронов на внешней оболочке,— типичный неметалл и сильнейший окислитель. [c.192]

    Для количественной оценки влияния формы сечения на потерю напора вводится в расчет гидравлический радиус равный отношению площади сечения трубы к его периметру  [c.105]

    Симметричные локальные возмущения могут быть поперечными и тангенциальными. Источником таких возмущений по отношению к углеводородным пленкам может быть узкая струя водной фазы, направленная нормально к поверхности. При этом создается локальное повышение давления (поперечное возмущение) и возникает тангенциальная сила со стороны разбегающегося потока (тангенциальное возмущение). В результате локального повышения давления жидкость будет перемещаться из зоны возмущения в сторону периферии. Процесс удаления жидкости сведется к двум процессам — к однородной деформации возмущенной области (т. е. к ее растяжению в целом) и к процессу вытекания раствора по обычному механизму. Анализ, проведенный в работе [202], показывает, что при выполнении условия к г 1 (Гв — радиус возмущения) скорость утончения пленки под влиянием течения пренебрежимо мала по сравнению со скоростью растяжения. [c.157]

    Распределение потока перед слоем катализатора. Схемы ввода потока в слой катализатора показаны на рис. 4.30. Отметим два характерных явления. Резкое расширение сечения потока на входе в аппарат приводит к появлению отрывных течений, возникновению циркуляционных токов и, как следствие, к неоднозначному по сече- нию распределению потока перед слоем. Скоростной напор потока, выходящего из подводящей трубы, приводит к ярко выраженному I факельному распределению скорости в слое (рис. 4.30,6). Оба этих явления приводят к неоднородности течения потока перед слоем. Неоднородность распределения по сечению потока выразим через распределение по радиусу аппарата перепадов полных давлений Д р в слое в виде отношения Д p на 1-м радиусе г,- и Д Рц в центре или Д р р среднего по всему сечению [309]. Неоднородность распределения потока по сечению слоя зависит от гидравлического сопротивления слоя, выраженного через параметр Эйлера Ец л = А р . /р, и геометрических размеров надслоевого пространства, выраженных в виде отношений с /0 и Н/О (на рис. 4.30,а). Некоторые результаты расчетов представлены на рис. 4.31 [310]. Эксперименты были проведены на модели диаметром 400 мм в следующем диапазоне изменения параметров (1/0 = 0,125- 0,5 Н/О = 0,1 - 0,7 ЕЦе = 60 f 365 при Ке> 104. Измерения показали, что наиболее значительное влияние на распределение потока оказывают следующие параметры ё/О и сопротивление зернистого материала Еи л. Изменение высоты надслоевого пространства (Н/О) оказывает слабое влияние на распределение потока перед слоем. Уменьшить неоднородность распределения потока по сечению слоя можно увеличением сечения входного патрубка ( /О > 0,5) или подсыпкой зернистого слоя перед катализатором (рис. 4.32). Первый вариант конструктивно не всегда удобен. Во втором варианте при Еи л > 600 гидравлическое сопротивление уже не влияет на распределение потока (область автомодельности), однако требуются значительные затраты энергии. Кроме того, вследствие скоростного напора струя [c.231]

    Вследствие влияния естественной конвекции в экспериментах по горению капли значение радиуса пламени г , предсказываемое формулой (62), оказывается завышенным приблизительно в два раза, кроме того, разность (г — Г1) более точно удовлетворяет требованию независимости от Г , чем отношение г< /г/. [c.88]

Рис. 6-14. Влияние отношения радиусов внутренней и внешней труб на значения критерия Нуссельта и поправочных коэффициентов при турбулентном течении в кольцевом канале, постоянной тепловой нагрузке и полностью стабилизированных профилях скорости и температуры Ке=100 000, Рг = 0,7. Рис. 6-14. Влияние отношения радиусов внутренней и <a href="/info/500190">внешней труб</a> на <a href="/info/958093">значения критерия Нуссельта</a> и <a href="/info/8281">поправочных коэффициентов</a> при <a href="/info/6408">турбулентном течении</a> в кольцевом канале, <a href="/info/957781">постоянной тепловой</a> нагрузке и полностью стабилизированных <a href="/info/117162">профилях скорости</a> и температуры Ке=100 000, Рг = 0,7.
    У поверхности капли, т. е. при г = а, если расстояние между каплями велико по сравнению их радиусом, отношение второго члена в уравнении (103,5) к первому мало и равно бтгпа . Иначе говоря, замыкание внешней цепи не оказывает суш.ественного влияния на распределение потенциала в непосредственной близости ка ждой капли, что оправдывает использование в уравнении (103,4) значения Е из выражения (10 -> 2). [c.520]

