Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окислительное фосфорилирование стадии

Рис. 16-1. Стадии клеточного дыхания. Стадия 1 мобилизация ацетил-СоА из глюкозы, жирных кислот и некоторых аминокислот. Стадия 2 цикл лимонной кислоты. Стадия 3 перенос электронов и окислительное фосфорилирование. На каждую пару атомов водорода, поступающую в цепь переноса электронов в виде NADH, образуются три молекулы АТР. Рис. 16-1. <a href="/info/1354822">Стадии клеточного</a> дыхания. Стадия 1 мобилизация ацетил-СоА из глюкозы, <a href="/info/1013">жирных кислот</a> и <a href="/info/628105">некоторых аминокислот</a>. Стадия 2 <a href="/info/71266">цикл лимонной кислоты</a>. Стадия 3 <a href="/info/482">перенос электронов</a> и <a href="/info/38828">окислительное фосфорилирование</a>. На каждую пару <a href="/info/1117693">атомов водорода</a>, поступающую в <a href="/info/511072">цепь переноса электронов</a> в виде NADH, образуются три молекулы АТР.

    Фотосинтетическое фосфорилирование, его механизм. Отличия от окислительного фосфорилирования. Конечные продукты световой стадии фотосинтеза. [c.205]

    Ионы Са2+ играют важную роль в регуляции многих биохимических реакций, протекающих в клетке. В поддержании низкой по сравнению с внеклеточным пространством концентрации ионизированного Са + в цитоплазме принимают участие митохондрии. Эти внутриклеточные органеллы способны аккумулировать большие количества Са + и вместе с тем им принадлежит решающая роль в обеспечении энергетических потребностей клетки в целом. Накопление Са + в митохондриях существенно влияет на активность многих ферментов, локализованных в матриксе и катализирующих отдельные стадии цикла трикарбоновых кислот, окисления кетокислот с разветвленной цепью, липолиза и др. Ярким примером участия Са + в регуляции собственных метаболических функций митохондрий является торможение окислительного фосфорилирования. [c.476]

    Митохондрии подвергались расчленению, из субмитохондри-алъных частиц (СМЧ) выделялись комплексы дыхательных ферментов, свободные от структурных белков. Такие комплексы оказалось возможным очищать и детально исследовать. Были проведены успешные опыты по восстановлению ЦПЭ из выделенных препаратов и растворимых ферментов. Наконец, очень ценная информация была получена в опытах по ингибированию отдельных стадий процесса и по разобщению окислительного фосфорилирования и переноса электронов. [c.428]

    Читатель может и сам поразмыслить, какая механика нужна для того, чтобы расщепить АТР и произвести сокращение. При этом небесполезно взглянуть и на структуру самого АТР. Прежде всего обратите внимание на то, что три-фосфатная группа содержит много отрицательных зарядов, взаимно отталкивающих друг друга. Представьте далее, что должно произойти, когда молекула АТР вытеснит ADP и Pi из связанной с актином миозиновой головки. При этом может нарушиться связь белок—белок вероятнее всего в какой-то определенной точке а поверхности их контакта индуцируется электростатическое отталкивание. Подумайте об образовании АТР в процессе окислительного фосфорилирования и о возможной роли протонов в синтезе АТР (разд. Д, 9,в). Не могут ли протоны оказать какое-то влияние на белок, окружающий молекулу АТР, в обратном процессе Подумайте о действии Mg +, связанного в комплексе с полифосфатной группой АТР, а также о том, что может случиться, если с соседней группой белка свяжется ион Са . Примите во внимание данные о возможном фосфорилировании боковых цепей белка на промежуточных стадиях процесса. Что произойдет, если будет фосфорилирована боковая цепь гистидина, связанная водородной связью с пептидным остовом в концевом участке спирали Автор этой книги не смог соединить все эти соображения в цельный механизм работы мышцы, но, может быть, кому-то из читателей удастся это сделать  [c.418]


    Другие механизмы образования АТФ непосредственно связаны с использованием кислорода цитохромными системами, которые осуществляют перенос электронов или водорода (окислительное фосфорилирование), а также с системами фотосинтеза, в которых необходимая энергия поставляется за счет света (фотофосфорилирование). И в этом случае оказалось, что наиболее существенной стадией синтеза АТФ является фосфорилирование АДФ, а не аде-нозпп-5 -фосфата (АМФ). Однако известна реакция миокиназного типа, в которой эти три нуклеотида связаны между собой таким образом, что АМФ обратимо фосфорилируется АТФ с образованием двух молекул АДФ [c.312]

