Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Силикагель в хроматографии фракционирование

    При выборе методов разделения пептидов учитывают физ.-хим. свойства, кол-во и длину молекул разделяемых соединений. Для первичного фракционирования смесей коротких пептидов, содержащих до 15-20 аминокислотных остатков, в большинстве случаев используют ионообменную хроматографию на катионитах. Дальнейшее разделение и очистку проводят с помощью хроматографии и электрофореза на бумаге или пластинках с тонким слоем целлюлозы или силикагеля. [c.251]


    Примечания. I—6. Вырабатываются из силикагелей методами термической обработки в присутствии флюсов (сульфата натрия и др.) рекомендуются для разделения газов (№ 1 — 2), веществ со средней температурой кипения (№ 3—4) и высококипящих веществ (№ 5—6). 7—12. Для жидкостной хроматографии по механизму адсорбционной, распределительной или гель-проникающей хроматографии. Пределы эксклюзии и диапазоны фракционирования определены по полистиролам и дек-странам. 13—21. Твердые носители (см. № 3) с хими- [c.229]

    Для фракционирования нуклеотидов ионообменные слои подходят еще лучше, чем целлюлоза или силикагель Г. Ионообменная тонкослойная хроматография производных нуклеиновых кислот описана в следующем разделе. [c.446]

    Качество фракционирования любой смеси органических соединений существенно зависит от ее сложности и выбора соответствующего метода. Предварительное концентрирование отдельных типов соединений, как правило, облегчает задачу последующего более тонкого разделения на подтипы, анализ которых с помощью современных аналитических методов иногда позволяет выйти па уровень идентификации индивидуального состава [32]. К сожалению, достигнуть такого эффекта в практике исследования нефтей, особенно их гетероатомных соединений, удается очень редко, главным образом при наличии эталонных соединений. Поэтому при идентификации соединений в основном ограничиваются групповым или структурно-групповым анализом. Чаще всего для разделения нефтяных азотистых соединений используют различные виды хроматографии, среди них наиболее популярной и эффективной признана жидкостная адсорбционная хроматография на оксиде алюминия и силикагеле. [c.127]

    Первые попытки разделения аминокислот связаны с хроматографией на силикагеле. В этих методиках решающей операцией является приготовление сорбента, от качества которого зависит эффективность разделения как в тонком слое, так и на хроматографических колонках при автоматическом фракционировании ДНФ-аминокислот. Хороший метод стандартизации силикагеля разработан Гордоном с сотр. [5]. [c.361]

    В настоящее время мы располагаем достаточными теоретическими /14/ и экспериментальными /9, 15, 16/ доказательствами того, что очень маленькие частички одинакового (т.е. в узких пределах) диаметра обеспечивают предельное качество колонки. Сейчас такие материалы уже выпускаются промышленностью. Однако, если взять наиболее часто используемый адсорбент, силикагель, то мы увидим, что больщинство поставщиков предлагают все-таки только сравнительно широкую фракцию крупных частиц, диаметром обычно больше 75 мкм. Выпускается также силикагель для хроматографии в тонком слое это обычно частицы размером от 5 до 50 мкм. Чтобы получить интересующую нас более узкую фракцию частиц маленького диаметра (т.е. 5-10, 20-30 мкм и т.д.), хроматографист должен иметь возможность измельчить крупные гели и отсеять или каким-либо иным путем отделить основной гель или выделить требуемую фракцию. Таким образом, в настоящее время (хотя в будущем, мы надеемся, необходимость в этом отпадет) хроматографист, занимающийся жидкостной хроматографией, должен иметь оборудование для размола и фракционирования. [c.206]


