Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Буферные растворы значения при определении стандартных

    Для выбора подходящего индикатора проводят ориентировочное определение значения pH испытуемого раствора с помощью универсального индикатора, далее готовят эталонный ряд буферных растворов, значения pH которых лежат в области перехода окраски выбранного индикатора, добавляют к ним определенное одинаковое количество этого индикатора и измеряют pH (с точностью 0,1) испытуемого раствора методом стандартных серий. [c.486]


    Определение содержания железа(П1) в растворе. К анализируемому раствору, содержащему соль железа (1П), приливают 30 мл 0,01 М раствора сульфосалициловой кислоты, 5 мл ацетатного буферного раствора и доводят объем раствора до 50 мл дистиллированной водой. Приготовленный раствор через 10 мин фотометрируют с выбранным светофиль-тр( М относительно раствора сравнения. Измерения повторяют пять раз и по средним значениям поглощения, пользуясь градуировочным графиком, находят содержание железа (П1) в анализируемом растворе. Методом наименьших квадратов находят доверительный интервал результата и стандартное отклонение. [c.72]

    После приближенного определения pH испытуемого раствора, выбора индикатора и состава буферной смеси приступают к точному определению рП буферным методом. Буферный метод определения pH основан на сравнении интенсивности окраски индикатора в испытуемом растворе и стандартных буферных растворах с известными величинами pH, к которым добавлен тот же индикатор и в том же количестве. Значение pH испытуемого раствора равно pH того буферного раствора, окраска которого совпадает с окраской испытуемого раствора. [c.134]

    Стандартная шкала pH, рассмотренная в главе IV, является условной шкалой, выраженной в активностях, и составлена из определенных разбавленных растворов четырех буферных систем. Пять первичных стандартных растворов, значение pHs которых лежит в диапазоне 3,56— 9,18 при 25° С, представлены в табл. IV.5. В этой же таблице можно найти значения рН при других температурах. Эти растворы были выбраны вследствие их вполне удовлетворительной стабильности при/ 0,1 в отношении изменения концентрации и вторичного загрязнения. Пять растворов вполне достаточно покрывают промежуточную область шкалы pH, где остаточным жидкостным потенциалом можно пренебречь из-за его малой величины. Вследствие тенденции борной кислоты к полимеризации, по-видимому, изменяюш,ей сложным [c.118]

    Для определения pH применяют способ стандартизации pH по стандартным буферным растворам, имеющим определенным образом установленное и постоянное значение pH. [c.595]

    Наиболее простой способ применения индикаторной бумаги заключается в следующем. Каплю исследуемого раствора помещают на полоску индикаторной бумаги. Появившуюся окраску сравнивают с набором стандартных цветов. Другой способ состоит в том, что конец полоски индикаторной бумаги опускают в раствор. Точность определения может быть повышена, если пользоваться вспомогательными буферными растворами, значения pH которых близки к pH исследуемого раствора. Известное ограничение в этом случае обусловлено недостаточно широким выбором индикаторных бумаг. [c.151]


    Манометрическое измерение БПК. При изучении процесса потребления кислорода применяют манометрические аппараты, например респирометр Варбурга. Недавно в продаже появились упрощенные лабораторные манометрические устройства (рис. 3.16), но они не заменяют стандартного метода разбавления при определении БПК. Пробы сточной воды определенного объема помещают в склянки из коричневого стекла, причем объем пробы зависит от ожидаемого значения БПК. При проведении обычных анализов буферные растворы и питательные вещества не добавляют к пробам, так как предполагается, что неразбавленная сточная вода содержит достаточное количество питательных веществ для биологического роста, а ее буферная способность вполне достаточна для предотвращения изменения pH. Каждую склянку снабжают небольшой магнитной мешалкой, а в крышку каждой склянки помещают чашку, содержащую поглотитель углекислоты — гидроокись калия. Подготовленные склянки соединяют со ртутными манометрами. Пробы непрерывно перемешивают с помощью магнитных мешалок. Установка для перемешивания снабжена электромотором, обеспечивающим вращение каждого магнита. После первичного перемешивания, необходимого для установления равновесного состояния, крышки склянок закрывают плотнее, а на манометры надевают завинчивающиеся крышки, чтобы не допустить влияния барометрических колебаний давления на результаты измерений. Когда микроорганизмы поглощают растворенный в воде кислород, газообразный кислород абсорбируется из воздуха, находящегося в замкнутом пространстве склянки. Молекулы углекислого газа, вырабатываемого микроорганизмами, поглощаются раствором гидроокиси калия, находящимся в чашке под крышкой склянки, и превращаются в ион карбоната. Вследствие этого объем углекислого газа в замкнутом пространстве склянки равен нулю. Уменьшение объема воздуха в склянке, соответствующее потребности в кислороде, указывается на шкале манометра, проградуированной непосредственно в единицах измерения БПК, мг/л. Для поддержания температуры 20° С, требуемой для проведения стандартного анализа на БПК, всю установку помещают в термостат. [c.82]

