Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жирные кислоты материалов

    Поэтому процесс прямого гидрирования жирных кислот на стационарном катализаторе представляет большой практический интерес. На протяжении ряда лет процесс прямого гидрирования кислот на стационарном катализаторе изучался во ВНИИНефтехиме [95]. К настоящему времени накоплен значительный экспериментальный материал, который позволяет рекомендовать этот процесс для промышленного внедрения. В качестве сырья рекомендованы синтетические жирные кислоты фракции — ie. Весьма существенное влияние на процесс гидрирования оказывает фракционный состав исходных кислот. Наличие в сырье повышенных количеств низкомолекулярных кислот увеличивает коррозию аппаратуры высокого давления, а высокомолекулярные кислоты С20 и выше приводят к быстрой дезактивации катализатора. [c.180]


    Изучалось образование углеводородов при нагревании жирных кислот в присутствии алюмосиликатов. Жирные кислоты представляют интерес как исходный материал для таких опытов, поскольку состав их близок к составу углеводородов. Общая формула жирной [c.73]

    Весь этот вопрос о жирных кислотах имеет большой теоретический интерес, и возможно, что эти кислоты действительно являлись источником твердых углеводородов нефти (и не только твердых метановых), но для этого приходится допускать особый характер исходного материала нефти (жирового). В этом случае надо еще объяснить, почему метановые нефти, содержащие много парафина, практически не содержат жирных кислот, остатки которых могли бы пользоваться значительно большим распространением. [c.140]

    ПАРАФИН — смесь твердых высокомолекулярных предельных углеводородов, белая или желтоватая масса с т. пл. М—55° С растворяется в бензине. При обычной температуре устойчив к действию кислот, щелочей, окислителей, галогенов. Получают из нефти, озокерита, синтетически. Чистый парафин — бесцветный продукт, без запаха и вкуса, жирный на ощупь, нерастворим в воде и спирте, хорошо растворяется во многих органических растворителях и минеральных маслах. Наибольшим содержанием П. отличаются нефти западных областей Украины и грозненская. Применяют П. в бумажной, текстильной, полиграфической, кожевенной, спичечной, лакокрасочной промышленности, в электротехнике, медицине, как электроизоляционный материал, для изготовления свечей, как замедлитель нейтронов, в химической промышленности для получения высших жирных кислот и спиртов, моющих средств и др. [c.186]

    Первые удачные попытки научно подойти к химии природных соединений углерода были сделаны на примере наиболее простых по составу и легко доступных соединений. Объектами исследования являлись жирные кислоты, спирты, углеводороды. Изучение характерных особенностей этих веществ привело к синтезу соединений, не встречающихся в природе. Среди них надо назвать хлорангидриды кислот, галоидпроизводные углеводородов, диазосоединения и многие другие вещества. Развитие промышленности в первой половине XIX столетия и расширение области применения всевозможных органических веществ природного происхождения (красители, дубильные вещества и т. п.) значительно способствовало усилению интереса к органической химии и стимулировало проведение специальных исследований. Накопление экспериментального материала в свою очередь вызывало настоятельную необходимость в теоретических обобщениях, позволяющих объяснить многообразие органических веществ и различные явления, наблюдаемые при их превращениях. [c.630]


    Хлорирование других парафиновых углеводородов преследует цель получения монохлорпроизводных, а из них спиртов и их уксусных эфиров (как растворителей), жирных кислот и т. д. Полихлорпроизводные высших парафиновых углеводородов используются для получения невоспламеняющегося изоляционного материала. [c.153]