    Наличие ядра является главной, но не единственной структурной особенностью эукариотических клеток. В цитоплазме существует ряд других внутриклеточных органелл, окруженных своими собственными мембранами. Окислительное фосфорилирование и ряд предшествующих стадий окисления органических соединений протекают в митохондриях. Эти органеллы окружены двумя фосфо-липидными мембранами. Внутренняя мембрана, построенная из специфических белков, участвует в сопряжении переноса электронов от органических соединений к кислороду с фосфорилированием АДФ. Еще более сложными органеллами являются хлоропласты, в которых проходят все стадии фотосинтеза. Уникальной особенностью этих двух типов органелл является то, что они содержат ДНК, которая реплицируется перед их делением и несет информацию о некоторых белках и РНК, необходимых для формирования и функционирования этих органелл. Тем не менее большая часть информации, необходимой для производства всего набора как митохондриальных, так и хлоропластных белков, находится в хромосомной ДНК. [c.25]

    Фосфорилирование ADP, катализируемое ферментом Ее, действие которого эквивалентно общему эффекту на гликолитических стадиях и стадиях окислительного фосфорилирования. [c.40]

    Важно учитывать, что независимо от природы соединения Y B фрагмент группы Y остается связанным после переноса Y на X. Таким образом, уравнение (10-11) будет более полным, если Y заменить на Y OH. В этом случае образующееся соединение имеет форму X/> Y, 3i переносчик остается в форме В—ОН. Для регенерации В необходимо элиминировать гидроксильную группу. При поиске подходящего химического механизма этих стадий окислительного фосфорилирования одна из проблем связана с необходимостью, чтобы такая гидроксильная группа легко элиминировалась. [c.411]

    Ацетил-СоА, образующийся при окислении жирных кислот, ничем не отличается от того ацетил-СоА, который образуется из пирувата. Его ацетильная группа окисляется в конечном счете до СО2 и Н2О по тому же пути, т.е. через цикл лимонной кислоты (рис. 16-1), Приведенное ниже уравнение выражает баланс второй стадии окисления жирных кислот (рис. 18-5) для случая окисления восьми молекул ацетил-СоА, образовавшихся из пальмитоил-СоА, и сопряженного с ним окислительного фосфорилирования  [c.559]

    Принцип последовательной адаптации основан на достаточно изученных фактах гетерохронизма (разновременности) биохимических изменений в организме, возникающих при тренировке. Так, при развитии срочного тренировочного эффекта на однократное действие физической нагрузки наиболее быстрые адаптационные изменения в отдельных энергетических системах обнаруживаются со стороны алактатной анаэробной системы, затем — в системе анаэробного гликолиза, а наиболее замедленная реакция отмечается со стороны процессов митохондриального дыхания и окислительного фосфорилирования. В период восстановления после окончания упражнения наиболее быстро достигается суперкомпенсация содержания креатинфосфата в мышцах, затем — гликогена и, наконец, — липидов и белков, образующих субклеточные структуры. В процессе долговременной адаптации наиболее быстро изменяются показатели мощности биоэнергетических процессов, затем — энергетической емкости и лишь на заключительной стадии адаптации заметно улучшаются показатели метаболической эффективности. [c.414]

    Вещества, ингибирующие электронный транспорт, как следствие ингибируют также окислительное фосфорилирование, фотосинтез и фотофосфорилирование. Некоторые вещества (например, динитрофенол), которые разобщают или ингибируют фосфорилирование или ингибируют стадию выделения кислорода в процессе фотосинтеза, могут не оказывать влияния на электронный транспорт или даже стимулировать его. [c.251]

    Клеточное дыхание включает три стадии 1) окислительное образование аце-тил-СоА из пирувата, жирных кислот и аминокислот, 2) расщепление ацетильных остатков в цикле лимонной кислоты, в результате которого образуются Oj и атомы водорода, и 3) перенос электронов на молекулярный кислород, сопряженный с окислительным фосфорилированием ADP до АТР. При окислительном катаболизме глюкозы выделяется гораздо больше энергии, чем при анаэробном гликолизе. В аэробных условиях конечный продукт гликолиза прируват подвергается сначала дегидрированию и декарбоксилированию с образованием ацетил-СоА и Oj. Катализирует этот [c.502]


