Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Циглер полимеризация этилена

    Этилен полимеризуется по радикальному и ионному механизму. Промышленное значение имеет полимеризация этилена в присутствии инициаторов, (кислорода, органических перекисей) под давлением 120—300 МПа (1200—3000 кгс/см2) и температуре 200—280°С (метод высокого давления), а также полимеризация этилена в присутствии катализаторов Циглера — Натта под давлением 0,2— 0,5 МПа (2—5 кгс/см ) и температуре ниже 80 °С (метод низкого давления) или под давлением 3,5— [c.5]


    Р-ции нуклеоф. присоединения для О. менее характерны и идут лишь с сильными нуклеофилами, напр, с металлоорг. соед. типа бутиллития. К р-циям нуклеоф. присоединения м.б. отнесена также анионная полимеризация О. с применением катализаторов Циглера Натты. В пром-сти таким способом Получают высокомол. полиэтилен, стереорегуляр-ный изотактич. полипропилен и этилен-пропиленовый каучук. [c.374]

    Ионно-координационная полимеризация происходит тогда, когда между мономерами и активным центром возникает координационный комплекс. Структура мономера и тип катализатора оказывают решающее действие как на процесс комплексообразования, так и на стереорегулярность полимера. В качестве катализаторов чаще всего применяют комплексные соединения, так называемые катализаторы Циглера - Натта. Эти катализаторы образуются из алкилов металлов переменной валентности и галогенидов металлов. Катализаторами могут являться также я-аллильные комплексы переходных металлов и оксидно-металлические катализаторы. Из катализаторов Циглера - Натта в производстве обычно используют комплексы алюминий-алкилов и галогенпроизводные титана и ванадия. Такие катализаторы используются для полимеризации неполярных алкенов (этилен, пропилен и др.) и диенов (бутадиен, изопрен и их производные). [c.35]

    Металлоорганические катализаторы, открытые Циглером с сотр. [15, 16], также относятся к ионным инициаторам. На этих инициаторах можно полимеризовать этилен при атмосферном давлении. И хотя относительно механизма полимеризации в присутствии этих инициаторах существуют различные концепции [17, 18], совершенно точно установлено, что они не являются свободнорадикальными инициаторами. Как было показано Натта с сотр. [19], при полимеризации многих виниловых мономеров эти инициаторы осуществляют стереоспецифический катализ, т. е. позволяют получить стереорегулярные полимеры. Последние вследствие своей регулярной структуры отличаются по многим свойствам (см. раздел 1.2) от атактических полимеров, расположение заместителей в цепи которых имеет беспорядочный характер. [c.143]

    Образующаяся связь Т1 — Н вновь способна к внедрению. Координационной полимеризации на катализаторах Циглера в больших промышленных масштабах подвергают прежде всего этилен, пропилен, а также бутадиен-1,3 и изопрен (2-метилбутадиен-1,3). Из пропилена и диенов-1,3 при этом образуются стереорегулярные полимеры. [c.718]


    Между тем по способу Циглера в настоящее время можно поли-меризовать этилен с достаточно высокой скоростью при атмосферном давлении и 50°, причем в зависимости от катализатора можно получить продукты с молекулярным весом от 30 ООО до 1 ООО ООО и более [17]. На катализаторах Циглера можно также проводить полимеризацию пропилена, бутилена, бутадиена и изопрена и при соответствующих условиях получать только димеры или димеры и тримеры. Таким способом можно получить а-бутилен из этилена, гексилен из пропилена и октилен из бутилена [17]. Как новейший результат следует указать способ получения циклододекатриена из бутадиена. Наконец, необходимо также упомянуть процесс Циглера, основанный на взаимодействии высших олефинов с триалкил-алюминием, причем образующиеся высококипящие остатки, связанные с AI, под действием воздуха и воды превращаются в высшие спирты [18]. Одновре.менно с Циглером рядом исследователей были проведены работы по получению полиэтилена при относительно низких давлениях. Фирмы Филлипс и Стандард ойл ко , Уайтинг (Индиана) разработали процессы получения полиэтилена в растворе при сравнительно мягких условиях в присутствии твердых катализаторов. Для осуществления этих процессов в США строятся несколько установок. Суммарное производство полиэтилена в США в 1957 г. составило 400 ООО m, причем V.-s этого количества получали различными способами полимеризации при низких дав- [c.361]

