Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активность растворителя в ионите

    Поскольку активность растворителя при данной температуре постоянна, произведение Кан,о также остается постоянным. Это ионное произведение воды. Обычно оно обозначается символом Кщо или К  [c.37]

    Растворитель — диэлектрик ослабляет этот процесс тем сильнее, чем больше его диэлектрическая проницаемость ер. Если молекулы растворителя поляризуются сильнее, чем растворенные ионы, то, очевидно, деформация ионных полей ведет к притяжению их к молекулам растворителя и, следовательно, к отталкиванию друг от друга. При достаточно высоких концентрациях отталкивание может преобладать над притяжением за счет кулонов-ских сил и коэффициент активности становится больше единицы, что и наблюдается в растворах с большими значениями Вр (например, в водных). Поляризация диполей растворителя ионами приводит, с одной стороны, к их ориентации вокруг ионов, что способствует уменьшению ер, а с другой стороны, ориентированные диполи растворителя сгущаются вокруг иона, образуя его сольватную оболочку, что связано с локальными повышениями давления (явление электрострикции), способствующего росту Вр. Однако это повышение суммарно значительно меньше изменения ер в сторону понижения за счет ориентационной поляризации, поэтому в конечном итоге при повышении концентрации раствора 400 [c.400]


    При помощи двух данных методов к настоящему времени исследовано значительное число систем, в которых варьировались состав электролита, природа металла (ртуть, висмут, свинец, сурьма и др.), а также растворитель (вода, метанол, диметилформамид, этиленгли-коль и др.). Описанные методы не всегда дают совпадающие результаты, причем расхождения тем больше, чем меньше специфическая адсорбируемость исследуемых ионов. Возможно, что это связано со специфической адсорбцией ионов сравнения, которая в методе Гурвица — Парсонса принимается равной нулю. Вносимая таким образом ошибка, естественно, оказывается тем больше, чем меньше отличаются по поверхностной активности исследуемый ион и ион сравнения. [c.134]

    Активность отдельного иона выражается в виде произведения концентрации иона на коэффициент активности. Поскольку концентрацию можно выражать в моляльности (т — количество молей на 1 кг растворителя), в молярности (с — количество молей в 1 л раствора) и в мольных долях N — отношение числа молей растворенного вещества к общему числу молей в объеме раствора), то имеется три шкалы активностей и коэффициентов активности  [c.30]

    Различные ионные формы растущего полимера находятся в динамическом равновесии друг с другом, и вследствие этого кинетика анионной полимеризации может быть очень сложной и изменяться с изменением температуры или растворителя. Ионные концевые группы растущих полимеров способны взаимодействовать с посторонними ионами или полярными веществами, поэтому ионная полимеризация чрезвычайно чувствительна к малым количествам некоторых примесей. Если и рост макромолекулы происходит на одном типе активных центров, концентрация которых равна [С], то [c.230]

    Из этого выражения следует, что Пне равно логарифму активности протона, а отличается от него на величину логарифма отношения коэффициентов активности заряженной и незаряженной форм индикатора, т. е. зависит от того, какова энергия взаимодействия с растворителем иона и нейтральной молекулы индикатора. При стандартизации по отношению к бесконечно разбавленному водному раствору величины 7 и 7ор,н+ определяются работой переноса ионов ВН" и соответственно молекул В из среды М в воду. Таким образом, предположение, что равно —lg ан+(М) будет справедливо только в том случае, если влияние растворителя на катион основания и молекулу основания индикатора одинаково. [c.415]

    Константа Ra, выраженная через активности а участвующих в протолитической реакции веществ, — это истинная или термодинамическая константа протолитической диссоциации кислоты НА. Так как для разбавленных растворов активность растворителя можно принять постоянной, а активность обычно обозначают как активность ионов водорода h, то для кислотной диссоциации имеем  [c.590]


    При внесении соли в смесь двух растворителей происходит ее сольватация более активным растворителем. При малых концентрациях последнего в состав ближней сольватной оболочки катиона входят молекулы менее активного растворителя и ионы С1 . При повышении концентрации более активного растворителя осуществляется вытеснение ионов С1 из ближайшего окружения катиона. Ближняя сольватная оболочка катиона становится сходной с оболочкой чистого растворителя. [c.297]

    В разбавленных растворах зависимость коэффициента активности от ионной силы раствора для иона, несущего г единиц заряда, описывается предельным законом Дебая—Гюккеля (1.5), выведенным в приближении точечных зарядов. Согласно этому уравнению единственным свойством нона, определяющим значение его коэффициента активности в заданных условиях (растворитель, ионная сила раствора, температура), является его заряд. Для наиболее типичных условий проведения ионных реакций — в водном растворе при температуре, близкой к комнатной, — это уравнение с хорошей степенью точности можно записать в виде [c.163]