    В отношении влияния омического сопротивления можно утверждать, что переход от слоя электролита заметной толщины к тончайшему слою электролита при атмосферной коррозии (при одном и том же размере коррозионных пар) будет вести к заметному увеличению омического сопротивления микропар или, другими словами, радиус действия микрокатодов и микроанодов при атмосферной коррозии будет с утоньшением пленки электролита все более и более уменьшаться. Этим обстоятельством, между прочим, объясняется большая равномерность коррозионного разрушения в атмосферных условиях по сравнению, например, с подводной или почвенной коррозией. [c.339]

    Экспериментальная проверка уравнения (1.22) проведена для смачивающих а-пленок воды на поверхности кварцевых капилляров на участке между менисками, находящимися при различной температуре [62]. По известным для воды значениям (да/дТ) = —1,6-10 Н СМ -град и известным из опытов г и grad Т можно было определить отношение h /ц. Принимая для тонких пленок ti=1,5tio, где т1о — вязкость объемной воды, для серии из 16 опытов в капиллярах радиусом от I до 10 мкм были получены значения h в интервале от 5 до 10 нм, что близко к эллипсометрическим оценкам толщины а-пленок [45]. Разброс значений толщины (от 5 до 10 нм) связан в данном случае с влиянием гистерезиса краевого угла — неполным смачиванием объемной водой а-пленок. Для объяснения наблюдавшегося разброса достаточно допустить, что наступающий угол 0л составляет 8—10°, а отступающий угол 0 близок к 0°, что согласуется с известными экспериментальными данными. [c.30]

    Как видно из этого выражения, вклад термокристаллизационного течения пленок растет при уменьшении радиуса капилляров. Подстановка в уравнение (6.12) известных физических характеристик воды (/г 10 см, т1г 0,01 Па-с и ГдаГо) показывает, что отношение У /Уз Х при г 10 мкм. Это определяет весьма важную роль термокристаллизационного течения пленок воды в промерзших тонкопористых телах. При среднем радиусе пор г<с10 мкм основная роль в процессе внутреннего массообмена в промерзших пористых телах вблизи фронта кристаллизации принадлежит термокристаллизационному течению пленок. Напротив, в широкопористых телах (г>10 мкм) перенос влаги происходит в основном в виде пара. Влияние термокапиллярного течения пленок, как показывают оценки [328, 329], не превышает 2% от вклада термокристаллизационного течения (при /гл 10 см), но может возрастать до 20% при уменьшении толшины пленок до 10 см. [c.112]

    Подводящий участок аппарата может быть упрощен путем замены колена 90 с направляющими лопатками плавным отводом 90° без направляющих лопаток при этом требуемое удлинение подводящего участка (вследствие увеличения радиуса закругления отвода по сравнению с коленом) может быть компенсировано укорочением диффузора. Последнее приводит к увеличению входного сечению диффузора, что, в свою очередь, уменьшает отношение площадей, и с точки зрения равномерной раздачи потока является более благоприятным. При плавном отводе также получается одностороннее отклонение потока. Однако при этом нет дополнительного с>катия его на выходе из отвода и, кроме того, это отклонение меньше, чем отклонение при колене без направляющих лопаток. Установка одной распределительной решетки ( р = 29 / = 0,25) не обеспечивает полного растекания струи. Практически равномерное растекание струи по всему сечекию рабочей камеры (Ми 1,15) получается при установке двух решеток с коэффициентами сопротивления, сравнительно близкими к расчетным ( р1 =29 / = 0,25 и = 20 , / = 0,29), как это сделано в варианте П-3. Здесь тенденция к отклонению потока вверх компенсируется влиянием зазора между решетками и нижней стенкой диффузора (б/Вк = = 0,02), через который происходит более интенсивное перетекание газа из области перед решеткой в область за ней. Уменьшение коэффициентов сопротивления решеток (вариант П-4 и особенно вариант П-5) существенно ухудшает равномерность поля скоростей в рабочей камере аппарата с подводом через плавный отвод (Мк = 1,8). [c.225]