    В клетках или тканях, обладающих в норме аэробным типом обмена, скорость потребления глюкозы в процессе гликолиза возрастает в отсутствие кислорода и снижается в его присутствии. Это явление известно под названием эффекта Пастера. Влияние кислорода на скорость гликолиза осуществляется через сопряженное окислительное фосфорилирование в митохондриях, так как разобщение поглощения кислорода и фосфорилирования с помощью динитрофенола приводит к увеличению скорости гликолиза [25, 33]. В качестве одной из возможных причин конкурентного взаимодействия митохондриального окисления и гликолиза можно предположить их общую зависимость от АДФ как акцептора фосфата. Тогда ингибирование митохондриального фосфорилирования АДФ может приводить к повышению концентрации этого соединения и тем самым к активации стадий гликолиза, зависящих от АДФ. Аналогичные аргументы можно использовать и для объяснения конкуренции между этими двумя процессами за неорганический фосфат. [c.117]

    Последующий перенос 1-фосфатной группы на ADP является важной энергодающей стадией в общем обмене веществ (гл. 8, разд. 3,5).В том случае, когда вместо фосфата используется арсенат, образующийся ациларсенат (1-арсено-3-фосфоглицерат) гидролизуется с образованием 3-фосфогли-церата. Таким образом, в присутствии арсената окисление глицеральдегид-З-фосфата не прекращается, но синтеза АТР при этом больше не происходит. Иными словами, арсенат разобщает процессы фосфорилирования и окисления. Арсенат может частично заменять фосфат в стимуляции дыхания митохондрий, разобщая при этом окислительное фосфорилирование (гл. 10, разд. Д, 5). [c.82]

    Наиболее детально вопрос о распределении биохимических процессов между клеточными органеллами изучен на примере митохондрий. Главным назначением митохондрий является окислительное фосфорилирование. В митохондриях происходят такие процессы, как цикл трикарбоновых кислот, окисление жирных кислот, собственно окислительное фосфорилирование и некоторые другие превращения, о которых будет сказано ниже. Системы, осуществляющие перечисленные процессы, распределены между различными отделами митохондрий. Так, комплекс белков, осуществляющих перенос электронов от NAD-Н к молекулярному кислороду и сопряженное фосфорилирование АДФ, полностью вмонтирован во внутреннюю митохондриальную мембрану. Цикл трикарбоновых кислот функционирует в митохондриальном матриксе, за исключением стадии дегидрирования сукцината, которое осуществляется с помощью сукцинат дегидрогеназы, также входящей в состав внутренней мембраны. Пируватдегидрогеназный комплекс и система ферментов, катализирующих окисление жирных кислот, поставляющие ацетил-СоА в цикл трикарбоновых кислот, целиком сосредоточены в матриксе. [c.433]

    Три стадии катаболизма углеводов обеспечивают получение энергии гликолиз гл. 15), цикл лимонной кислоты (гл. 16) и окислительное фосфорилирование. Каждая из этих стадий регулируется при помощи своих собственных регуляторных механизмов с таким расчетом, чтобы ее скорость была достаточной для удовлетворения сиюминутной потребности клетки в продуктах, образующихся на этой стадии. Более того, эти три стадии так согласованы друг с другом, что все они функционируют в едином экономичном и саморегулируемом режиме, подобно хорошо отлаженной механической системе. Именно так вырабатывается АТР-конечный продукт катаболизма, снабжающего клетку энергией, а также некоторые специфические промежуточные продукты, такие, как пируват и цитрат, используемые в качестве предшественников в процессах биосинтеза других клеточных компонентов. Интеграция этих трех стадий оказывается возможной благодаря взаимосвязи их регуляторных механизмов. На рис. 17-29 видно, что относительные концентрации АТР и ADP (иными словами, отношение действующих масс АТР-системы) опре- [c.542]

    В дальнейшем процессе обмена принимает участие альдегид, в данном случае глицеральдегид-З-фосфат. Следующей стадией опять является фосфорилирование, однако другого типа, чем две рассмотренные ранее реакции фосфорилирования. Эта реакция окислительного фосфорилирования и в ней не используется АТФ. Вместо этого в ней участвует обычная фосфорная кислота и чрезвычайно важный окисляющий агент, повсеместно встречаю щийся в природе, НАД+, или никотинамидадениндинуклеотид. Эта молекула содержит следующие звенья в указанной последовательности  [c.33]