    Для фракционирования загрязняющих веществ особенно удобен метод реакционно-сорбционного концентрирования примесей — РСК (см. также главу IX). Фракционирование осуществляется с помощью форколонки, заполненной сорбентами и химическими реагентами (при анализе воздуха) и сорбентами (например, катионитами или анионитами) при определении загрязнений воды. Форколонка необратимо поглощает строго определенные соединения и беспрепятственно пропускает целевые компоненты, которые концентрируют в ловушке с традиционными для воды сорбентами (амберлиты ХАД или силикагель is) и после извлечения из концентратора анализируют на газовом хроматографе [167]. В частности, при определении нефтепродуктов в воде мешающее действие ионогенных ПАВ устраняется поглощением их в патроне с катионитом или анионитом. Этот прием дает возможность освободиться еще до анализа от многих мешающих примесей, упростить хроматограмму и, как следствие, существенно повысить надежность идентификации искомых компонентов. Метод прост и не удлиняет время анализа, поскольку процедуры фракционирования и концентрирования загрязнений происходят одновременно [163, 167]. [c.460]

    Адсорбционная техника может быть с успехом применена для концентрирования нейтральных компонентов в кислом матричном веществе. Так, низшие жирные кислоты количественно удалялись на активированной окиси алюминия [92], а сернистые фракции нефти обогащались фракционированием на окиси алюминия [2]. В последнем случае было найдено около 15 различных тиофенов. Микрокомпоненты в эфирном масле были определены Бакстером и сотрудниками [5], после того как все полярные матричные компоненты были удалены методом жидкостно-адсорбционной хроматографии на силикагеле. [c.329]

    Из отечественных силикагелей для тонкослойной хроматографии наиболее подходит силикагель КСК (крупнопористый силикагель крупнозернистый) с поверхностью 300 м 1г и диаметром пор 70—100 A. Перед употреблением его следует размолоть на шаровой или вибрационной мельнице и просеять через сито с интервалом 200 жги, а в случае надобности подвергнуть седимента-ционному фракционированию. После фракционирования силикагель следует отмыть от следов железа. Для этого 500 г силикагеля несколько раз (до прекращения желтого окрашивания) заливают на ночь 1000 6 н. НС1, после чего трижды промывают 1000 мл дистиллированной воды, отсасывают на стеклянном фильтре и последовательно промывают дистиллированной водой до слабокислой реакции, этанолом (250 мл) и бензолом (250 мл), после чего высушивают при 120° С. В случае если предполагается проводить экстракции вещества из хроматографических пятен, силикагель необходимо дополнительно несколько раз промыть горячим метанолом. [c.286]

    В начале 1982 г. было опубликовано исследование, посвященное сопоставлению возможностей использования RP-8-, RP-18- и феппл-силикагелей для фракционирования трипсиновых пептидов в двух вариантах линейной градиентной элюции обычного градиента концентрации пропанола при pH 4 и ион-парной хроматографии с градиентом концентрации ацетопитрила. Были выбраны следующие комбинации растворителей при элюции пропанолом раствор А — 0,25 М пиридин в 0,9 М СН3СООН (pH 4) раствор В — 60%-ный раствор пропанола в растворе А. При ион-парной хроматографии использовали следующие комбинации раствор А — 0,09 %-ный водный раствор ТФУ раствор В — смесь ТФУ, воды и ацетопитрила в пропорции 0,09 9,91 90. В обоих случаях использовали линейный градиент (О—70%) раствора В в смеси с раствором А. [c.206]

    В настоящее время хроматография является одним из методов, наиболее щироко используемых для фракционирования белков. Первоначально этот метод был разработан для фракционирования низкомолекулярных соединений - Сахаров и аминокислот. Наибольщее распространение получила распределительная хроматография - метод, нащедщий щирокое применение для разделения небольших молекул. В общей форме этот метод состоит в следующем. Каплю образца наносят на специальную бумагу (хроматография на бумаге) или пластинку стекла или пластмассы, покрытую тонким слоем инертного сорбента, например, целлюлозы или силикагеля (хроматография в тонком слое или тонкослойная хроматография). Затем такую пластинку одним концом помещают в смесь растворителей (например, воды и спирта). По мере движения растворителей по пластинке, они подхватывают те молекулы образца, которые растворяются в них. Растворители выбирают таким образом, чтобы они связывались сорбентом по-разному. В результате молекулы образца, более растворимые в связанном растворителе, движутся медленнее, а другие, более растворимые в слабо сорбированном растворителе, движутся быстрее. Через несколько часов пластинку сущат, окрашивают и определяют положение различных молекул (рис. 4-44). [c.211]