    Даже если по обе стороны электродного стекла находятся совершенно одинаковые растворы, то скачки потенциалов, как правило, будут неодинаковыми. Малейшее различие в составе стекла на обеих поверхностях, дансе различие во внутренних напряжениях поверхностей стекла, сказывается на величине потенциала, возникает дополнительный скачок потенциала, называемый потенциалом асимметрии. Поэтому каждый стеклянный электрод подвергают специальной калибровке по стандартным буферным растворам с точно определенной величиной pH. Стеклянный электрод наиболее надежный из индикаторных электродов. Его можно применять для измерения pH в широком интервале его значений (О — 12) в растворах с сильными окислителями и восстановителями. [c.342]

    В ТОМ случае, если известна концентрация ионов водорода в стандартном растворе, так как значение коаффициента активности отдельного иона определить невозможно. В связи с этим невозможно определить и точное значение РаН стандартного раствора конечной концентрации на основании термодинамических данных, не прибегая к каким-либо допущениям при вычислении коэффициентов активности ионов водорода. Избавиться от погрешности при определении р Н стандарта можно лишь в том случае, если в качестве стандартного выбран настолько разбавленный раствор сильной кислоты, что в нем коаффициенты активности равны единице. Но такой раствор не обладает всеми свойствами стандарта, так как он имеет ничтожную буферную емкость. Кроме того, при измерении pH с помощью такого раствора ошибки за счет диффузионных потенциалов будут тем больше, чем меньше концентрация стандарта. [c.405]

    Остановимся теперь более подробно на понятии генеральной и выборочной совокупностей в приложении к результатам измерения физико-химических величин. Предположим, что пред-приятию-изготовителю необходимо аттестовать качество большой партии однотипных изделий. Пусть для определенности это будет партия из 10 тыс. стеклянных электродов одной марки, которые нужно характеризовать значениями потенциала в стандартных буферных растворах, температурным коэффициентом [c.813]

    Потенциал асимметрии меняется со временем и поэтому влияет на водородную функцию стеклянного электрода, однако большим и внезапным изменениям он не подвержен. В принципе, он может рассматриваться как некоторая константа измерительного прибора. Именно поэтому стеклянный электрод перед измерением pH исследуемого раствора предварительно калибруют по стандартным буферным растворам, pH которых известен. В силу особенностей стеклянного электрода, а точнее мембраны, он требует определенного хранения и ухода. Для получения наиболее точных результатов новые или оставшиеся сухими электроды перед употреблением следует вымачивать в течение 1...2ч или даже оставлять в растворе на всю ночь. При этом электроды, предназначенные для измерения в растворах, где pH меньше 9, могут быть вымочены в воде или фосфатном буферном растворе (рНб,81). Электроды, которые употребляются исключительно в шелочных растворах, необходимо вымачивать в буферных растворах с большим значением pH. При работе необходимо следить, чтобы рН-чув-ствительный конец электрода не подвергался сильным механическим воздействиям. Стеклянные электроды нельзя погружать в хромовокислые растворы или в растворы других дегидратирующих агентов. [c.256]


    Растворы стандартного образца известной концентрации и соответствующие растворы испытуемого вещества, имеющие концентрации предположительно того же порядка, готовят в стерильном буферном растворе с подходящим значением pH. Для оценки правильности количественного определения необходимо использовать не менее 3 различных доз стандартного образца вместе с равным количеством доз испытуемого вещества, имеющих предположительно ту же активность, что и растворы стандартного образца. Уровни доз должны соотноситься в геометрической прогрессии, например, готовят серию разведений в отношении 2 1. Если известно, что отношение между логарифмом концентрации антибиотика и диаметром зон угнетения является приблизительно прямолинейным [c.166]