    На стадиях, предшествующих окислительному фосфорилированию, т. е. на стадиях гликолиза и цикла лимонной кислоты, образуется в общей сложности четыре молекулы АТФ на одну молекулу глюкозы. Следовательно, полное окисление одной молекулы глюкозы дает химическую энергию, достаточную для превращения 38 молекул АДФ в АТФ, что сопровождается поглощением из среды 38 молекул неорганического фосфата. Суммируя все реакции, приведенные выше для гликолиза, цикла лимонной кислоты и окислительного фосфорилирования, мы получаем следующее общее уравнение, которое описывает выход химической энергии из глюкозы при жизни на воздухе  [c.67]

    Белки гидролизуются под влиянием протеолитических ферментов, образуя аминокислоты жиры подвергаются действию липазы и затем кофермента А, в результате чего получается соединение ацетил-КоА, а углеводы претерпевают ряд сложных превращений, конечным продуктом которых является пировиноградная кислота. Затем все эти ве- щества вовлекаются в цикл последовательных ферментных реакций, в котором важную роль играют так называемые трикарбоновые кислоты это и есть цикл Кребса. Основной результат работы цикла заключается в отщеплении водорода и выделении углекислого газа. Дальнейшая судьба водорода определяется новой системой ферментов и переносчиков. Атомы водорода теряют электроны, образуя ионы Н+ электроны перемещаются по цепи ДПН, —> флавиновые ферменты —> цитохромы (6, с, а, аз). На последней стадии электроны переходят к кислороду, который, взаимодействуя с ионами водорода, образует воду. Таким образом, электрон с высокого энергетического уровня переходит к низшему энергетическому уровню (вода) по целому ряду промежуточных ступеней. Энергия, выделяющаяся при этом, сосредоточивается в молекулах АТФ следовательно, в цепи, по которой проходят электроны, совершается процесс сопряжения (окислительное фосфорилирование), в котором процесс окисления связан с процессом образования АТФ. Каждый этап всего этого сложного процесса обусловлен действием определенных ферментов. [c.98]

    Поэтому на всех стадиях тканевого дыхания необходимо присутствие АДФ и ортофосфорной кислоты. Таким образом биологическое окисление сопровождается фос-форилированием АДФ с образованием богатой энергией АТФ — соединения, в форме которого клетка накапливает энергию. Процесс тканевого дыхания и образования АТФ путем фосфорилирования АДФ получил название окислительного фосфорилирования. [c.71]

    Скорость окислительных стадий цикла определяется скоростью реокисления NADH в цепи переноса электронов. При некоторых условиях ее может лимитировать скорость поступления Ог. Однако в аэробных организмах она обычно определяется концентрацией ADP и (или) Р , доступных для превращения в АТР в процессе окислительного фосфорилирования (гл. 10). Если в ходе катаболизма образуется больше АТР, чем это необходимо для энергетических потребностей клетки, концентрация ADP падает до низкого уровня, выключая, таким образом, процесс фосфорилирования. Одновременно АТР, присутствующий в высоких концентрациях, действуя по принципу обратной связи, ингибирует процессы катаболизма углеводов и жиров. Это ингибирование осуществляется во многих пунктах метаболизма, часть которых показана на рис 9-3. Важным участком, на котором осуществляется такое ингибирование, является пируватдегидрогеназный комплекс (гл 8, разд К2) [19]. Другим таким участком сложит цитратсинтетаза— фермент, катализирующий первую реакцию цикла трикарбоновых кислот [20]. Правда, существуют сомнения относительно того, имеет ли такое ингибирование физиологическое значение [16]. Уровень фосфорилирования аденилатной системы может регулировать работу цикла еще и другим способом, связанным с потребностью в GDP на стадии е цикла (рис. 9-2). В митохондриях GTP в основном используется для превращения АМР в ADP. Следовательно, образование GDP зависит от АМР — соединения, которое образуется в митохондриях при использовании АТР для активации жирных кислот [уравнение (9-1)]. [c.324]

    Биосинтетические процессы, приводящие к образованию АТР (превышающие скорость его деградации), многочисленны и включают окислительное фосфорилирование в дыхательной цепи, окислительное фосфорилирование на уровне субстрата и фотосинтети-ческое фосфорилирование [92]. В каждом случае важнейшей стадией является фосфорилирование ADP и образование АТР, а не фосфорилирование аденозиимонофосфата. Типичная реакция ме- [c.624]