    Еще одна особенность хроматографии макромолекул связана с проблемой доступности всего объема неподвижной фазы внутри гранул. Ограничение такой доступности вследствие статистического разброса размеров пор пространственной сеткн гранул используется для фракционирования макромолекул по размерам в методе гель-фильтрации, одиако в других вариантах хроматографии ограничение доступности не только уменьшает емкость системы, но и существенно затрудняет установление равновесия в неподвижной фазе. В этом плане обычные микропористые обменники на основе силикагеля, стекла п полистирола существенно уступают крупнопористым матрицам из целлюлозы и даже декстрана. К сожалению, матрицы двух последних типов легко деформируются и потому непригодны для хроматографии при повышенном давлении. Правда, в последние годы путем специальной обработки удалось получить крупнопористые, пригодные для фракционирования белков матрицы и из перечисленных выше жестких материалов их марки и характеристики приведены ниже. [c.47]


    Рассмотрению возможностей обратнофазовой гидрофобной хроматографии белков в основном посвящен сравнительно недавно опубликованный обзор [Rubinstein, 1979]. Основные его выводы совпадают с тем, что было сказано выше при рассмотрении обратнофазовой гидрофобной хроматографии пептидов. Для белков с молекулярной массой в интервале 12—30 тыс. Дальтон автор отдает предпочтение силикагелям, модифицированным октилсиланом (Са). В качестве органического компонента элюента, по его мнению, следует предпочесть градиент концентрации пропанола, вплоть до 40%-ной концентрации, если позволяет растворимость белка. Для получения узких пиков рекомендуется в качестве водного компонента использовать буфер высокой (примерно 1 М) концентрации, подавляющий ионное взаимодействие белка с силанольными группами матрицы. При pH 5—6 разрешение получается обычно хуже, чем при pH 4 (формиатно-пиридиновый буфер) или 7,5 (Na-ацетатный буфер). Существенно указание на то, что скорость элюции следует снизить до 60—90 мл/см Ч. Продолжительность фракционирования белков при этом остается относительно небольшой — 1—3 ч. Белки целесообразно разделить предварительно на группы [c.210]

    Что касается самого процесса ТСХ, то здесь можно усмотреть далеко идущую аналогию с жидкостной хроматографией на колонках. Неподвижную фазу образует н идкость, связанная со слоем фиксированного на подложке гранулированного сорбента, свойства и характеристики которого близки, а иногда даже идентичны таковым для материалов, используемых в качестве носителей неподвижной фазы в колоночной хроматографии. Здесь используются те же производные целлюлозы или силикагеля, к которым надо добавить только полоски ацетилцеллюлозы. Подвижную фазу образует жидкий элюент с аналогичными, рассмотренным ранее свойствами. Неизменной остается и сущность хроматографического процесса, базирующегося на равновесном распределении вещества между неподвижной и подвижной фазами. Как и в любом хроматографическом процессе (гель-фильтрация в тонком слое была рассмотрена в гл. 4), для целей хроматографического фракционирования это распределение должно быть сильно сдвинуто в пользу неподвижной фазы. Из всех вариантов хроматографпп для разделения компонентов белков и нуклеиновых кислот методом ТСХ (сами биополимеры очень редко выступают здесь в качестве объектов) практически пспользуют только два нормальнофазовую распределительную и ионообменную. [c.458]

    В заключение отметим вариант двумерного фракционирования нентидов комбинацией колоночной (в данном случае — ионообменной) хроматографии и ТСХ фракций с колонки на пластинках силикагеля [Aromatorio et al., 1980]. Это — частный пример из широкой области использования ТСХ как дополнительного инструмента для анализа результатов фракционирования пептидов различными рассмотренными ранее методами колоночной хроматографии, в том числе и ЖХВД. [c.490]