    Смесн битума (г) о = З-Ю пз) с известняком и гранитом (фракции 1—О мм), содержащие различные ПАВ (кубовые остатки СЖК, железная соль жирных кислот ФС, октадециламин ОДА, катапин КТП, а также добавки гидратной извести) и без ПАВ выдерживались в течение одного года при температуре 20 2°С в следующих условиях а) на воздухе, б) в насыщенных парах воды, в) в воде. Степень отслаивания битумной пленки с поверхности минеральных зерен фиксировалась в зависимости от их природы, начальной влажности смеси и вида ПАВ. При хранении всех битумоминеральных смесей на воздухе степень обволакивания минеральных зерен битумом практически не изменилась. Кажущиеся незначительные колебания в средних значениях покрытой битумом поверхности можно было объяснить лишь неизбежными ошибками опыта. Хранение смесей в насыщенных водяных парах способствовало некоторому отслаиванию битумной пленки с поверхности минерального материала. Степень этого отслаивания зависела от начальной влажности смеси в случае минеральных материалов, обрабатываемых в сухом состоянии, пары воды практически не вытесняли битум. С поверхности влажных минеральных материалов пары воды частично вытесняли битумную пленку. Особенно заметно отслаивающее действие при хранении смесей в воде. Выдерживание смесей в воде приводило к вытеснению битума с поверхности влажных и сухих минеральных порошков (рис. 46). Введение в смесь ПАВ резко уменьшало степень отслаивания. При этом действие добавок носило избирательный характер анионактивные кубовые остатки СЖК и железная соль карбоновых кислот ФС уменьшали смешение би- [c.200]

    Для обеспечения надлежащей смазки машин, работающих в различных эксплуатационных и климатических условиях, создан широкий ассортимент смазочных масел. Из этого ассортимента для циркуляционных систем смазки применяются только масла высокой очистки, обладающие высокой химической и термической стабильностью и содержащие минимальное количество смолистых веществ, кокса, золы и механических примесей. Однако хорошо очищенные минеральные масла обладают пониженной смазочной способностью по сравнению с неочищенными маслами, так как в процессе очистки из них удаляются активные углеводороды, присутствие которых в маслах значительно повышает их смазочную способность, являющуюся весьма ценным свойством всех смазочных масел и в особенности масел, применяемых для смазки тяжелонагруженных и передающих ударные нагрузки механизмов. По мере возрастания удельных давлений и уменьшения скоростей скольжения для улучшения смазки и приближения ее к условиям жидкостного трения обычно приходится применять смазочные масла более высокой вязкости и более высокой липкости с целью увеличения толщины смазочного слоя, разделяющего поверхности трения и препятствующего возникновению сухого трения, ускоряющего износ. Для повышения смазочной способности и химической стабильности масел, применяемых в циркуляционных системах, служат специальные присадки к маслам. В качестве присадок используются жирные кислоты, жиры, а также синтетические вещества — продукты соединения жиров и масел с серой. Так как присутствие в масле воды понижает его грузоподъемность и ускоряет коррозию трущихся поверхностей, то смазочные масла должны обладать способностью быстро отделяться от попадающей в них воды и не давать с ней стойких эмульсий. С этой точки зрения очищенные минеральные масла обладают несомненным преимуществом перед неочищенными. На выбор смазочного материала оказывают влияние условия работы трущихся пар скорость, температура, нагрузка, возможность загрязнения, а также способ смазки. Вследствие этого для смазки оборудования современных металлургических цехов обычно приходится применять несколько сортов смазочных масел, заливаемых в резервуары циркуляционных систем и в картеры редукторов (при картерной смазке). [c.23]

    Исследования показали, что нафтено-парафиновые фракции маловязких низкомолекулярных масел отличаются особенно пониженной стойкостью к окислению в условиях трения при высоких нагрузках, когда в зоне контакта поверхностей трения непрерывно возникают мгновенные местные скачки температур. Было высказано предположение, что повышенная окисляемость низкомолекулярных, маловязких нефтепродуктов приводит к образованию в процессе заедания (предельный случай схватывания) активных по отношению к стали продуктов окисления, вследствие чего может резко снижаться прирост износа при нагрузках, выше критической. Однако при дальнейшем повышении нагрузки действие активных продуктов окисления оказывается недостаточным для предотвращения развития процесса заедания. Противоизносные и антифрикционные свойства смазочных масел в значительной степени зависят от материала поверхностей трения. Важность химического взаимодействия между смазкой и поверхностями трения впервые была показана Боуденом с сотрудниками при исследовании смазочной способности предельных жирных кислот, спиртов с длинными алкильными цепями и предельных углеводородов. Результаты исследований, проведенных Боуденом, позволили ему сделать вывод о том, что объяснение смазочного действия жирных кислот только наличием ориентированных слоев молекул, адсорбированных на поверхностях трения, является упрошенным. [c.48]