    Процесс полимеризации по Циглеру удобно проводить как полимеризацию в блоке. Разбавитель и катализатор вводятся в реактор с мешалкой, через который пропускается этилен при атмосферном или слегка повышенном давлении. Этилен растворяется в разбавителе и диффундирует к поверхности суспензированных частиц катализатора, на которых и происходит полимеризация. Образующийся полиэтилен почти сразу выпадает из разбавителя в виде шлама, причем по мере течения реакции частицы его становятся все крупнее. При этом ухудшаются условия отвода через стенки реактора выделяющегося при полимеризации тепла. В конце концов может образоваться шлам, плохо поддающийся перемешиванию или неспособный двигаться по обычным трубопроводам. До образования такого шлама реакционный продукт выводится из реактора и направляется в секции, предназначенные для отделения и очистки полимера. [c.81]

    Найдены катализаторы, благодаря которым этилен полимеризуется при низких давлениях. Например, в присутствии триэтил-алюминия (С2Н5)зА1 с добавкой 1лорида титана (IV) Ti l, (катализатор Циглера) полимеризация протекает при атмосферном давлении (получается полиэтилен низкого давления)-, на оксидах хрома (катализатор Филипса) полимер образуется при давлении до 10 МПа (полиэтилен среднего давления). [c.500]

    Полиэтилен низкого давления (мол. вес до —3-10 ) получают, по Циглеру, с помощью смещанных катализаторов [напрнмер, Ti U + -f АЦСзНбЬ ср. стр. 188] при этом Ti + переходит в низшую валентность. Натта предложил для этой реакции анионный механизм. Полагают, что получающиеся макромолекулы не разветвлены. В противоположность этому под действием хлористого алюминия (катионная полимеризация) этилен полимеризуется с образованием сильно разветвленных, сравнительно низкомолекулярных веществ (смазочные масла). [c.937]

    Найдены катализаторы, благодаря которым этилен полимеризуется при более низких давлениях. Например, в присутствии триэтилалюминия (С2Н5)зА1 с добавкой хлорида титана (IV) Т1Си (катализатор Циглера) полимеризация протекает при атмосферном или небольшом избыточном давлении (до 0,5 МПа) в среде растворителя (получается полиэтилен низкого давления)-, на оксидах хрома (катализатор Филипса) также в растворителе полимер образуется при давлении до 10 МПа (полиэтилен среднего давления). [c.604]

    С каждым годом расширяется ионная полимеризация этилена в присутствии гетерогенных комплексных катализаторов Циглера. Они представляют собой комплексы тетрахлорида титана и три-зтилалюминия (или другого сокатализатора). По этому методу очищенный этилен подается в суспензию металлоргаиического комплексного катализатора в низкокипящем бензине (температу- [c.217]

    Благодаря работам Циглера и его сотрудников стало возможным полимеризовать этилен нод нормальным давлением при полном преврап ,енни в высокомолекулярную пластмассу. Полимеризация может быть направлена так, что молекулярный вес полимера может варьировать в пределах 10000—3 000000. [c.580]

    В последнее время замечательные работы по полимеризации олефинов были проведены К. Циглером. Он нашел [11], что этилен полимеризуется в высшие а-олефины при 180—200° в присутствии ЫА1Н4, растворенного в эфире или другом органическом растворителе. Катализатором являлся тетраэтиллитийалюминий, образующийся при 120° из этилена и литийалюминийгидрида  [c.595]