    Биологические виды энергии. Энергетические превращения в живой клетке подразделяют на две группы локализованные в мембранах и протекающие в цитоплазме. В каждом случае для оплаты энергетических затрат используется своя валюта в мембране это ДцН или ДцМа, а в цитоплазме—АТФ, креатинфосфат и другие макроэргические соединения. Непосредственным источником АТФ являются процессы субстратного и окислительного фосфорилирования. Процессы субстратного фосфорилирования наблюдаются при гликолизе и на одной из стадий цикла трикарбоновых кислот (реакция сукцинил-КоА —> сукцинат см. главу 10). Генерация А(1Н и А(1Ка, используемых для окислительного фосфорилирования, осуществляется в процессе транспорта электронов в дыхательной цепи энергосопрягающих мембран. [c.305]

    Нарушение метаболизма сердечной мышцы при ишемической болезни сердца. Для ишемизированного миокарда характерны сниженное окислительное фосфорилирование и повышенный анаэробный обмен. Раннее увеличение гликогенолиза и гликолиза за счет имеющегося в сердечной мышце гликогена и глюкозы, усиленно поглощаемой миокардом в начальной стадии ишемии, происходит в результате повышения внутриклеточной концентрации катехоламинов и цАМФ, что в свою очередь стимулирует образование активной формы фосфорилазы —фосфорилазы а и активацию фосфофруктокиназы—ключевого фермента гликолиза. Однако даже максимально усиленный анаэробный метаболизм не способен длительно защищать уже поврежденный гипоксический миокард. Очень скоро запасы гликогена истощаются, гликолиз замедляется вследствие внутриклеточного ацидоза, который ингибирует фосфофруктокиназу. [c.660]

    Как же происходит выделение энергии в этих метаболических процессах Электроны, удаляемые на разных стадиях цикла Кребса, а также на двух предшествующих ему стадиях (образование лактата и пирувата), передаются по дыхательной цепи переносчиков. В эту цепь входит сложный комплекс ферментов и коферментов, а именно НАД, фермент из группы флавопротеи-дов (ФП) и ряд железосодержащих ферментов — цитохромы Ь, с, а, йз. Электроны, проходя по цепи, передают свою энергию молекулам АТФ — происходит окислительное фосфорилирование. Открытие этого важнейшего явления связано с именами Энгель-гардта [36] и Белицера [37, 38]. В конечном счете электроны переносятся на кислород, восстанавливаемый до воды. [c.105]

    Окислительное фосфорилирование происходит в сложной системе, состоящей из значительного числа ферментов и переносчиков электронов. Эта система фун-кщюнирует в мембранах, и случае митохондрий — в составе внутренней митохондриальной мембраны. Ее удается разделить на несколько со.чраняющих активность комплексов, каждый из которых осуществляет одну из главных стадий цепи переноса электронов. Обычно эти комплексы обозначают как комплексы I, [c.357]

    На обеих стадиях окисления жирных кислот атомы водорода или соответ-ствуюшде им электроны передаются по митохондриальной цепи переноса электронов на кислород. С этим потоком электронов сопряжен процесс окислительного фосфорилирования ADP до АТР. Следовательно, энергия, высвобождающаяся на обеих стадиях окисления жирных кислот, запасается в форме АТР. [c.556]

    Мы видели, что энзимы, катализирующие реакции гидролиза и фосфорилирования, обладают также трансферазным действием. Эти и другие данные, по-видимому, указывают на то, что энзиматические реакции могут протекать не менее чем в две стадии, причем комплекс энзим-субстрат превращается в неустойчивое соединение, промежуточное между энзимом и молекулой субстрата, прежде чем окончательно распадается на энзим и продукты реакции. Образование промежуточных продуктов предлагалось также для объяснения окислительного фосфорилирования (Veli k, 1953). Этот механизм представляется вполне вероятным он лежит в основе многих примеров органического катализа (Langenbe k, [c.649]

    Разность потенциалов в 1 б эквивалентна изменению свободной энергии на 23 ккал1молъ это означает, что потенциал системы А = А+ - -- - е должен быть ниже, чем нотенциал системы В = В+ 4- по крайней мере на 0,200 в. Однако уровень абсолютного потенциала этих двух систем, нанример по отношению к водородному электроду, не важен. Тот факт, что такие сопряженные стадии обычно обратимы, обеспечивает поразительную гибкость и разнообразие метаболического превращения энергии например, имеются хемосинтезирующие бактерии, которые получают энергию путем окисления двухвалентного железа в трехвалентное ( = = 0,77 б) (этой реакции соответствует лишь небольшая разность потенциалов в сильно окисленной части окислительно-восстановительной шкалы). Было показано, что это превращение сопряжено с образованием АТФ из АДФ, причем этот АТФ в свою очередь приводит к восстановлению НАД восстановленным цитохромом с. Это высокоэндергоническое превращение должно происходить в несколько стадий, сходных со стадиями превращения при окислительном фосфорилировании, но идущих в обратном направлении. [c.577]