    В результате гидролиза жиров, оставшихся в сапропелитовых отложениях, образуются жирные кислоты, глицерин и другие продукты, которые под влиянием микроорганизмов в анаэробных условиях превращаются в углеводороды (метановые, нафтеновые, ароматические) и кислородсодержащие соединения (кетоны). Все эти соединения, растворяясь в массе жирных кислот, образуют гомогенную смолоподобную массу, которая вместе с минеральными веществами (песок, глина) остается на дне бассейна, покрываясь минеральными отложениями. Такая смолообразная масса может быть названа первичной нефтью. В процессе превращения в нефть органического материала в восстановительной среде происходят химические процессы, приводящие к увеличению содержания углерода и водорода и уменьшению содержания кислорода. [c.15]

    Парафин — смесь твердых насыщенных высокомолекулярных углеводородов, белая или желтоватая масса с т. пл. 50—70 °С, растворяется в бензине. При обычной температуре устойчив к действию кислот, щелочей, окислителей, галогенов. Получают из нефти. Применяют в бумажной, текстильной, полиграфической, кожевенной, спичечной промышленности, в медицине, как электроизоляционный материал, для изготовления свечей, в экспериментальной физике как замедлитель нейтронов, в химической промышленности для получения высших жирных кислот и спиртов, моющих средств н т. д. [c.96]

    Другим необходимым условием получения эффективного сорбента для очистки водной поверхности от нефти является обеспечение гидрофобности частиц сапропеля. Сапропель органического или органоминерального типа используют в виде порошкообразного материала, высушенного до показателя консистенции не больше нуля и обработанного гидрофобным агентом [48] - раствором смеси высших жирных кислот, с числом атомов углерода не менее 14, например стеариновой, пальмитиновой, маргариновой, в летучих органических растворителях. Данные кислоты являются твердыми и легко транспортируются. Объем использованных жирных кислот непосредственно влияет на технологическую и экономическую эффективность сорбента. Результаты определения нефтеемкости сапропеля в зависимости от концентрации жирных кислот представлены в табл. 5.39. Для определения нефтеемкости сорбента использовалась нефть плотностью 865 кг/м . [c.160]

    Расходуя питательные вещества для получения энергии, клетки в то же самое время непрерывно создают новый материал. На рис. 7-1 штриховыми линиями показаны те метаболические пути, с помощью которых эти процессы синтеза осуществляются. Если мы вернемся к правой части рис. 7-1, то увидим, что путь синтеза жирных кислот начинается с ацетил-СоА и представляет собой обращение пути расщепления жирных кислот. Однако для синтеза необходимы АТР как источник энергии [c.86]

    В клетке нет ничего статичного. Структуры постоянно создаются и снова разрушаются. Всё с большей или меньшей скоростью подвергается взаимопревращению. Гидролитические ферменты атакуют все полимеры, из которых состоят клетки, а активные катаболические реакции разрушают образующиеся в результате таких атак мономеры. Мембранные структуры также подвергаются изменениям в результате гидроксилирования и гликозилирования. Эти реакции являются источником движущей силы, обеспечивающей перемещение материала, образующегося в результате распада мембран, на наружную поверхность клетки. В это же время другие процессы, включая процессы распада под действием лизосомных ферментов, дают возможность материалу, из которого строятся мембраны, вновь проникать в клетку. Окислительные процессы приводят к разрушению веществ гидрофобной природы, таких, как стерины и жирные кислоты мембранных липидов, и к их превращению в более легко растворимые вещества, которые затем распадаются н подвергаются полному окислению. [c.502]