    Реакции Циглера открывают совершенно новые пути использования олефинов синтез полиэтиленов и димеров олефинов для превращения в синтетические каучуки и ароматические углеводороды, получение первичных спиртов, синтетического волокна и т. д. Полимеризация этилена в смазочные масла в Германии проводится с 95—99% этиленовой фракцией путем обработки ее, после очистки от кислорода и сернистых примесей, хлористым алюминием при 180—200° и 10—25 ат. Давление в автоклавах при этом процессе приходится регулировать, так как оно непрерывно растет из-за образования газов (метана, этана и других углеводородов). Сырой полимеризат после дегазации нейтрализуют при 80—90 взвесью извести в метаноле (разложение А1С1,-комплекса), фильтруют центрифугируют. Из остаточных газов выделяют этилен, который поступает обратно на полимеризацию. Для обеспечения низкой температуры застывания и пологой температурной кривой вязкости к таким смазочным маслам прибавляют эфиры адипиновой кислоты или другие добавки [18]. [c.597]


    До недавнего времени высокомолекулярный полиэтилен получали лишь прн высоких давлениях (до 1500 ат) и температурах (до 200°). Сравнительно недавно разработано получение высокомолекул 1риого полиэтилена путем каталитической полимеризации этилена при 60—70° и атмосферном давлении (Циглер, 1955 г.). Для этой цели применяют тщательно очищенный этилен катали.чаторы ТЮЦ и А1(С2Н5)з (см. также стр. 937), [c.68]

    Полимеризация этилена при низких давлениях . К. Циглер установил, что этилен полимеризуется в присутствии комплекса, образующегося в результате взаимодействия алкилалюминия, например А1(С2Ни).,, и хлорида металла переменной валентности, например Т1С14. Механизм действия этого комплексного катализатора на этилен до сих пор еще не исследован с достаточной полнотой, но есть основания предполагать, что в присутствии такого комплекса этилен полимеризуется по механизму анионного процесса (стр. 139 и сл.). Комплекс катализатора легко разрушается под влиянием кислорода воздуха или влаги и активирующее действие его при этом прекращается. Поэтому полимеризацию этилена проводят в атмосфере азота и в среде раство- [c.195]

    Прочность двойной связи в молекуле мономера, координированного на переходном металле, понижается это способствует вовлечению в полимеризацию малоактивных мономеров. Так, этилен полимеризуется на кат. Циглера -Натты при комнатной т-ре и давлении ниже атмосферного, в то время как радикальная полимеризация его протекает при 200-300 С и давлении 100-300 МПа. Предварит, координация создает условия для определенной ориентации присоединяющихся молекул мономера относительно полимерной цепи и тем самым обусловливает высокую регио- и стереоспецифичность актов роста. Напр., с чистотой до 98% м. б. получены полибутадиены, содержащие только 1/ис-1,4-, транс-1,4- или 1,2-звенья, причем последний полимер м. б. полностью изотактич. или синднотактическим (подробнее см. Стереорегулярные полимеры). [c.465]

    Способность мономеров к полимеризации обусловлена термодинамическими и кинетическими факторами. Термодинамические факторы определяются количеством свободной энергии, выделяющейся при полимеризации (вследствие перехода напряженных хр -гибридизованных орбиталей атомов углерода в насыщенные ненапряженные хр -гибридизоваиные орбитали) и энтропиен, кинетические — природой активных центров и условиями процесса. Термодинамические и кинетические факторы не взаимосвязаны напри.мер, этилен имеет наибольшую теплоту полимеризации, однако до открытия катализаторов Циглера — Натта он считался инертным мономером наоборот, изобутилен, теплота полимеризации которого значительно ниже, чем у этилена, быстро полнмеризуется даже при очень низкой температуре (93 К). [c.109]