    Разновидностью метода фракционирования на колонке является гель-хроматография [86]. В качестве разделительного вещества применяют органические или неорганические вещества (например, силикагель) пористой структуры с размером пор, зависящим от плотности сшивок и условий получения. Для фракционирования полимеров, растворимых в воде, чаще всего применяют набухший в воде декстран с различной степенью сшивания (сефадекс). Для растворов полимеров в органических растворителях применяют сшитые полистиролы или сополимеры метилметакрилата с этилен-гликольдиметакрилатом. Образец полимера растворяют, заливают в колонку и элюируют, используя тот же самый растворитель. Небольшие молекулы полимера свободно диффундируют внутрь геля. Размеры некоторых молекул оказываются настолько большими, что им не удается проникнуть внутрь пор, в результате чего они первыми выходят из колонки при элюировании. Продолжительность элюирования фракций возрастает с уменьшением размера макромолекул. Существует критическое значение молекулярной массы, ниже которого макромолекулы полимера могут проникать в поры сетки и поэтому могут быть разделены. Молекулы большего размера уже не могут быть разделены, так как они не могут диффундировать в гель. Частота сетки геля и критическое значение молекулярной массы связаны между собой простой зависимостью чем чаще сетка, тем меньше критическое значение молекулярной массы. [c.83]

    Выделение стильбенов проводится с помощью фракционирования в несмешивающихся растворителях, хроматографических методов, характерных для фенольных веществ с использованием силикагеля, полиамида и других сорбентов. Растительные стильбены препаративно разделяют методом жидкостной хроматографии. Этим же методом проводят их количественное определение [9, 10]. На бумажных хроматограммах под действием ультрафиолетового света стильбены окрашиваются в различные [c.38]

    Для фракционирования аминокислот применяется хроматография в тонком слое силикагеля или целлюлозы. В отношении отдельных аминокислот для хроматографии на силикагеле характерна большая чувствительность, чем для хроматографии на целлюлозе, однако в тонком слое целлюлозы разделение лучше. В связи с этим ниже приводится метод Аркса и Неера [2] разделения аминокислот тонкослойной хроматографией на целлюлозе. [c.234]

    Очень чувствительным методом идентификации аминокислот является тонкослойная хроматография их диметиламинонафталин-5-сульфонильных производных (гл. ХП1). Для фракционирования их на силикагеле можно, например, воспользоваться следующими системами растворителей хлороформ — бензиловый спирт — уксусная кислота (100 30 3) бензол — пиридин — уксусная кислота (80 20 2) 2-бутанон — пропионовая кислота — вода (15 5 6). [c.237]

    В настоящее время хроматографические методы в значительной степени вытеснили все другие методы фракционирования липидов в аналитическом и микропрепаративном масштабе. Для разделения сложных смесей липидов на отдельные классы соединений использовали адсорбционную и распределительную хроматографию на колонках с силикагелем, на целлюлозных фильтрах, импрегнированных силикагелем, и на бумаге из стекловолокна. Распределительная хроматография с обращенными фазами использовалась для разделения членов винилогомологического ряда на гидрофобизованной колонке или на гидрофобизованной бумаге. Газовую хроматографию использовали в виде распределительно-хроматографического варианта в первую очередь для разделения метиловых эфиров жирных кислот. Разделение смеси липидов по степени ненасыщенности можно осуществить путем хроматографического разделения на силикагеле комплексных ртутноацетатных соединений ненасыщенных липидов. Для выделения кислот и для фракционирования сильно полярных липидов была использована ионообменная колоночная и ионообменная бумажная хроматография. Методом хроматографии на колонках с мочевиной или на бумаге, пропитанной мочевиной, можно отделить жирные кислоты с прямой цепью от кислот с разветвленной цепью. Эффект разделения основан на образовании соединений включения неразветвлеиных жирных кислот с мочевиной. Разли шые хроматографические методы разделения липидов описаны в многочисленных обзорах [23, 86, 96, 100]. [c.144]