    При растворении в амфипротонных растворителях кислоты и основания вступают в протолитическое взаимодействие с растворителем. Вследствие этого изменяется активность (концентрация) ионов лиония и pH раствора в большей или меньшей степени отличается от pH нейтральной среды. Кроме того, раствор имеет определенные буферные свойства. При рассмотрении всех этих вопросов целесообразно растворимые протолиты подразделить на сильные и слабые. [c.48]

    Характер продуктов озонолиза в значительной степени зависит от природы растворителя. В неполярных углеводородных растворителях получаются озониды. В более полярных растворителях образуется смесь озонидов, перекисей, альдегидов и кислот. В активных растворителях продуктами реакции через цвиттер-ионы являются гидроперекиси  [c.251]

    Считается, что в неполярных растворителях ионная пара избирательно сольватирована более полярным мономером, в результате чего увеличивается скорость его взаимодействия с катионом. Полярные растворители вытесняют мономеры из сольватной оболочки, поэтому относительная активность мономеров определяется в основном особенностями их химического строения. Получен следующий ряд активностей мономеров в присоединении к карбониевым ионам виниловые эфиры изобутилен > стирол > винилацетат > изопрен > бутадиен. Как видно, изобутилен является одним из наиболее активных сомономеров. [c.193]

    Поскольку в разбавленных растворах активность растворителя практически постоянна, а точное число молекул растворителя, сольватирующего ион, не всегда известно, то равновесия комплексообразования обычно представляют в следующем виде  [c.146]

    Следовательно, наклон зависимости lg V — должен приближаться к — Лг, когда / 2 стремится к нулю. Это предсказание было многократно подтверждено измерениями средних ионных коэффициентов активности и активности растворителя (разд. 2.16), а также влиянием ионной силы на растворимость сильных электролитов и на другие равновесия с участием ионов (см., например, [11 или [21). Установлено, что оно справедливо не только для воды, но и для растворителей со значительно более низкими диэлектрическими проницаемостями. Еще более тщательной проверке было подвергнуто аналогичное предсказание относительно зависимости электропроводности от концентрации (см., например, [31). [c.241]

    Давление паров и коэффициенты активности водных растворов хлорной кислоты были измерены Пирсом и Нелсоном и Робинсоном и Бекером . Эти исследователи указывают активность растворителя, коэффициенты активности ионов, парциальные молекулярные объемы, осмотические коэффициенты и изменения [c.26]

    Добавление к воде смешивающихся с ней органических растворителей, как известно, с одной стороны, способствует изменению активности самой воды, с другой — изменению коэффициента активности многих ионов, поскольку изменяется диэлектрическая проницаемость среды. Все это, [c.279]

    Интенсивность диссоциации определяется произведением активностей (концентраций) ионов, образовавшихся из растворителя (ионное произведение). Наиболее сильная диссоциация наблюдается в безводной серной кислоте. /С=СнзЗо+4 ==2,7-10 моль -л . Для некоторых других растворителей ионное произведение можно найти в табл. В. 18. В слабодиссо-циирующих растворителях экспериментальное определение ионного произведения (например, при помощи потенциометрических и кондуктометрических измерений) связано с определенными экспериментальными трудностями из-за сильного влияния загрязнений. [c.441]

    Из уравнения (XIII.4.3) следует, что после установления мембранного равновесия активность (концентрация) ионов по обе стороны мембраны неодинакова. Если в оба растворителя погрузить хлор-серебряные или каломельные электроды, то между ними возникнет разность потенциалов. Образуется концентрационный элемент, ЭДС которого определяется отношением активностей. Эта ЭДС получила название потенциала Доннана. [c.407]


    В другом способе определения pH в неводной среде используют гу же основную ячейку, которую применяли для водных растворов, включая каломельный электрод сравнения с водным раствором КС1. Если для данного растворителя применены водные стандартные растворы, то может быть получен ряд величин, которые дадут оценку, чему-то , что можно лишь смутно связать с кислотностью. Если система представляет собой смешанный растворитель, содержащий воду, или водоподобный растворитель, то о системе можно узнать достаточно, чтобы связать полученные величины с величинами концентрации водородных ионов посредством калибровочной кривой. Однако вследствие того, что величина потенциала в месте контакта жидкостей меняется от растворителя к растворителю, очевидно, что нельзя сравнивать величины pH в одном растворителе с величинами pH в другом. Например, если рН-метр дал показание 5,0 для определенного раствора в смеси этанол — вода и то же самое показание для раствора в смеси метанол — вода, причем в обоих случях был применен один и тот же стандартный раствор, нельзя делать вывод, что в обоих растворах активность водородного иона одинакова. На самом деле между ними не будет никакого сходства, прежде всего потому, что на границе между растворителем этанол — вода и насыщенным водным раствором КС1 каломельного электрода и на границе между растворителем метанол—вода и водным раствором КС1 будут совсем разные потенциалы. [c.379]