    Титрование ведут стандартным раствором комплексона III в щелочной среде с индикатором эриохром черным Т или в кислой среде с ксиленоло-вым оранжевым. Для этого титруемый раствор предварительно перед титрованием доводят до определенного значения pH при помощи буферного раствора. Наряду с буферным раствором иногда добавляют еще вспомогательный комплексообразователь (тартрат, цитрат и др.), связывающий некоторые катионы и удерживающий их в растворимом состоянии во избежание выпадения осадков гидроокисей в щелочном растворе. [c.259]

    Простейший путь экспериментального определения приближенного значения рОн—это внесение табулированных поправок б (см., например, табл. VIП.З) в численные значения pH, полученные на рН-метре. Последний стандартизован обычным образом для водных буферных растворов. Чтобы устранить дрейф асси-метрического потенциала, наблюдаемый при переносе стеклянного электрода из водной в спиртовую среду, используют стандартные растворы с известным значением и с тем же составом [c.203]

    Если желательно измерить pH с точностью, большей, чем 0,01 ед. pH, то необходимо обратить особое внимание на а) регулирование температуры, особенно поддержание одинаковой температуры в гальваническом элементе б) на составляющую стеклянного электрода в э.д.с. элемента, которая меняется в зависимости от взятых электродов (см. главу X) в) на изменение диффузионного потенциала. Изменения, приписываемые остаточному диффузионному потенциалу, проявляются тогда, когда стандартный и исследуемый растворы содержат различные виды ионов и имеют разную ионную силу. Например, при 38° С наблюдается кажущееся расхождение на 0,01 ед. pH между стандартными фосфатным (1 1) и 0,01 т боратным буферными растворами (см. стр. 86). Эти данные иллюстрируют трудности, которые возникают при определении значений pH с использованием лучших современных приборов. [c.356]

    При выполнении этого определения к исследуемому раствору прибавляют 1 мл соответствующего индикатора и сравнивают возникшую окраску с окрасками серии стандартных буферных растворов. Состав употребляемых буферных растворов с различным значением pH приведен в табл. 10. [c.354]

    Химические и электрохимические свойства лития таковы, что амперометрическое титрование его затруднено. Он почти не образует малорастворимых солей, образованием которых можно было бы воспользоваться для прямого титрования, не образует также комплексных соединений и имеет сильно отрицательное значение стандартного потенциала. Поэтому пока известно только два способа определения лития амперометрическим методом косвенное определение, заключающееся в осаждении лития уранилацетатом цинка, отделении и растворении осадка с последующим титрованием цинка раствором ферроцианида калия на фоне тартратно-ацетатного буферного раствора с рН=7,5—8 в водно-этанольной среде. Титруют при потенциале -Ь0>8 В (Нас. КЭ) на платиновом электроде. Количество определяемого лития — от 1 до 3 мг. Мещает определению уран (VI). Метод опробован на литийсодержащих материалах [1]. Второй способ — титрование вереде изопропилового спирта раствором щавелевой кислоты. Электроды — медный амальгамированный катод и медный анод, Дф=1,0 В. Нижний предел определения ЫО— моль/л. Метод разработан для последовательного определения калйя (см. Калий ), натрия и лития, причем авторы статьи [2] замечают, что оксалат лития образуется в последнюю очередь и что в отсутствие калия и натрия литий практически не титруется. [c.199]

    Определение pH из этих значений потенциала требует оценки коэффициента активности иона хлора. Некоторые исследователи для оценки Усг предпочитают использовать теоретическое выражение для коэффициента активности отдельного иона. Другие же применяют экспериментально определенные средние коэффициенты активности для некоторых стандартных электролитов, обычно НС1 или КС1. Для растворов с ионной силой, меньшей 0,1 М, ошибка эксперимента — величина того же порядка, или большая, чем различия, обусловленные различием методики оценки Усг Последнее означает, что pH стандартного буферного раствора можно определить достоверно, если раствор не слишком концентрированный. [c.385]

    Регулирующие организации в различных странах одобрили экспериментальное определение практических величин pH и стандартную щкалу pH. Эта шкала устанавливается по одному или по нескольким стандартным буферным растворам, значение pH которых формально согласуется с термодинамическими свойствами растворов ц с единым условным определением индивидуальных ионных коэффициентов активности. Определение pH в основных чертах сводится к определению некоторой разности, и значение экспериментально определяемой величины pH в значительной мере зависит от численного значения pH, приписанного стандарту. Любая интерпретация pH, если она вообще законна, должна начинаться с рассмотрения значения pH стандарта. [c.8]