    С появлением ГХ, обеспечивающей количественный анализ многокомпонентных смесей, понятие анализа функциональных групп приобрело в последние годы значительно более широкий смысл. Так, например, несколько десятилетий назад можно было определять лишь метокси- или этоксигруппы теперь же без труда определяют спирты от С1 до С4 и более высокомолекулярные спирты по отдельности или в сумме. Анализ функциональных групп можно применять и к смесям известных и неизвестных соединений. Так, например, может быть известно, какие жирные кислоты присутствуют в нелетучем масле, и требуется определить количество каждой из этих кислот. Наиболее важным этапом такого анализа является предварительная обработка пробы с целью определить фракцию, содержащую анализируемую функциональную группу. Эта предварительная обработка может заключаться в разделении кислотных, основных или нейтральных фракций, или может включать в себя выделение постороннего материала методом тонкослойной хроматографии или другими хроматографическими методами. После такой обработки анализируют фракцию, содержащую нужную функциональную группу. (См. разд. В Приготовление проб для анализа методом ГХ .) Эти предварительные этапы анализа здесь, как правило, не описываются. [c.422]

    Окисление парафина с целью получения жирных кислот получило большое развитие в Германии во время второй мировой войны. В качестве исходного материала здесь применяют или очищенный нефтяной парафин, или что дает более благоприятные результаты, буроугольпый нарафип (ТТН-процесс), или синтетический парафин, полученный процессом Фишера-Тропша. [c.162]

    На установке Дойче Гидрирверке в Родлебене были использованы окислительные реакторы емкостью 30—60 м , изготовленные из чистейшего алюминия. Этот материал устойчив по отношению к низшим жирным кислотам, так что на головную, часть аппарата можно было не расходовать легированную сталь. Однако наблюдалась сильная коррозия водяным паром [68]. [c.453]

    Свойства и происхождение балхашита могут служить доказательством того, что нерастворимые твердые вещества в горючих сланцах могли также первоначально представлять собой твердые полимеры жирных веществ или жирных кислот. Эта точка зрения подтверждается тем, что хорошо известные сланцы месторождений Грин Ривер в Колорадо, а также Вайоминга и Юта содержат относительно большое количество полутора- и бикарбоната натрия, находящегося в сланцах в виде включений белой кристаллической массы. (В одном из районов эти сланцы используются в промышленном масштабе для производства соды). Как будет показано дальше, существуют доказательства того, что конверсия тяжелых остаточных продуктов в нефть, содержащую легкие фракции, и большое разнообразие углеводородов обусловлены реакцией иона карбония, индуцируемой кислыми алюмосиликатными катализаторами, находящимися в контакте с нефтью. Кокс, Уивер, Хенсон и Хенна считают [16], что в присутствии щелочи катализ не осуществляется. В связи с этим возможно, что сохранение твердого органического вещества в битуминозных сланцах месторождения Грин Ривер и других залежах обусловлено присутствием щелочей. Предполагают, что сланцы месторождений Грин Ривер откладывались в солоноватых внутренних озерах в условиях, напоминающих условия образования современного балхашита [6]. Поэтому можно считать, что ненасыщенные растительные и животные жиры и масла представляли собой первичный исходный материал как для нефти, так и для так называемого керогена битуминозных горючих сланцев, образующих первоначально твердое заполимеризовавшееся вещество., Однако в сланцах, содержащих щелочь, НС наблюдалось медленного химического изменения, приводящего к образованию нефти [13а]. Природа минеральных компонентов битуминозных сланцев также может способствовать сохранению органического вещества и препятствовать его провращевию в нефть. Битуминозные сланцы месторождения Грин Ривер в большинстве своем содержат магнезиальный мергель. [c.83]