    Активности и коэффициенты активности веществ в растворах определяют, измеряя коллигативные свойства растворов (понижение упругости насыщенного пара над раствором по сравнению с упругостью насыщенного пара чистого растворителя, понижение температуры замерзания, повышение температуры кипения раствора по сравнению с чистым растворителем, осмотическое давление раствора), а также электродвижущую силу и электродные потенциалы обратимо работающих гальванических элементов. Можно, например, определить активность хлорида калия в растворе, поскольку можно приготовить такой раствор и измерить его коллигативные свойства. Однако в настоящее время неизвестны методы, с помощью которых можно было бы приготовить заряженные растворы, т. е. содержащие только катионы или только анионы, и измерить их коллигативные свойства, поскольку растворы электронейтральны и содержат эквивалентные количества как катионов, так и анионов. Следовательно, невозможно экспериментально определить активности и коэффициенты активности индивидуальных ионов (катионов или аниогюв) в растворе. [c.59]

    Обычно растворы электрнчсски нейтральны и содержат как катионы, так и анионы. Однако это 01 раиичение не является необ-холимым, поскольку можно взять раствор, образованный при введении в растворитель ионов одного заряда, и такой раствор в течение короткого времени не будет электрически нейтральным. К сожалению, термодинамика растворов, образованных такнм путем, не изучена, п поэтому мы рассмотрим только обычные, электрически нейтральные растворы и обсудим активность иона только в присутствии ионов противоположного заряда. [c.348]

    Среди этнх методов различают прямую П. и потенциометрич. титрование. Прямая П. применяется для непосредств. определения а ионов (напр., Ag" в р-ре AgNOj) по значению Е соответствующего индикаторного электрода (напр., серебряного) при этом электродный процесс должен быть обратимым. Исторически первыми методами прямой П. были способы определения водородного показателя pH (см. -рП-Метрия). Появление мембранных ионоселективных электродов привело к возникновению ионометрии (рХ-мет-рии), где рХ = — Ig Дх, активность компонента X электрохим. р-ции. Иногда рН-метрию рассматривают как частный случай ионометрии. Градуировка шкал приборов потенциометров по значениям рХ затруднена из-за отсутствия соответствующих стандартов. Поэтому при использовании ионосейективных электродов активности (концентрации) ионов определяют, как правило, с помощью градуировочного графика или методом добавок. Применение таких электродов в неводных р-рах ограничено из-за неустойчивости их корпуса и мембраны к действию орг. растворителей. [c.82]

    Отклонение от идеалъиос Ш для систем, в которых экспериментально измеренные в разбавленных растворах коэффициенты активности уменьшаются с ростом концентрации электролита, обусловлено ион-ионными взаимодействиями (образование ионных облаков ). Иногда эти взаимодействия называют дальнодействующими нли просто дальними. Существуют короткодействующие взаимодействия (с малым радиусом действия), причем наиболее важным из них является гцдратация. В разбавленных системах влияние гидратации постоянно, поскольку сама активность воды не изменяется. Следовательно, коэффициенты активности в разбавленных системах не зависят от гидратации ионов, что учтено выбором стандартного состояния. Таким образом, необходимо понимать, что понятие коэффициента активности относится к гидратированному нону. При возрастании концентрации электролита активность растворителя должна понижаться, влияя тем самым на положение равновесия сольватации. Равновесие сольватации при этом сдвигается в сторону менее соль-ватировавных или голых иоиов. Следовательно, коэффициенты активности голых ионов возрастают. Это наиболее справедливо для небольших ионов. [c.137]

    Большое значение имеют гели полиэлектролитов в ионообменной хроматографии (стр. 126). В этом случае обратимое набухание и сжатие ионита при обмене ионов регулируют количеством межцепных химических связей например, вводя 6, 10, 17 или 23% дивинил бензол а в поли-сульфостирол (см. рис. 44), можно регулировать набухание смолы и уменьшить объем геля, приходящийся на1 моль сульфогрупп, соответственно от 300 до 100, 70 или 50 мл одновременно изменяются среднее расстояние между ионогенными группами, их электростатическое взаимодействие и активность растворителя. Степень набухания определяет для ряда органических ионов интенсивность ионного взаимодействия и возможность проникновения в сетку геля и, тем самым, избирательность поглощения, что имеет большое значение для хроматографии. Избирательность поглощения обычно характеризуют коэффициентом избирательности [c.211]