    Такое влияние металлов можно объяснить их различным вкладом в каталитическую активность при коксообразовании. Добавление к алюмосиликатному катализатору щелочных и щелочноземельных металлов понижает его кислотность и каталитическую активность в отношении образования кокса по карбонийионному механизму. Предполагается [23, 42], что имеет место неравномерное распределение металлов по радиусу и большая их часть отлагается на периферии. В таком случае активность периферийных слоев снижается больше. Это уменьшает диффузионное торможение периферийных слоев, реакции крекинга и коксообразования перемещаются в центральную часть зерна катализатора. Поэтому отложение кокса становится более равномерным. Отметим, что и при равномерном распределении щелочных металлов по радиусу зерна можно ожидать такого же эффекта, так как общее снижение активности катализатора должно понижать диффузионное торможение и смещать реакцию в кинетическую область. [c.13]

    На многих иллюстрациях, помещенных в гл. 1, в частнос1и на рис. 1.о и 1.5, представлены сложные конфигурации системы труб, часто применяемых в теплообменниках. Операция по гнутью труб определяет стоимость изготовления теплообменников. Гнутье труб обычно производится в холодном состоянии при этом металл на внутренней стороне изгибаемого изделия испытывает напряжение сжатия, а снаружи он подвергается растягивающим усилиям. Если пластическая деформация металла не должна превышать 25%, минимально допустимый радиус изгиба должен быть равен двум диаметрам. Материал трубы, термическая и механическая обработка и отношение толщины стенки к диаметру в совокупности оказывают существенное влияние на величину минимального радиуса изгиба. [c.34]

    Точные решения исключительно сложны, ио оказалось возможным дать ряд приближенных решений, сравнительно легко приложимых для практических задач. Например, если требуется сконструировать трубную решетку для восприятия больпюй разности давлений, такую решетку обычно вваривают в кожух теплообменника. Хотя при этом запас прочности решетки возрастает, по эффект защемления невелик, так как толищна решетки значительно больше толщины стенки кожуха. В этом случае напряжение в трубной решетке можно аппроксимировать равенством (7.2) для свободно опертой плоской пластины, видоизменив его для учета концентрации напряжений вблизи отверстий и уменьшения поперечного сечения пластины, вызванного удалением материала из отверстий. При использовании равенства (7.2) представляется очевидным, что напряжение в трубной решетке не просто прямо пропорционально разности давлений и квадрату отношения ее радиуса к толщине, но является также функцией отношения шага отверстий к их диаметру. Коэффициент концентрации напряжений для небольших, далеко отстоящих друг от друга отверстий равен приблизительно трем, однако он снижается с увеличением отношения диаметра отверстий к шагу. Изменение этого коэффициента в большой степени снижает выигрыш от уменьшения эффективной площади сечения, когда отношение диаметра отверстий к шагу возрастает приблизительно до 0,5. Дальнейшее увеличение диаметра отверстий вызывает быстрое возрастание напряжений. Удобный способ определения максимальных напряжений основан на использовании графика рис. П6.2, который был построен в соответствии с нормами ASME для паровых котлов по единой кривой можно определить влияние коэффициента концентрации напряжений и потерю металла в отверстиях. [c.144]

    Их потенциалы ионизации, ковалентные рЭ1Диусы и радиусы ионов закономерно меняются при переходе от одного элемента к другому. Небольшое отклонение наблюдается лишь в отношении электроотрицательностей, по величине которой эти элементы располагаются в следующий ряд >Ge>Si Sn>Pb. Это отклонение, как и для элементов главной подгруппы третьей группы , обусловлено влиянием переходных элементов и лантаноидов, заполнение в атомах которых d- и f- подуровней приводит к значительному экранированию валентных электронов у следующих за ними элементов. [c.554]

    Вначале мы обратим свое внимание на правую ветвь кривой рис. 33, т. е. на кривую падения величины -потенциала в области относительно больших размеров пор коллодиевых мембран. Причиной такого уменьшения величины V// и -потенциала можно предполагать гетеропористость мембран. Если бы коллодиевые мембраны или любые другие были гомеопористыми, т. е. содержали поры только одного размера, то, двигаясь в сторону увеличения сечения пор, мы должны были дойти до такой области, для которой при данном градиенте потенциала нельзя достичь стационарного лотока жидкости по всему сечению капилляров, и величина Vjl, а с ней и вычисленный -потенциал обращаются в нуль. Однако всякая реальная мембрана —это мембрана гетеропористая, т. е. содержащая поры различного размера и характеризующаяся кривой распределения пор по размерам. Увеличение среднего радиуса пор мембраны такого типа должно привести к положению, когда в наиболее крупных капиллярах при данном градиенте потенциала движущая электрическая сила окажется недостаточной для достижения стационарного потока, и электроосмотический перенос в таких крупных порах будет отсутствовать. В то же время движение ионов по сечению капилляров под влиянием приложенной разности потенциалов будет происходить, и, следовательно, сила тока в цепи не будет уменьшаться, а уменьшится объем перенесенной жидкости, что должно привести к общему уменьшению величины Vjl, а с ним и вычисляемого значения -потенциала. Такое уменьшение Vjl должно происходить, очевидно, пропорционально отношению площади крупных капилляров, где отсутствует электроосмотическое течение лсидкости, к общей площади сечения капилляров мембраны. [c.61]