    Р. Залозецкий видит роль соли в том, что она задерживает и ограничивает разложение органического вещества, вследствие чего получается достаточное количество времени, в течение которого может произойти превращение этого вещества в нефть. При этом быстрое образование ила покрывало органический материал и прекращало доступ к нему воздуха, вследствие чего кислого брожения илп совершенно не происходило, или же оно происходило в самых ограниченных размерах. Его место занимало гнилостное брожение, разрушавшее белки, после чего наступала битуминизация жиров, разлагавшихся на жирные кислоты и спирты (глицерин), которые вымывались, а жирные кислоты разлагались по следующей схеме  [c.336]

    Недавно высказано предположение, что часть порфиринов в асфальта X Мертвого моря связана в триглицеридную форму с высшими жирными кислотами [799]. Это предположение сделано на основе масс-спектрометрии высокого разрешения и подтверждено ГЖ-хроматографией метиловых эфиров жирных кислот, полученных щелочным гидролизом порфириновых фракций. Однако исследованию подвергался.деметаллированный материал, претерпевший обработку метансульфокислотой (4 ч, 100°С), в связи с чем представляется маловероятным, чтобы триглицериды в этих условиях могли сохраниться. Во всяком случае это предположение нуждается в тщательной проверке. [c.146]

    Введение в пресскомпозицию поберхностно-ак-тивных добавок (жирных кислот или их солей) существенно изменяет адгезию олигомера, а следовательно, и физико-механические свойства фенопластов. Ряд свойств прессовочных материалов (водостойкость, химическая стойкость, диэлектрические свойства, твердость, теплостойкость) определяются природой наполнителя. Так, при введении в пресс-порошки с древесной мукой минерального наполнителя повышаются плотность, твердость, жесткость, теплопроводность и водостойкость материала. Фенолоальдегидные пресспорошки устойчивы к действию слабых кислот и органических растворителей, довольно устойчивы к сильным кислотам и слабым щелочам, но разрушаются при действии сильных щелочей. Недостатками их являются хрупкость и зависимость показателей диэлектрических свойств от температуры и частоты тока. [c.62]

    В Уфимском государственном нефтяном техническом университете под руководством Д.Т.Н., проф. Ягафаровой Г Г. разрабатываются биотехнологические способы по очистке почвы и воды от нефтяных загрязнений, нефтешламов от углеводородов и сероорганических соединений, обезвреживанию отходов бурения, основанные на применении активных микроорганизмов-деструкторов этих соединений. Очистка буровых отходов осложняется их многокомпонентным составом, где кроме углеводородов нефти присутств5тот и органические полимеры (акриловые, производные целлюлозы, синтетические жирные кислоты и спирты). Поэтому эффективность применения микробиологических способов для очистки буровых отходов определяется целым рядо.м факторов правильным выбором микроорганизма-деструктора и оптима1Ьными условия.мя окружающей среды (наличия доступного углеродного и энергетического материала, степени минерализации и температурного фактора). [c.28]

    В технике применяют различные средства для предотвращения выдувания грузов при перевозках, а также для связывания пыли в горных работах, шахтах, рудниках, содержащие в своем составе соли щелочных металлов Са,Ка, Mg , различных кислот (соляной, серной и т. д.). Используются также различные органические составы. Известен способ [287] предотвращения выдувания сыпучих материалов путем нанесения на их поверхность состава, включающего полимерное связующее - кубовый остаток ректификации стирола и эмульгатор - натриевые сопи жирных кислот или поливиниловый спирт и воду. Имеется предложение [288]покрывать поверхность сыпучего материала водной суспензией, содержащей сульфат капьция, которая образует корку на поверхности материала. [c.265]

    Непрерывно совершенствуется технология подготовки анодного материала и вводятся новые методы очистки растворов, в частности очистка никелевого раствора от меди и железа осуществляется экстракцией жирными кислотами. Осуществлен переход на обжиг в кипящем слое сульфида никеля (никелевой фракции, получаемой в результате селективной флотации файнштейна по методу И. Н. Масляницкого). [c.386]