    Сорбент. Чаще других сорбентов для фракционирования липидов применяют силикагель. Брен [145] описал свойства и преимущества этого сорбента. На пластинке размером 20 X 20 см с нанесенным на нее силикагелем Г можно разделить 10—20 мг, сложной смеси липидов. При необходимости фракционирования лишь небольшого числа веществ, сильно отличающихся По полярности, можно наносить на стандартную пласгинку до 50 М8 вещества. Окись алюминия применяют редко, поскольку липиды вй ней гидролизуются [128] и изомеризуются [119]. Для разделения методом ХТС Мо но также использовать флорисил — синтетический силикат Магния, часто применяемый в колоночной хроматографий аипйдон. 81. Весьма подходящим адсорбентом для липидов является также вторичный фосфат магния (см. стр. 219). Для разделения липидов на классы соединений Катен [52] применял сахар. Этот адсорбент обладает хорошими разделительными свойствами, однако емкость его мала. Его хорошая растворимость в воде облегчает извлечение адсорбированных липофильных веществ. ПоэТ(ь му следует изучить применимость сахара для ХТС липидов. [c.150]

    Шленк с сотрудниками [117], а вскоре затем Кауфман и Мор [57] показали, что критические пары насыщенных и ненасыщенных липидов могут быть отделены друг от друга низкотемпературной хроматографией на силиконизованной или пропитанной ундеканом бумаге. Малинз и Мангольд [76] использовали этот метод для фракционирования на силиконизованном силикагеле смеси пальмитиновой и олеиновой кислот. Смесь ледяная уксусная кислота — муравьиная кислота — вода (2+2+1) отделяет в течение примерно 8 час при 4—6° олеиновую кислоту Rf 0,10) от пальмитиновой, которая остается на точке старта. [c.174]

    Согласно Тамму, Шапиро, Лифшицу и Чаргафу [88], дистиллированная вода пригодна для разделения методом хроматографии на бумаге пурин-и пиримидин-оснований и их нуклеозидов. Рандерат [69, 71], а также Рандерат и Струк [70] нашли, что вода обеспечивает также хорошее разделение на слое целлюлозы в течение 45 мин. Рандерат [69] использовал воду для фракционирования пуклеооснований и нуклеозидов на силикагеле Г. [c.443]

    Смолы выделены из нефти Советского месторождения Томской области по ГОСТу 11885-69. Дополнительное фракционирование проводили методом адсорбционной хроматографии в стеклянных колонках, адсорбентом служил силикагель АСК. Образцы смол вводились в колонки в гептановом растворе и элюировались последовате у>но смесью гептан-бензол 20 1(1), гептан+бензол (1 1) (П) и бензолом (Ш),. растворитель меняли при полном осветлении элюентов. После отгонки влюента смолистые фракции сушили до постоянного веса при Ч0-50°С и давлении 20 мм рт.ст. Молекулярные массы определяли крио-скопически в бензоле (табл.1). [c.125]

    Нейтральные азотистые соединения, выделенные из деасфальтенизатов нефтей, подвергали последовательной хроматографической очистке и разделению на силикагеле и оксиде алюминия. Марки сорбентов, условия активации и соотношение образца к адсорбенту аналогичны таковым, использованным для разделения азотистых оснований. Фракционирование концентратов К-4 и К-5 проводили па активированном силикагеле с отбором фракций, исчерпывающе десорбируемых элюотропным рядом растворителей. В случае К-4 применяли смесь пентап — бензол (10 1 по объему), бензол и спиртобензол (1 1) с получением фракций Сц, Сх и Сд соответственно для разделения К-5 использовали смеси пентан — бензол (4 1) и спирт — бензол (1 1) с отбором фракций Со и С соответственно. Нри изучении химического состава нейтральных азотистых соединений вакуумного газойля товарной западно-сибирской нефти хроматографическому разделению на силикагеле подвергали только концентрат, выделенный в виде нерастворимого комплекса с тетрахлорид-тптаном, используя в качестве элюентов смесь пентана с бензолом (10 1) (фракция Сц), спирт — бензол (1 1) (фракция Сх). Бензольные элюаты далее фракционировали на оксиде алюминия, деактивированном 3 мас.% воды, спирто-бен-зольные — на оксиде алюминия, содержащем 4 мае. % воды. В обоих случаях использовали бинарные смеси растворителей с постепенно возрастающей силой элюепта едв с Аедв на 0,1. Обозначение продуктов разделения нейтральных азотистых соединений аналогично таковому, принятому для азотистых оснований (см. 5.2.1). В качестве растворителей для получения бинарных смесей при хроматографии на оксиде алюминия использовали пентап, четыреххлористый углерод, бензол, хлороформ, диоксан. Объемную долю сильного растворителя в бинарной смеси с заданной силой элюепта рассчитывали по [38]. [c.131]