    Для селективного элюирования используют воду, буферные растворы с определенным значением pH и ионной силы, а также ком плексообразующие реагенты растворы минеральных (соляная, азотная, серная, фосфорная) и органических (лимонная, молочная, щавелевая, винная, ЭДТА) кислот и их соли. Выбор элюента облегчается тем, что в настоящее время предельные коэффициенты распределения большинства элементов между водными (водноорганическими) растворами многих комплексантов и ионообменниками стандартного типа определены и табулированы. Соответствующие данные приведены в Приложении П1. [c.85]

    Приведенные ниже данные могут быть использованы для гфиготов-лрния большинства стандартных и некоторых специальных буферных растворов с определенными значениями pH. Дополнительную информацию можно найти в справочниках 21] и [ЗО]. [c.81]

    Оборудование и реактивы сухая желатина проволока 5 коротких пробирок буферные растворы с различными значениями pH торзионные весы типа УТ рН-метр фильтровальная бумага стакан для определения pH растворов стандартный буферный раствор для растройки рН-метра вискозиметр Оствальда термостат секундомер раствор желатины концентрации 0,5 мае. долей, % буферные растворы с известными значениями pH 5 стаканов вместимостью 50 мл пипетка стеклянная палочка. [c.220]

    Расчеты суммарной жесткости и содержание иона кальция основаны на титровании стандартным раствором версената (натриевой соли этилендиаминтетрауксусной кислоты). Применение различных буферных растворов и различных индикаторов позволяет отдельно рассчитать содержание кальция и, следовательно, содержание магния путем вычитания концентрации кальция из значения суммарной жесткости. Содержание сульфата кальция (нерастворенного) рассчитывается по результатам титрования с целью определения суммарной жесткости отфильтрованного разбавленного бурового раствора и исходного фильтрата бурового раствора. [c.125]

    Это выражение используется при определении pH с помощью иономеров (рН-метров) или потенциометров. Приборы настраивают на заданное значение рНст стандартного буферного раствора. При этом величина стандартного потенциала индикаторного электрода не имеет значения. Необходимо лишь, чтобы во время измерений он оставался постоянным. [c.182]

    Для определения pH водных вытяжек используют стеклянные электроды. Навеску массой 10 г воздушно-сухой почвы, пропущенной через сито с отверстиями в 1 мм, помещают в плоскодонную колбу, приливают 25 мл дистиллированной воды (pH 6,0—6,5), взбалтывают в течение 1 ч. В приготовленную суспензию пофужают комбинированный электрод или простой Н-электрод и электрод сравнения (каломельный или хлорсеребряный) и измеряют ЭДС с помощью любого подходящего рН-метра, иономера или потенциометра. Затем по фа-дуировочному фафику, предварительно построенному с помощью стандартных буферных растворов, находят значение pH. На рН-метрах имеется непосредственно шкала pH, настройку которой осуществляют также по стандартным растворам. [c.218]

    ЛОТЫ до исчезновения ее. Затем приливают 1 мл раствора лимонной кислоты, 2 мл раствора тиогликолевой кислоты, взбалтывают и прибавляют 10 мл раствора алюминона. Пробу помещают на 15 мин в кипящую водяную баню, охлаждают до 20 С, переносят в мерную колбу на 100 мл или в цилиндр Несслера и доливают дистиллированной водой до метки. Определение оптической плотности или сравнение окраски в цилиндрах производят не позднее чем через 25 мин. Из величины оптической плотности вычитают ее значение в холостом опыте. Для построения калибровочного графика в набор колб помещают объемы рабочего стандартного раствора, соответствующие после доведения объема раствора до 50 мл дистиллированной водой содержанию алюмнния в пробе в пределах от О до 1,0 мг/л, и обрабатывают по методике К 25 мл пробы, содержащей не более 0,3 мг А1, добавляют 0,5 мл раствора гидроксиламинхлорида и 3 мл раствора эри-охромцианнна Р. Перемешав, вводят раствор гидроксида натрия до фиолетовой окраски, избыточную щелочь нейтрализуют раствором уксусной кислоты до появления желтой окраски, приливают 10 мл буферного раствора и воду до объема 50 мл. Через 20 мин после перемешивания определяют оптическую плотность. Из величины оптической плотности вычитают ее значение в холостом опыте. [c.325]

