Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы разложения углеводородов

    Реакции изомеризации обратимы, поэтому равновесное содержание изомеров в смеси зависит от температуры процесса. Начинается изомеризация при 100—150°С, но скорости реакций при этом слишком низки. Для их повышения используют высокоактивные катализаторы и повышенные температуры (300— 400 °С). Для предотвращения разложения углеводородов и отложения кокса на катализаторе процесс осуществляют в присутствии водорода под общим давлением до 3—4 МПа. Применение высокоэффективных платиновых и палладиевых катализаторов предъявляет жесткие требования к качеству сырья и водородсодержащего газа. Диоксид углерода, влага и особенно сернистые соединения дезактивируют катализаторы. Поэтому требуется предварительная осушка и очистка водородсодержащего газа и сырья (рис. 69). [c.219]


    Скорость крекинга сильно зависит от температуры. С понижением температуры глубина разложения углеводородов уменьшается. Без катализаторов углеводороды практически не расщепляются при температурах ниже 360°, в присутствии же катализаторов они крекируются и при более низких температурах. Например, по данным А. Ф. Добрянского и Г. Я. Воробьевой твердый парафин в присутствии природной глины гумбрина крекируется при 300° с образованием легких жидких продуктов и газа. [c.15]

    Весьма вредное действие на активность и избирательность всех алюмосиликатных катализаторов оказывают окиси металлов, например ванадия, никеля, меди и железа, которые при обычной темнературе крекинга способствуют нежелательному разложению углеводородов на углерод и водород. В присутствии солей натрия [c.53]

    Катализаторы конверсии природного газа без окислителя При термокаталитическом разложении углеводородов (чаще всего — метана) на элементы в отсутствии окислителей образуются водород и углерод (последний отлагается на катализаторе). В качестве катализаторов здесь чаще всего используют железо или никель. Слой катализатора предварительно подогревают дымовыми газами до требуемой температуры, а затем в него вводят поток углеводородного сырья. [c.38]

    Катализатор применяют при разложении углеводородов [c.73]

    Процесс осуществляют циклически с предварительным подогревом сырья до температуры реакции без термического разложения углеводородов. Последнее достигают тем, что на поверхность огнеупорных материалов в зоне предварительного подогрева в виде пленки толщиной 0,794 мм наносят металл (никель или кобальт), которому приписывают способность тормозить термическое расщепление углеводородов. Подогретое сырье поступает в зону реакции, заполненную никелевым катализатором. Продолжительность рабочего цикла 2 мин [c.182]

    Ни двуокись кремния, ни окись алюминия сами по себе не являются эффективными в промотировании реакций каталитического крекинга. В действительности они (а также активированный уголь) промотируют термическое разложение углеводородов [249, 250]. Смесь безводных двуокиси кремния и окиси алюминия тоже не проявляет достаточной эффективности. Катализатор с высокой активностью получается только из гидроокисей с последующей частичной дегидратацией (кальцинированием). Остающееся малое количество воды необходимо для нормальной работы катализатора. Исследования, проведенные с применением окиси дейтерия, показали, что эта вода участвует в реакциях обмена водородом между катализатором и молекулами углеводородов, причем указанные реакции начинаются при температурах, значительно более низких, чем температуры крекинга [262, 265]. [c.340]


    Выжигание кокса в промышленных аппаратах осуществляется и в движущемся слое контактного материала. Такой способ регенерации используется для восстановления активности быстро отравляющихся катализаторов и для ввода тепла в тех случаях, когда осуществляемый химический контактный процесс сильно эндотермичен. Например, для процессов глубокого разложения углеводородов, протекающего при высоких температурах, необходимо большое количество тепла, ввод которого может быть осуществлен путем подачи в реактор потока контактного материала, нагретого за счет окисления отложившегося на его поверхности кокса. [c.322]

    Возможны два пути образования кокса 1) через сложный комплекс последовательных реакций, приводящих к постепенному уплотнению и обезводороживанию углеводородного сырья вплоть до твердого, сильно обогащенного углеродом вещества 2) при прямом разложении углеводородов на углерод и водород или на углерод и более легкие углеводороды через промежуточное взаимодействие исходного сырья с катализаторами. [c.5]