    АЦЕТОНИТРИЛ (нитрил уксусной кислоты, цианистый метил) Hз N—бесцветная жидкость с характерным запахом (эфирным), т. кип. 81,6 С, смешивается с водой и другими органическими растворителями. А. применяют как растворитель многих неорганических и органических веществ как исходный материал для синтеза важных промышленных продуктов, для разделения смеси жирных кислот, удаления смол, фенолов и красителей из углеводородов нефти и др. А, токсичен, предельно допустимая концентрация в воздухе около 0,002%. [c.36]

    Схема процесса с каталитической насадкой в реакторе (так называемый чшроцесс с неподвижным катализатором ) сводится к тому, что в реактор загружают твердый катализатор, содержащий 2—15% Со [194, 218, 263], и через пего пропускают олефин и синтез-газ. Для восполнения потерь обальта с жидким сырьем подается соответствующее количество кобальта в виде раствора карбонила кобальта или раствора кобальтовых солей жирных кислот [218]. Этот метод эксплуатировался на пилотной установке И. Г. Фарбениндустри в Людвигсгафене. Судя по литературным материа--лам, основным недостатком этого варианта процесса является трудность регулирования температуры в реакторе, заполненном активным катализатором. Возникающие местные перегревы способствуют дезактивации катализатора. [c.347]

    Уже Мартин и Джаймс (1952) дезактивировали применяемый ими кизельгур путем промывки соляной кислотой. По данным Эмери и Кернера (1961), такая обработка улучшает также свойства хромосорба, применяемого для разделения низших жирных кислот. Вместо соляной кислоты Симмонс и Келли (1961), а также Ландо и Гхтошон (1962) использовали царскую водку для промывки кирпича С22 и силоселя. Такая обработка удаляет большую часть примесей (А1, Ге, Са, М ) и активность заметно уменьшается. Поэтому некоторые фирмы выпускают уже промытый кислотой материал .  [c.84]

    Смазочные вещества и смазки для форм. В большинстве случаев при получении формовочных материалов приходится применять смесь нескольких смазочных веществ. В рецептуры вводят до ] % таких веществ. Для снижения адгезии материала к металлам применяют наружные смазки, которые улучшают загрузочные свойства пластифицированных материалов и действуют в качестве смазки для форм. Введение внутренней смазки влияет на текучесть расплава, снижая вязкость, давление впрыска и улучшая гомогенность расплава. Положительный эффект от введения внутренней смазки возрастает по мере увеличения ее полярности и растворимости в фенольных смолах. В качестве смазок могут использоваться спирты жирного ряда, сложные эфиры жирных кислот или амиды жирных кислот. Соли жирных кислот подобно стеаратам кальция или магния занимают промежуточное положение. Нарул<-ные смазки, в качестве которых исиользуют ненолярные соединения, практически не растворяются в фенольных смолах. К. ним относятся парафиновые углеводороды и воски. [c.154]

    В табл. 47 приведены данные об изменении прочности и водоустойчивости песчаного асфальтобетона с различными ПАВ после выдерживания в воде в течение 23 суток. Прочность асфальтобетона с ПАВ после длительного выдерживания в воде изменилась меньше, чем у того же материала, но без добавки. При использовании поверхностно-активных веществ кубовых остатков аминов, госсиполовой смолы, синтетических жирных кислот, катамина, ФКК — показатели прочности асфальтобетона практически не изменились. [c.225]

    Определить понятие липид" не так просто — в зависимости от того предмета, где этот материал рассматривается, это понятие может быть разным. Чаще всего под этим классом природных веществ рассматривают все природные соединения, нерастворимые в воде и растворимые в органических растворителях. Конечно, признак слишком обширный под это определение попадают природные соединения различной структуры и различной биологической функциональности. Иногда их подразделяют на омыляемые липиды — те, которые при щелочном гидролизе дают жирные кислоты и на неомыляе-мые липиды — те, которые не подвергаются гидролизу. Но это мало облегчает задачу, так как вторая группа по-прежнему остается слишком неопределенной. В настоящем издании мы будем придерживаться определения липидов как жирных кислот и их производных, рационального как с химических, так и с биологических позиций. [c.103]