    Анионно-координационной полимеризацией называют процесс, происходящий под действием катализаторов Циглера — Натта, которые представляют собой комплексы галогенидов переходных металлов с металлорганическими соединениями. Типичными катализаторами этого типа являются системы тетрахлорид титана — триэтилалюминий и тетрахлорид ванадия — диэтилалюмининхло-рид, известны и другие системы. По-видимому, аналогично действуют и другие катализаторы, например дикобальтоктакарбонил и некоторые л-аллилникельгалогениды. Точная природа реакционноспособных промежуточных соединений, образуемых этими системами, продолжает оставаться предметом обсуждения, но полимеризация, по всей вероятности, протекает путем внедрения ви-нильного мономера по связи переходный металл — углерод (схема 19 М—металл). Важнейшими мономерами, вступающими в реакцию координационной полимеризации, являются этилен, пропилен, бутадиен-1,3 и изопрен. [c.307]

    С 1936 г. английский концерн ИСИ, а вскоре затем и ИГ стали выпускать полиэтилен высокого давления. Исследователями-химиками обоих концернов было найдено, что этилен полимери-зуется в присутствии катализаторов при высоких температурах и давлениях. В 1953 г. К. Циглер (1898—1973) разработал метод полимеризации этилена при низких давлениях с применением смешанных металлорганических катализаторов А1(С2Н5)з. В том же году итальянский химик Дж. Натта (1903) открыл способ получения полимеров олефинов упорядоченной структуры (изотак-тический полипропилен). Оба эти открытия стали основой для получения полиэтилена различной степени эластичности. В 1938 г. американская фирма Дюпон стала выпускать тефлон — продукт полимеризации тетрафторэтилена. Этот полимер обладает особенно высокой термической устойчивостью и стойкостью по отношению к кислотам и едким щелочам. [c.283]

    Открытие Циглером новых катализаторных систем и приме нение их в реакции полимеризации непредельных соединений привело к получению новых видов синтетических каучуков, к числу которых относятся стереорегулярные 1 4 цис полиизопре новый, 1,4 цис полибутадиеновые и этиленпропиленовые Среди них последние занимают ведущее место—благодаря доступности исходного сырья и высоким качествам вулканизатов Этилен пропиленовые эластомеры можно охарактеризовать как деше вые каучуки общего назначения с высокими показателями, в большинстве случаев заменяющие дорогостоящие специальные каучуки [I] [c.3]

    Осуществление стереоспецифической полимеризации, направ ленной на образование стереоспецифического полимера зависит от природы выбранных мономеров Этилен а отефииы (иапри мер, пропилен и бутен 1) и другие алкены обладают низкой ко ординационной способностью и поэтому появляется необходи мость применять гетерогенные катализаторы Циглера Натта так как они оказывают наиболее серьезное препятствие синдио тактическому и атактическому присоединению мономера к кон цу растущей полимернои цепи Механизм образования стерео [c.22]

    В 1949 г. немецким химиком Циглером была открыта новая реакция полимеризации этилена при атмосферном давлении с применением в качестве катализатора триэтплалюминпя и сокатализа-тора четыреххлористого титана. По этому способу растворяют в смеси парафиновых углеводородов (например, фракции дизельного топлива) катализатор (А1 (С2Нд)з 4-Т1С1 ] в количестве 1% по отношению к растворителю и пропускают через такой раствор этилен при хорошем перемешивании. [c.37]