    Технологический процесс крекинга проводят так, чтобы получить максимальную степень превращения исходного нефтепродукта с наибольшим выходом бензина и наименьшим кокса и смолы. Различают два вида крекинга термический и каталитический. Мы будем обсуждать второй, притом каталитический крекинг во взвешенном слое катализатора. Поскольку и в этом случае ряд реакций дегидрогенизации и разложения углеводородов, по-видимому, протекают гомогенно, без участия катализатора, мы кратко рассмотрим основные разновидности термического крекинга. [c.224]

    Термическое разложение углеводородов связано с промежуточным образованием термически устойчивого углеводорода — метана. Поэтому скорость процесса термического разложения углеводородных газов с целью получения из них водорода лимитируется реакцией распада метана на элементы по реакции СН4— -С + Шг. Данные о равновесии этой реакции приводились в гл. I. Теоретически разложение метана на 98—99% должно происходить при 1000—1200° С. Однако при таких температурах скорость расщепления метана до элементов еще недостаточна, и для достижения приемлемых выходов водорода процесс приходится вести в интервале 1350—1400° С. Скорость термического разложения метана может быть увеличена при использовании катализаторов, содержащих железо, никель и другие металлы. [c.130]

    Каждая последующая стадия разработки процесса риформинга приводит к все более жестким условиям работы катализатора. Для риформинга метана это проявляется в последовательном увеличении давления, для других процессов — в применении углеводородов более высокого молекулярного веса. Одним из наиболее жестких ограничений в процессе риформинга углеводородов является образование углерода на катализаторе в результате прямого разложения углеводорода или газообразных продуктов. Теоретическая граница выделения углерода устанавливается в соответствии с реакцией диспропорциони-рования окиси углерода. Каждая стадия разработок, как сказано, представляет собой некоторое повышение требований, предъявляемых к катализатору. И поскольку получение синтез-газа является основой производства аммиака, то очень много усилий было сделано в процессе разработки соответствующих катализаторов [28]. [c.83]

    Скорость реакции водяного пара с углеродом, находящимся на поверхности катализатора парового риформинга, сравнивалась со скоростью реакции пара с углеводородом на таком же нанесенном никелевом катализаторе. Результаты позволяют предполагать, что реакция пара с твердым углеродом идет слишком медленно, чтобы подтвердить механизм, основанный на начальном разложении углеводородов на углерод и водород. Нет больших сомнений в том, что процесс проходит через серию простых промежуточных стадий, которые, возможно, образуют систему параллельных и последовательных реакций. [c.112]

    Хорошо известно, что металлическое железо, кобальт и никель способны катализировать полное разложение углеводородов до кокса и водорода. Рассмотренные выше катализаторы содержат соединения железа и никеля, и поэтому режим процесса должен исключить условия, при которых возможно восстановление этих компонентов до каталитически активных металлов. Такому восстановлению препятствует использование избытка водяного пара или образование водяным паром соединений с другими компонентами катализатора. В результате попытка применить эти катализаторы для реакций с углеводородами без водяного пара неизбежно приведет к повышенному коксообразованию. [c.76]

    Известно, что циклогексаны легко ароматизируются над алюмохромовыми, алюмомолибденовыми и алюмоплатиновыми катализаторами. Однако в лабораторных условиях эти катализаторы не всегда обеспечивают достаточно высокие выходы, что связано с высокой изомеризующей активностью кислой окиси алюминия, которая способствует превращению циклогек-санов в циклопентаны. Активированный уголь, являясь инертным носителем, часто используется в качестве подложки для катализаторов, содержащих 5% или 5% Рс1.Реакции проводят при 200-300°С и атмосферном давлении. Никелевые катализаторы обладают способностью проводить разложение углеводородов до углерода и водорода, а также до метана и водорода, и поэтому они менее надежны в реакции дегидрогенизации. [c.78]


    Галоидирование парафинов может быть значительно ускорено путем применения катализаторов. В качестве таковых действуют, например, следы иода, а также освещение. На солнечном свету метан реагирует с хлором настолько энергично, что происходит взрыв с разложением углеводорода до углерода  [c.37]