    Метод фракционирования веществ по размерам молекул на колонках с гранулированными гелями часто называют гелевой фильтрацией . Этот термин подвергался критике, поскольку филь-трация в самом общем виде означает разделение только двух фаз, например, на фильтровальной бумаге [18, 19]. Поскольку в данном случае имеет место хроматографический процесс, представляется логичным использовать в названии метода слово хроматография . Однако, к сожалению, этот термин непроизвольно ассоциируется с адсорбционной хроматографией на силикагеле и окиси алюминия [20, 21]. Термин эксклюзионная хроматография [22] обладает тем недостатком, что в этом случае постулируется еще недоказанный механизм процесса, заключающийся в различной способности веществ в соответствии с размерами молекул проникать в гранулы геля. Крупные молекулы вообще не проникают в набухшие гранулы. Аналогичные недостатки свойственны терминам диффузионная хроматография [23] и гельпроникающая хроматография [18]. [c.237]

    Фракционирование смесей путем селективного комплексообразования можно легко осуществить хроматографическими методами. В газо-жидкостной хроматографии одним из наиболее известных способов разделения и анализа смесей ненасыщенных углеводородов является хроматографирование на колонках с растворами нитрата серебра в качестве неподвижной фазы. Для приготовления этих растворов обычно применяют этиленгликоль, глицерин, полиэтиленгликоль и бензилцианид. Опубликованы результаты подробного изучения времени удерживания ненасыщенных и ароматических углеводородов [8]. Как и можно было ожидать, время удерживания ароматических соединений значительно короче, чем ненасыщенных, поскольку ароматические соединения образуют менее прочные комплексы по сравнению с алкенами и алкинами. Смеси ароматических углеводородов удобно разделять методами жидкостной хроматографии на колонках с окисью алюминия в качестве неподвижной фазы. Можно предположить, что время удерживания углеводородов в этом случае, как и для колонок с нитратом серебра, определяется их способностью связываться в комплекс с неподвижной фазой, играющей роль акцептора. Опыт подтверждает это предположение, так как окись алюминия все прочнее адсорбирует углеводороды по мере того, как они становятся более плоскими по структуре и обогащаются я-электронами [9а]. Другие комп-лексообразователи, особенно 2,4, 7-тринитрофлуоренон и пикриновая кислота, нанесенные на силикагель, также довольно ус-пещно используются для разделения смесей ароматических веществ [96]. [c.155]

    Если в случае прямого ГХ- или ВЭЖХ-анализа проб, полученных жидкостно-жидкостной экстракцией, наблюдается низкая эффективность разделения компонентов или нежелательное нарушение профиля хроматограммы, требуется дополнительная очистка образца. Наиболее широко используемый метод очистки — адсорбционная колоночная хроматография на оксиде алюминия, флорисиле или силикагеле, применяемый, например, для фракционирования пестицидов и ПАУ. В общем, адсорбция полезна для отделения целевых компонентов с хорошо известными и узкими диапазонами полярности от мешающих компонентов различной полярности [186]. [c.459]

    Предварительное фракционирование сложных смесей загрязнений сточных вод с вьщелением углеводородной фракции можно осуществить с помощью форколонки, представляющей собой пластмассовый патрон с сила-низированным и октадецилсиланнизированным силикагелем. Подобные методики, основанные на газовой или жидкостной хроматографии, полезны при отделении углеводородов от нерастворимых соединений, например, ас-фальтенов [23]. [c.519]