    ЮТ рост ДЛИННЫХ полимерных молекул, а какие, вероятно, препятствуют ему. Пытаясь получить высшие олефины реакцией олефинов с гидридом алюминия или с алюминийалкилами, Циглер [90] нашел, что молекулярные веса продуктов изменялись и в целом были ниже, чем следовало ожидать. Открытие [91] того, что этилен в присутствии солей никеля можно почти количественно димеризо-вать в бутен-1, привело к исследованию влияния соединений других переходных металлов. Было установлено, что соединения металлов IV, V и VI групп с триэтилалюминием и диэтилхлоралюминнем дают высокий выход полиэтилена. Позднее Натта [92, 93] показал, что эти катализаторы дают пространственно различаюшиеся полимеры пропилена и других олефинов. Натта [92] предположил, что соединение переходного металла следует рассматривать как катализатор, а металлалкил — как сокатализатор. Он показал, что активность связана с низшим состоянием окисления катализатора, хотя са.м металл часто ведет к димеризации, а не к полимеризации,что и наблюдалось в случае Ni. Кроме того, для пространственного регулирования строения полимера, вероятно, необходимо наличие границы раздела жидкость — твердое тело. О механизме этих замечательных реакций сейчас известно достаточно много для его объяснения предлагались свободнорадикальные, катионные и анионные цепи со стадиями роста, стерически регулируемыми поверхностью или индивидуальными комплексными ионами. Мягкие условия полимеризации указывают на ионный механизм, однако ни одну из приведенных схем нельзя рассматривать как полностью удовлетворительную. [c.436]

    Однако объяснение полимеризации подобной схемой наталкивается на определенные трудности. Во-первых, катализаторы Циглера—Натта отнюдь не отличаются повышенной активностью по отношению к мономерам, для которых типична анионная полимеризация. Напротив, они способны полимеризовать этилен, для которого прежде была известна только радикальная полимеризация, и пропилен, склонный лишь к катионной полимеризации. В то же время они неактивны по отношению к акрилонитрилу и метилметакрилэту, обладаюш,им ярко выраженной способностью к полимеризации по анионному механизму. Полимеризация этих мономеров требует применения модифицированных катализаторов Циглера (стр. 416). Во-вторых, константы сополимеризации, установленные для некоторых пар мономеров в системах с участием этих катализаторов, резко отличаются от величин, известных для обычных ионных процессов. Эти факты указывают на более сложный механизм полимеризации в присутствии катализаторов рассматриваемого типа. [c.412]

    Такой механизм позволяет объяснить необычайную избирательность комплексных катализаторов. Ясно, что к образованию я-комплексов с ними должны быть более склонны мономеры с повышенной электронной плотностью у двойной связи,т.е.те, для которых характерна катионная полимеризация. В то же время акт внедрения очередного мономерного звена (У1-2б) по связи металл—углерод следует рассматривать как реакцию анионного роста. Вполне вероятно, что на стадии внедрения (У1-2б) большее значение по сравнению со стадией координации (У1-2а) приобретает стерический фактор. Это позволяет понять, чем обусловлено различие в активности разных мономеров по отношению к катализаторам Циглера—Натта. Так, этилен, полимеризуюш,ийся с большей скоростью, чем пропилен или бутен-1, отличается меньшей электронной плотностью у двойной связи по сравнению с а-оле-финами. Следовательно, в акте внедрения ио связи Ме—С более суш ественны преимущества этилена (по-видимому, стерпческие) по сравнению с его гомологами. Аналогичным образом можно объяснить меньшую реакционноспособность бутена-1 ио сравнению с пропиленом (табл. 58). [c.413]

    По кинетике полимеризации под влиянием растворимых катализаторов Циглера—Натта пока имеется очень мало сведений. Каждая из изученных гомогенных систем отличается специфическими особенностями. Мы ограничимся рассмотрением системы этилен—(С Нд)2 A1G1— paTi lg, которую детально изучил Шьен [42]. Для нее кривая конверсия—время имеет S-образный характер, что указывает на относительно малую скорость инициирования (стр. 346). Использование меченого по углероду алюминий-органического компонента позволило установить, что на каждую полимерную цепь приходится в среднем по одной С Щд-группе. Следовательно, скорость инициирования может быть установлена по изменению содержания С в полимере (в начальной стадии процесса) как функции времени. Путем обработки отдельных проб реакционной смеси раствором радиоактивного йода и определения содержания йода в полимере (куда он входит по реакции [c.428]