    Определение pianY i) Для трех, или более порций буферного раствора, в которые добавлен растворимый хлорид при различных малых концентрациях, посредством измерения э. д. с. водородно-хлорсеребряного элемента без жидкостной границы [элемент (III. 35)]. Значение р(ануа) получается из измеренной э. д. с. и известной величины стандартной э. д. с. Е° элемента [39] с помощью уравнения  [c.78]

    Вероятно 0,05 т раствор кислого о-фталата калия более широко применим для стандартизации рН-метров, чем другие стандартные растворы. Значения pHs по шкале NBS для растворов кислого о-фталата калия при О—60° С основываются на работе Гамера, Пинчинга и Акри, которые методом э.д.с. определили первую и вторую константы диссоциации фталевой. кислоты. В связи с определением второй константы были вычислены величины Yr и параметры а и Ь [по уравнению (III.39)]. Эти данные были дополнены последующими измерениями при 60—95° С [45]. Значение а оказалось равным 3,76 А и изменения состава не влияют на него, в то время как Ь изменяется и с буферным отношением и с отношением концентраций КС1 и фталата. [c.82]

    Совершенно очевидно, что шкала pH могла бы быть выражена с помощью одного стандартного буферного раствора. Однако каждое практическое измерение pH включает некоторый потенциал жидкостного соединения, и разница величин потенциала жидкостного соединения в ячейке (3-14) с неизвестным и стандартным растворами неявно отражена в уравнении (3-15). Потенциал жидкостного соединения является постоянной величиной для всех растворов со средними значениями pH примерно от 3 до 11, однако за пределами этих значений он заметно изменяется в связи с повышением концентрации ионов необычайно высокой подвижности Н+ или ОН". Это явление не влияет на вычисление pH с помощью уравнения (3-15), но величина pH для растворов с высокой кислотностью или основностью будет заметно отличаться от известных лучших значений — lgЯн+ Именно поэтому- Национальное Бюро стандартов США установило ряд стандартных значений рНз. Для экспериментальных определений рекомендуется подбирать значение pH стандарта, наиболее близкое к pH неизвестного раствора. Применяя два стандартных буферных раствора (желательно, чтобы рН одного из них было больше, а второго — меньше, чем pH испытуемого раствора), можно проверить показания индикаторного электрода, что позволит получить вполне надежные результаты. [c.40]

    Однако на сегодняшний день наиболее важная область практического применения потенциометрического метода — определение pH растворов. При измерении pH, как и при потенциометрическом измерении активности других ионов, необходимо компенсировать потенциалы между жидкими фазами и электродные эффекты, используя калибрование при помощи стандартов. При любом практическом измерении pH раствора (рН ) его сравнивают с pH стандартного буферного раствора (рНст)- Измеряемое и стандартное значения pH связаны соотношением  [c.418]

    Остаточный хлор в пробах сточных вод не может быть надежно определен с помощью методики OTA из-за наличия органических соединений. Большую точность обеспечивает применение иодометрического метода. В пробу сточной воды добавляют замеренный объем стандартного раствора окиси фениларсина или тиосульфата, избыточное количество иодида калия и ацетат-буферный раствор (для поддержания значений рП в пределах 3,5—4,2). Остаточный хлор окисляет эквивалентное количество иодида в свободный иод, который в свою очередь немедленно превращается в иодид при взаимодействии с восстанавливающим агентом. Количество оставшейся окиси фениларсина определяют затем путем титрования стандартным йодным раствором. Таким образом, удается исключить контакт свободного иода со сточной водой. Конечную точку титрования определяют с помощью крахмала, дающего синюю окраску в присутствии свободного иода. Другой, более точный способ фиксации конечной точки включает в себя использование амперометрического титрования (рис. 2.14) с регистрацией изменения электропроводности титруемого раствора. Отклонение стрелки регистрирует присутствие свободного иода и конечную точку титрования. Этот прибор может применяться для измерения содерл<ания свободного остаточного хлора или для дифференцированного определения монохлораминовой и ди.хлора.миновой фракций связанного остаточного хлора. [c.37]