    Крекинг углеводородов. При нагревании углеводородов до высоких температур (450—550 С) без доступа воздуха они распадаются с разрывом углеродных цепей и образованием более простых предельных и непредельных углеводородов. Такой процесс называют крекингом (расщеплением). Разложение углеводородов при еще более высоких температурах (550—650°С и выше) приводит к образованию простейших (главным образом газообразных) углеводородов кроме того, при этом происходит замыкание углеродных цепей в циклы и получаются значительные количества ароматических углеводородов (стр. 342). Этот процесс называют пиролизом. Применением в процессах крекинга и пиролиза специальных катализаторов и давления удается регулировать эти процессы и получать необходимые продукты (стр. 61). [c.55]

    Однако в работах показано, что состав сырья влияет на структуру и форму углеродного вещества. В другой работе " установлено, что структурные характеристики углеродных волокон зависят от теплоты разложения углеводородов, которая определяет фадиент температур между "горячей" и холодной" фанями поверхности кристалла катализатора и скорость диффузии углерода. [c.61]

    Одним из перспективных направлений развития процесса пиролиза является применение гетерогенных катализаторов, позволяющих увеличить скорость реакций разложения исходных углеводородов и образования низших олефинов, бутадиена-1,3 и других продуктов. В условиях гетерогенно-каталитического пиролиза достигается, как было показано советскими исследователями, повышенная селективность процесса по олефинам и более высокие, чем при термическом пиролизе, выходы этилена за проход [374]. Кроме того, по сравнению с термическим пиролизом за счет ускорения реакций разложения углеводородов применение катализаторов позволяет достигать при равных температурах более высокие степени превращения или [c.179]

    В процессе дегидрирования углеводородов (бутана, изобутана и изопентана) на алюмохромовом катализаторе образуется значительное количество кокса за счет реакций уплотнения олефинов и диенов и разложения углеводородов на углерод и водород. [c.826]

    Используют бифункциональные катализаторы, содержащие платину или палладий на оксиде алюминия или цеолитах. Для предотвращения разложения углеводородов и отложения кокса на катализаторе процесс ведут в среде водорода при давлении 3-4 МПа, температуре 200-350 °С в зависимости от применяемого катализатора. С повышением температуры усиливаются реакции гидрокрекинга. Объемная скорость процесса составляет обычно 1,0—1,5 ч .  [c.81]

    При нагревании углеводородов до определенной температуры происходит их разложение. Разложение углеводорода может произойти как с размыканием углерод-углеродной связи (расщепление), так и с размыканием углерод-водородной связи (дегидрирование). В зависимости от условий—температуры, давления, наличия катализатора, продолжительности пребывания реагентов в зоне высоких температур—образуются различные новые углеводороды с меньшим молекулярным весом. Например, разложение м-бутана может протекать по следующим схемам  [c.134]

    Катализаторы, которое сильно ослабляют С — Си С—Н связи и вызывают полное разложение углеводорода на углерод и водород или углерод, водород и метан (этан). К катализаторам этого типа относятся такие тяжелые металлы, как платина, никель, медь и некоторые другие. [c.23]

    Марголис [149] была изучена хемосорбцпя непредельных и насыщенных углеводородов на различных полупроводниках на простых окислах металлов — пятиокиси ванадия, закиси меди, закиси никеля, окиси хрома, и па сложных — шпинелях (СиСг204 и М Сгг04). В статической вакуумной установке катализаторы тренировали в вакууме ири 10 мм рт. ст. ири различных температурах. Сорбцию углеводородов изучали при низких давлениях объемным методом, а при давлениях 200 мм рт. ст. — на кварцевых пружинных весах. Для изучения хемосорбции подбирали такие условия, при которых полностью отсутствуют побочные процессы (окисление углеводородов кислородом решетки катализатора, разложение углеводорода и т. д.). [c.48]

    Каталитический крекинг нефти. По данным А. В. Агафонова и других [3] при крекинге нефти в присутствии алюмосиликатных катализаторов высококипящие углеводороды, главным образом нафтеновые и ароматические с боковыми парафиновыми цепями, а также смолистые и сернистые сиединения, разлагаются с высокой Скоростью. Присутствие в крекируемой смеси низкомолекулярных углеводородов способствует десорбции продуктов разложения и оказывает благоприятное действие вследствие значительного понижения концентрации смолистых и полициклических соединений на поверхности катализатора [3]. Ниже приведен баланс (в % вес. на нефть) однократного крекинга сернистой смолистой нефти (плотность = 0,867, содержание серы 1,6% вес., коксуемость 5,8% вес., содержание фракций ло 350° 48,5% вес.) в присутствии природного катализатора с индексом активности И—14. Условия процесса температура в реакционной зоне 450 , объемная скорость подачи сырья 1,2—1,5 час. , весовая кратность циркуляции катализатора 5. [c.215]