    Подвижные фазы. Хроматографические разделения с использованием ионообменников чаще всего проводят в водных растворах, так как вода обладает прекрасными растворяющими и ионизирующшш свойствами. Под действием воды молекулы пробы мгновенно диссоцшфуют на ионы, ионо-генные группы ионообменников гидратируются и также переходят в полностью или частично диссоциированную форму. Эго обеспечивает быстрый обмен противоионов. На элюирующую силу подвижной фазы основное влияние оказывают pH, ионная сипа, природа буферного раствора, содержание органического растворителя или поверхностно-активного вещества (ион-парная хромато1рафия). [c.317]

    Этот параметр называют также эффектом среды, коэффициентом активности растворителя или коэффициентом активности переноса и обозначают оимволом 1// (МХ.0- -8). Параметр является постоянной величиной, характеризующей растворенное вещество МХ (или соответствующие ионы М и X ) и два растворителя О и 8. [c.322]

    В апротонных растворителях и их смесях с водой исследовано анодное поведение гидроксид-иона [989, 948]. Полярографическая анодная волна ОН -иона в ацетонитрильных, диметилсуль-фоксидных растворах проявляется при потенциалах, более отрицательных, чем в воде (например, в АН отрицательнее на 0,9 В) что объясняется увеличением активности гидроксид-иона в этих растворителях. Из высоты анодной волны рассчитан коэффициент диффузии ОН--иона в безводных растворах. [c.126]

    Если ветдептво в растворе диссоциирует или образует ассоциа-ты, все уравнения, связывающие осмотическое давление с концентрацией вещества в растворе, необходимо изменить, тогда как уравнения, связывающие осмотическое давление с активностью растворителя, давлением паров или с другими коллигативными свойствами, остаются справедливыми. Если при растворении молекулы электролита образуется и ионов, осмотическое давление ее раствора П будет выше осмотического давления раствора неэлектролита с такой же мольной концентрацией. Величина отношения П /П будет находиться между 1 и (для не слишком концентрированных [c.118]

    Сложившиеся к настоящему времени представления о термодеструкции ОМУ, как необходимой и практически единственной промежуточной стадии превращения угольного вещества, начинают претерпевать изменения благодаря новым экспериментальным данным. О наличии переходного бимолекулярного состояния при деструкции ОМУ упоминалось выше [87]. Другим доказательством могут служить результаты, полученные при ожижении угля при 250—350 °С, рабочем давлении 1,1—3,0 МПа в присутствии катализатора Н3РО4 и тетралина [90], а также и при взаимодействии со смесями других кислот (в том числе органических), обладающих донорными свойствами растворителей. На основании этих данных, а также с учетом того, что неорганические компоненты угля являются активными катализаторами ионных и радикальных процессов, а органическая масса содержит функциональные группы, обладающие сильными кислотными свойствами, и проявляет донорную способность, превращение ОМУ в условиях деструктивной гидрогенизации может протекать но нескольким механизмам, долевая значимость которых определяется структурой и свойствами исходного вещества, а также условиями процесса. [c.223]


Смотреть страницы где упоминается термин Активность растворителя в ионите: [c.295]    [c.154]    [c.319]    [c.395]    [c.145]    [c.123]    [c.353]    [c.296]    [c.173]    [c.390]    [c.322]    [c.534]    [c.112]    [c.353]    [c.144]    [c.382]   
Равновесие и кинетика ионного обмена (1970) -- [ c.40 , c.168 , c.171 , c.173 , c.176 ]




ПОИСК





Смотрите так же термины и статьи:

Активность и коэффициент активности растворителя в ионите

Активность ионная

Активность ионов

Активность растворителей

Изменение коэффициента активности вследствие взаимодействия между ионами и молеку. лами растворителя

Изменение энергии ионов кислот при переходе их из одного растворителя в другой. Теоретическая интерпретация коэффициентов активности ионов кислот

Константа обмена влияние активности растворителя в ионите

Методы расчета давления набухания и активности растворителя в фазе ионита, используемые в осмотической теории

Опыт 33. Состояние ионов и молекул в зависимо9ти от полярности растворителя. Сольваты молекул йода — 78. Опыт 34. Химическая активность сольватов молекул иода

Растворитель ионита

Расчет химического потенциала и активности ионита, равновесного с чистым растворителем или раствором одного электролита

Способ расчета активностей резинатов в смешанной. А, В-форме ионита, не содержащей необменно поглощенных электролитов, при различных содержаниях растворителя



© 2024 chem21.info Реклама на сайте