    Соединения жирных кислот, о которых уже говорилось, относятся к категории противоэадирных смазок, которые первоначально использовались Розенбергом и Тайлером для умень-щения износа опор долота. По своему действию противозадирные смазки отличаются от обычных смазочных материалов. При очень высоких давлениях последние выдавливаются из пространства между трущимися поверхностями. Возникающий в результате этого контакт металлических поверхностей вызывает образование задиров и разрывов. По мнению Браунинга, своими смазывающими свойствами противозадирные смазки обязаны химической реакции, в которую они вступают с металлическими поверхностями при высоких температурах, возникающих в зоне контакта металл-металл. Продукт этой реакции образует тонкую пленку, прочно связанную с металлической поверхностью, и действует как смазочный материал. [c.337]

    Лангбейнито-полигалитовый остаток с планфильтров измельчают Б стержневой мельнице, а затем классифицируют в гидро-циклонах на фракции 0,5 мм. Класс>0,5 мм возвращают в мельницу для доизмельчения, а измельченный материал фрак--ции менее 0,5 мм смешивают с 2%-ным водным раствором кремневой кислоты — депрессором для глины. Образующуюся пулЬ пу перекачниают в смеситель сюда же добавляют щелочь для создания определенного pH среды, коллектор—жирные кислоты С — g и раствор полиакриламида для улучшения коагу ляции и дополнительной депрессии глинистых частиц. [c.301]

    Озокерит (от греч. ого — пахну, и кегоз — воск) (горный воск) — минерал из группы нефтяных битумов, смесь высокомолекулярных твердых насыщенных углеводородов, по виду напоминает пчелиный воск, имеет запах керосина. Очищенный О. называется церезином. Применяют как электроизоляционный материал, для приготовления различных смазок и мазей для технических к медицинских нужд. Озон (от греч. ого — пахнущий) Оз— простое вещество, аллотропное видоизменение кислорода. О.— газ с характерны. запахом, нестоек. О.— сильный окислитель, большинство металлов окисляются им до соответствующих оксидов, разрушает каучук. В природе О. образуется при грозовых разрядах. В промышленности получают при электрическом разряде в специальных аппаратах — озонаторах. Применяют как окислитель для очистки и кондиционирования воздуха, для обеззараживания воды, в производстве некоторых органических веществ (камфара, ванилин, жирные кислоты и др.). [c.92]

    При р-окислении от цепи жирных кислот отщепляется по два углеродных атома одновременно. В биосинтезе же жирных кислот этот процесс протекает в обратном направлении, причем в качестве исходного материала используются двухуглеродные ацетильные единицы ацетил-СоА. Выше уже были рассмотрены вопросы о сопряжении этого процесса с расщеплением АТР при помощи последовательности карбоксили- [c.484]

    На основании большого экспериментального материала в конце XIX в. Дюкло и Траубе сформулировали правило Поверхностная активность предельных жирных кислот в водных растворах возрастает в 3-3,5 раза при удлинении углеводородной цепи на одно звено (группу - H2J. [c.30]


Смотреть страницы где упоминается термин Жирные кислоты материалов: [c.331]    [c.310]    [c.346]    [c.655]    [c.17]    [c.295]    [c.7]    [c.193]    [c.180]    [c.196]    [c.277]    [c.180]    [c.84]    [c.187]    [c.365]    [c.161]   
Синтетические жирные кислоты (1965) -- [ c.155 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ жирных и других кислот в крови и некоторых биологических жидкостях и материалах

Жирные кислоты в биологических материалах

Жирные кислоты, коррозионностойкие по отношению к ним материалы

Коррозионностойкие материал жирных кислот лимонной кислоты нитрующих

Прокладочно-уплотнительные материалы жирных кислот и спиртов

Футеровочные материалы жирных кислот



© 2025 chem21.info Реклама на сайте