    Для колориметрического определения pH растворов индикаторы с очень узкими интервалами pH перехода окрасок мало пригодны. Наибольшее применение имеют двухцветные индикаторы, которые в достаточно широких интервалах pH перехода своих окрасок показывают заметные изменения оттенков при колебаниях pH на 0,1—0,2. Применяют и одноцветные индикаторы, цвет которых с изменением pH становится более или менее интенсивным при сохранении своего оттенка. В обоих случаях определяют цвет, который принимает индикатор в испытуемом растворе и в серии стандартных буферных растворов с различными pH, значения которых предварительно установлены электрометрическим методом pH испытуемого раствора равен pH того буферного раствора, к которому цвет испытуемого раствора наиболее близок. [c.470]

    Описание определения. В мерную колбу емкостью 100 мл вводят исследуемый раствор (или аликвотную часть дистиллята), содержащий О—5 мг фтор-иона, проверяют значение pH раствора с помощью универсальной индикаторной бумажки, если нужно, доводят разбавленным раствором NaOH и H IO4 до рН = 4,0—4,5, прибавляют 10 жл раствора оксалата титана, 10 мл раствора /-аскорбиновой кислоты и 25 мл буферного раствора. Объем доводят водой до метки, перемешивают и фотометрируют при 360 ммк не позднее, чем через 1 ч в кюветах с толщиной слоя в 1 сж. В этих условиях калибровочная кривая представляет собой прямую линию. Строят калибровочную кривую по стандартному образцу NaF в условиях опыта (аналогично рис. 9). [c.114]

    Буферной силой называется относительное изменение, по сравнению со стандартным, pH различных буферных растворов при добавлении к ним одинаковых объемов сильных кислот или сильных оснований. Для измерения буферной силы выбирают какой-либо буферный раствор в качестве стандарта и определяют изменение АрН в нем при добавлении определенного количества сильной кислоты или сильного основания. Берут такой же объем раствора исследуемого буфера той же концентрации, добавляют к нему такое же количество кислоты или основания и определяют изменение АрНг раствора. Отношение ЛрН1/АрН2 представляет собой буферную силу изучаемого раствора по отношению к стандартному. Рассмотрим факторы, влияющие на буферную силу раствора. Концентрация ионов Н+ и ОН- в буферных растворах определяется формулами (V. 73), (У.74) и (У.80), ( .81). Так как концентрации стандартного и испытуемого растворов одинаковы, то соотношения Скисл/Ссопь и Сосн /Ссоль для них изменяются одинаково. Следовательно, различие в АрН у сопоставляемых растворов связано с неодинаковым значением констант диссоциации кислот или оснований. Таким образом, буферная сила зависит от констант диссоциации слабых кислот или оснований стандартного и испытуемого растворов. [c.136]

    Выполнение работы. Определение обратного углового коэффициента. Готовят серию стандартных растворов, содержащих 0,04—0,09 мг AljOs в 100 мл. Для этого в мерные колбы вместимостью 100 мл вводят из бюретки 5,0 10,0 15,0 17,5 20,0 25,0 мл стандартного раствора Б, добавляют 5 мл НС1, 0,5 мл раствора Н3РО4 (10 мг/мл), 2 мл 0,1 % раствора аскорбиновой кислоты, дистиллированную воду примерно до 50 мл, затем приливают при постоянном перемешивании (как можно более точно) 10 мл 0,1% раствора хромазурола S, 10—20 мл буферного раствора, доводят до метки дистиллированной водой и сразу измеряют оптическую плотность окрашенных растворов относительно раствора сравнения (Со = 0,018 мг Al Os в 100 мл раствора). Оптическую плотность каждого раствора измеряют трижды, результаты заносят в таблицу, составленную по форме табл. 11.1, и рассчитывают значение F. [c.373]


Смотреть страницы где упоминается термин Буферные растворы значения при определении стандартных: [c.162]    [c.20]    [c.184]    [c.296]    [c.57]    [c.290]    [c.80]    [c.193]    [c.241]    [c.472]    [c.376]    [c.63]    [c.44]   
Физическая химия растворов электролитов (1950) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Буферная

Буферные растворы

Буферные растворы значение

Буферные растворы стандартные

Определение буферными растворами

Растворы и их значение

Стандартные растворы



© 2025 chem21.info Реклама на сайте