    Для выяснения влияния граничных слоев воды на ее движение в каг иллярах и пористых средах проводился ряд исследований. Интересны в этом отношении работы Н. П. Федякина [96, 97], изучавшего перемещение воды в капиллярах различного сечения (от 2 до 0,2 мк), а также величину вязкости и поверхностного натяжения ее в зависимости от радиуса капилляра. Было установлено, что свойства жидкостей в микрокапиллярах отличаются от объемных. При движении воды в капиллярах с радиусами, меньшими 0,1 мк, вязкость и плотность ее не являются постоянной ве- личиной, уменьшаясь с уменьшением радиуса капилляра. При этом у воды наблюдается предельное напряжение сдвига. Плотность ее не соответствует плотности воды в объеме. [c.6]

    Влияние шероховатости стенок труб на сопротивление. При движении жидкости по трубам, не имеющим гладкой поверхности, как, например, по керамическим трубам с нешлифованной внутренней поверхностью, по загрязненным трубам и т. п., следует учитывать влияние шероховатости на величину Л. В качестве характеристики шероховатости вводится понятие относительной шероховатости или коэффициента шероховатости п, представляющего собой отношение средней величины выступа ншроховатости (или глубины впадины) г к радиусу трубы г, т. е. [c.69]

    Среди самых ранних исследований частичных полостей отметим работу Лайтхилла [152], в которой изучался перенос тепла в круговой трубе с нагретыми изотермическими стенками, закрытой снизу и открытой сверху, в среду с температурой, отличной от температуры трубы. Такая конфигурация аналогична термосифону с разомкнутым контуром, рассомотренному в разд. 14.6.1. Указанная задача возникла при анализе проблем охлаждения конструкции турбин. При этом для анализа возникающего течения при Ргоо использовался интегральный метод. Было установлено, что при заданных значених чисел Рэлея и Прандтля течение сильно зависит от отношения высоты трубы Я к радиусу Я. При очень малых значениях Я/У влияние ограничивающих стенок невелико, а внутреннее течение аналогично [c.320]

    Для выяснения влияния искусственной турбулизации на интенсивность теплоотдачи нами была проведена большая серия опытов. Методика исследования преследовала цель сравнить различные виды фасонных каналов с гладким. На фиг, III. 29 приведена серия цилиндрических трубол , в которых нагревалась вода паром постоянного давления. Всего было исследовано 48 трубок различного диаметра и различных,,профилей продольного сечения. Все исследуемые трубки данного диаметра были взяты одной длины, т. е. с постоянным отношением Lid. Затем трубкам придавался различный профиль изгиба, с различным радиусом волны. В эту же серию опытов входили трубки с разрывами и трубки с периодический сужением по длине [23]. Начальная температура воды во всех опытах была постоянной и постоянной была температура пара в рубашке. Эффективность отдельных профилей трубок проверялась по удельной тепловой нагрузке [c.117]

    Разберемся подробнее в том, почему кристаллическая структура обычных бинарных солей определяется относительными размерами катиона и аниона. Решающим фактором, оказывающим влияние на число ближайщих соседей каждого иона, является геометрия их расположения. Рассмотрим, например, кристаллическую структуру типа СзС1 (изображенную на рис. 10.15), в которой каждый ион С5 окружен восемью ионами С1 . Подсчитаем критическую величину отношения радиусов катиона и аниона ( катип / янипн) при которой еще может осуществляться такая структура. Если анионы соприкасаются друг с другом и имеют радиус а, то длина ребра элементарной ячейки тако- [c.177]


Смотреть страницы где упоминается термин Радиусов отношение влияние его: [c.114]    [c.89]    [c.114]    [c.175]    [c.13]    [c.120]    [c.325]    [c.159]    [c.565]    [c.246]    [c.369]    [c.42]    [c.325]   
Строение неорганических веществ (1948) -- [ c.108 , c.113 ]




ПОИСК





Смотрите так же термины и статьи:

Отношение радиусов



© 2024 chem21.info Реклама на сайте