    По Грину, синтез митохондрий распадается на несколько стадий. Первая из них заключается в образовании элементарной единицы системы переноса электронов. Эта стадия связана с полимеризацией мономерных белковых единиц в среде, где имеются липиды и отдельные составные части цепи переноса электронов. Затем следует образование комплексов, включающих систему ферментов и коферментов и их присоединение к частицам, переносящим электроны. Эти частицы могут катализировать окисление, но они не осуществляют окислительного фосфорилирования. На рис. 25 завершение этой стадии показано в третьем ряду, считая снизу. В этом ряду слева схематически представлена сформированная элементарная единица, содержащая флавопротеиды, цитохромы, кофермент Q, пиридинпротеиновые и вспомогательные ферменты. Буквой С обозначена совокупность ферментов цепи янтарной кислоты. Пространственное расположение компонентов цикла Кребса, а также вспомогательных ферментов по отношению к циклу переноса электронов, как подчеркивает Грин, изучено еще далеко не достаточно. [c.185]

    Не исключено, что влияние магнитного поля на биологические системы обусловлено молекулярными механизмами рассмотренного выше типа. Эти механизмы должны проявляться в биохимических реакциях с участием частиц с неспаренными электронами (например, процессы переноса электронов по цепи цитохромов п сопряженные с ними реакции окислительного фосфорилирования, многие ферментативные реакции, окисление негеминового железа кислородом, некоторые стадии фотосинтеза и т. д.). [c.171]

    В клетках животных и нефотосинтезирующих растений образование АТФ сопряжено с окислением питательных веществ двумя способами 1) питательные вещества или метаболиты фос форилируются неорганическим фосфатом и образующиеся фосфатные соединения превращаются путем окисления или дегидрирования в высокоэнергетический фосфат, который сразу, без энергетических потерь, переносится непосредственно к аденозин-дифосфату (АДФ), в результате чего образуется АТФ 2) питательные вещества или метаболиты окисляются до двуокиси углерода и воды в ходе последовательных стадий, три из которых приводят к образованию АТФ механизмы этих сложных превращений до конца еще не выяснены. Способ (1) называется субстратным фосфорилированием, а способ (2) — окислительным фосфорилированием. Первый путь более примитивен (в эволю- [c.285]

    В печени содержатся ферменты, при участии которых происходит фосфоролиз гликогена и дальнейшее превращение его по гли-колитическому пути. Этот процесс может протекать в гомогенате печени. При добавлении в инкубационную среду фтористого натрия из-за связывания ионов магния гликолиз останавливается на стадии образования 3-фосфоглицериновой кислоты, а в среде накапливается НАДН+Н" . Если гликолитические превращения происходят в атмосфере кислорода, образующийся НАДН+Н посредством челночного механизма передает электроны в митохондриальную цепь биологического окисления, где в результате окислительного фосфорилирования образуется АТФ из АДФ и Рн. Течение окислительного фосфорилирования обнаруживают по убыли Рн в инкубационной Среде. [c.135]

    Водород, отнятый дегидрогеназами в цикле, передается в дыхательную цепь ферментов, которая у аэробов включает ФАД, систему цитохромов и конечный акцептор водорода кислород. Передача водорода по этой цепи сопровождается образованием АТФ. При этом на каждые два атома водорода синтезируются три молекулы АТФ. Образование АТФ одновременно с процессом переноса протона и электрона по дыхательной цепи ферментов называется окислительным фосфорилированнем. Суммарно при полном окислении моля глюкозы образуется 38 молекул АТФ. Из них 24 при окислении ПВК в цикле Кребса с передачей водорода в дыхательную цепь ферментов. Таким образом, основное количество энергии запасается именно на этой стадии. Замечательно то, что цикл Кребса универсален. Такой тип окисления характерен и для простейших, и для бактерий, и для клеток высших животных и растений. [c.62]


Смотреть страницы где упоминается термин Окислительное фосфорилирование стадии: [c.147]    [c.402]    [c.90]    [c.54]    [c.441]    [c.23]    [c.492]    [c.478]    [c.485]    [c.508]    [c.398]    [c.353]    [c.67]    [c.486]    [c.216]    [c.233]   
Биохимия растений (1968) -- [ c.67 ]




ПОИСК





Смотрите так же термины и статьи:

Фосфорилирование



© 2022 chem21.info Реклама на сайте