    Наиболее широко используемый метод очистки — адсорбционная колоночная хроматография (классическая ЖХ. см. табл. П.5) на оксиде алюминия, флорисиле (силикат магния) или силикагеле, применяемая, например, для фракционирования пестицидов и ПАУ. Как видим, адсорбционная очистка является одновременно способом предварительного разделения (фракционирования) компонентов водной пробы на отдельные группы фракции (см. табл. 11.5), что существенно облегчает последующий анализ. [c.151]

    Гель-проникающая хроматография [39] является разновидностью метода фракционирования на колонке, в которой разделение на фракции осуществляется по методу молекулярного сита, основанному на способности молекул проникать в поры адсорбента определенного размера. В качестве адсорбентов в данном методе используют материалы, не имеющие зарядов и ионогенных групп, обладающие точно заданным размером пор (см. гл. 18). Наилучшим образом этим требованиям удовлетворяют специально приготовленные сополимеры стирола с дивинилбензолом, которые при набухании образуют гели. Отсюда и название метода. Кроме того, применяют гели декстрана (сефадекс), разновидности силикагелей (сферосил) и др. [c.296]

    Определение жирнокислотного состава с целью его последующего количественного выражения в расчете на массу продукта возможно при наличии данных о-фракционном составе липидов, так как жирные кислоты входят в состав ряда соединений (глицери-ды, свободные жирные кислоты, эфиры стеринов, фосфолипиды и др.). В каждой фракции соотношения жирных кислот и других компонентов (глицерин, стерины, аминоспирты, глицерин в фосфолипидах) различны. Отражая состав жирных кислот в суммарных липидах, в целях последующего количественного выражения этих данных в пересчете на продукт, необходимо знать парциальные доли каждой фракции. Задача фракционирования липидов на основные классы соединений в настоящее время, как правило, решается с помощью адсорбционной хроматографии на силикагеле [2, 22]. [c.213]

    Посуда и приборы. Воронки химические. Камера для опрыскивания пластинок. Колбы конические на 150—200 мл. Колбы с оттянутым концом для отгонки растворителя. Лампа кварцевая ПРК-4 или ПРК-7. Микропипетка на 10— 20 мкл. Пипетки для нанесения проб. Пластинки для хроматографии Силуфол размером 50X150 мм (производство Чехословакии). Пластинки стеклянные размером 50X150 мм с тонким слоем силикагеля (используют в случае отсутствия предыдущих). Прибор для отгонки растворителя. Пульверизатор стеклянный. Стаканы батарейные для фракционирования силикагеля 11 = 20 см, с1 = 14 см. Фильтры беззольные (синяя лента). Хроматографические стаканы Ь= 16 см, с1 = 9,5 см и Ь = 25 см, с1=16 см. Шкаф сушильный. Электрическая мельница для размола силикагеля. Цилиндры мерные на 5, 10 и 100 мл. [c.174]

    В работах [3—5] показано, что при хроматографии олигомеров на силикагеле наряду с делением по молекулярным массам происходит деление макромолекул по числу концевых гидроксильных групп. При изучении механизма фракционирования было уетанов-лено [4, 6], что разделение обусловлено специфическим адсорбционным взаимодействием концевых гидроксильных групп с поверхностью силикагеля. [c.235]


Смотреть страницы где упоминается термин Силикагель в хроматографии фракционирование: [c.337]    [c.17]    [c.152]    [c.6]    [c.104]    [c.109]    [c.214]    [c.217]    [c.318]    [c.355]    [c.30]    [c.130]    [c.130]    [c.174]    [c.24]   
Лабораторное руководство по хроматографическим и смежным методам Часть 2 (1982) -- [ c.163 ]




ПОИСК





Смотрите так же термины и статьи:

Силикагель

Силикагель для хроматографи

Силикагель для хроматографии



© 2025 chem21.info Реклама на сайте