    В 1955 году немецкий ученый Циглер предложил полиме-ризовать этилен при атмосферном давлении в присутствии гомогенного катализатора-диэтилалюминийхлорида (представителя класса металлоорганических соединений) в сочетании с четырехлористым титаном. Реакция полимеризации при этом могла теперь идти с большой скоростью при температуре 70—100° С. [c.43]

    Схема установки полимеризации с катализаторами Циглера [165] (алкилалюминий + соли кобальта) представлена на рис. 132. Очищенный этилен ненрерывно поступает в реактор, где при температуре 70° С и давлении около 6 ат, сильно перемешиваясь, контактируется с катализаторами, находящимися в растворителе (парафиновые углеводороды С или С ) в течение 15 мин 1 л раствора катализатора абсорбирует около 200 л этилена. По выходе из реактора продукт поступает в сепаратор. Давление снижается до 0,5 ат. В сепаратор [c.323]

    Методы полимеризации при высоких давлениях требуют больших капиталовложений, но эксплуатационные затраты низки. Для методов полимеризации при низких давлениях требуются малые капиталовложения, но большие эксплуатационные затраты, наприме р, в методе Циглера — на приготовление и хранение катализатора, а также регенерацию растворителя в методе с суспендированным катализатором — на выделение следов катализатора из готового продукта. Метод с неподвижным катализатором лишен этих недостатков, но полученный продукт менее ценен, так как его степень кристаллизации очень велика (75—95%), а гамма полимеров весьма широка. Однако преимуществом метода является 100%-ная конверсия вследствие того, что рециркулирующий этилен не очищается. [c.328]

    Для успешного проведения реакции роста необходимо знать целый ряд характеризующих ее особенностей. Во-первых, реакция происходит лишь когда все три валентности алюминия соединены с алкильными радикалами. Исключение составляет только триметилалюминий, который не вступает во взаимодействие с этиленом. Как показано Циглером с сотрудниками [26], для реакции роста требуется температура порядка 90—120° С и давление этилена не ниже 60 ат. Скорость присоединения этилена при 95 ч- 105° С и 80—90 ат составляет в среднем 1 моль на 1 моль алюминийалкила в 1ч. Повышение температуры ведет к увеличению скорости реакции. При этом весь ход реакции изменяется. Теплота реакции, практически равная теплоте полимеризации этилена (—22 ккал моль), выделяется внезанно, что приводит к неравномерному повышению температуры. В этом случае реакция часто заканчивается вспышкой, сопровождающейся полным разложением этилена на метан, водород и углерод. Предельными условиями для взрыва при опытах в небольших лабораторных автоклавах, по данным Циглера с сотрудниками, является температура 125° С и давление 125 ат. Если же исходить из высших алюминийалкилов или же разбавлять триэтилалюминий насыщенными углеводородами, то опасность такого саморазложения уменьшается. [c.48]

    Шиндлер [54], изучавший изомеризацию олефинов при полимеризации с катализаторами Циглера — Натта, на примере дейтеро-замещенных этиленов, предполагает, что в катализаторе присутствуют два активных центра, — от одного зависит рост цепи, а второй вызывает изомеризацию. Изомеризация происходит только с теми катализаторами, которые содержат активные центры, предположительно с атомами Ti +. Такие катализаторы содержат сильный [c.182]


Смотреть страницы где упоминается термин Циглер полимеризация этилена: [c.136]    [c.78]    [c.136]    [c.937]    [c.90]    [c.78]    [c.196]    [c.284]    [c.103]    [c.340]    [c.247]    [c.402]    [c.415]    [c.81]    [c.354]   
Основные начала органической химии Том 2 1957 (1957) -- [ c.11 ]

Основные начала органической химии Том 2 1958 (1958) -- [ c.11 ]




ПОИСК





Смотрите так же термины и статьи:

Полимеризация по Циглеру

Этилен полимеризация



© 2025 chem21.info Реклама на сайте