    Катализатор содержит 15—30 мас.% закиси никеля, каолинито-вую глину, портланд-цемент, цемент (гидравлический, циркониевый или магнезиальный), 12—30 мае. % окиси магния и окиси других металлов второй группы периодической системы, 1—5 мас.% промотирующих окислов хрома или алюминия. Прочность катализатора повышается добавкой материала с игольчатой микроструктурой, а пористость — добавкой древесного угля, крахмала, ме-тилцеллюлозы, газовой сажи, смолистых веществ. Второй способ позволяет получить более прочный катализатор. Применяют при разложении углеводородов с целью получения водорода [c.59]

    Важно также отметить, что непрерыввая регенерация в системах с циркуляцией катализаторов и теплоносителей лозволяет вводить в контактный аппарат нужное количество тепла. Интересен в этом ллане процесс получения водорода высокотемпературным разложением углеводородов, в котором [c.3]

    Следует отметить, что указанные катализаторы йе только обеспечивали относительно глубокое гидрирование сернистых и ненасыщенных соединений, но и способствовали довольно значительному, часто нежелательному, разложению углеводородов сырья (деструктивной гидрогенизации). Тем не менее гидроочистка газойлевых дистиллятов из сернистых нефтей на катализаторах деструктивной гидрогенизации (гидрокрекинга), в част ности на осерненном вольфрамникелевом катализаторе, была успешно осуществлена [14, 15]. [c.186]

    Создание процесса каталитического крекинга было обусловлс-П-О необходимостью смягчить условия крекинга нефтяных продуктов (понизить температуру и давление), повысить выход бензина п улучшить качество. Наиболее активным катализатором крекинга углеводородов является хлористый алюминий. Впервые крекинг в присутствии А1С1з был проведен Густавсоном. Под действием хлористого алюминия крекинг, например, парафинл начинается ирн 100° при 200° крекинг протекает с высокой скоростью. Недостаток процесса крекинга в присутствии этого катализатора состоит в повышенном расходе хлористого алюминия и невозможности его регенерации, а также в то.м, что при его разложении под действием влаги воздуха выделяется хлористый водород, сильно корродирующий аппаратуру. [c.128]

    Полициклические и ароматические углеводороды играют важную роль в дезактивации алюмосиликатного катализатора. С. И. Обрядчиков и Д. М. Ссскинд исследовали влияние ароматических углеводородов с конденсированными циклами на крекинг парафинового, нафтенового и олефинового сырья. Для всех видов исследованного сырья выходы продуктов разложения были ниже соответствующих данных, рассчитанных по правилу смешения. Причиной этого оказалось тормозящее действие кондеисироваииых ароматических, которые вытесняют с активной поверхности катализатора реагирующие углеводороды. Склонность ароматических углеводо]юдов к торможению определяется их молекулярным весом и структурой сильное [c.157]

    А. М. Кулиев, И. М. Оруджева и С. В, Красовская [92] продолжили указанные исследования, в области каталитического облагораживания автола 10 и авиамасла МК, Они производили операцию с указанными маслами при 350 —450° в присутствии естественного и активированного гумбрина и синтетического алю-мосиликатного катализатора с последующей отгонкой при 200° из катализата легких фракций в присутствии 5% естественного гумбрина. Эти исследования показали, что по мере повышения температуры (до определенного предела) улучшаются качества автола 10—уменьшаются плотность и вязкостно-весовая константа и повышается индекс вязкости с 43 до 60—66, Оптимальная температура облагораживания автола 10 в зависимости от активности катализатора составляет 375—400°. При более высоких температурах усиливается разложение углеводородов, наблюдаемое в зна- [c.252]

    Хорошие результаты были получены при пропускании паров крекируемого сырья через расплавленное олово или расплавленный свинец (метод Меламида). Предлагались также железные или медные сетки, алюминиевые, хромированные илп луженые медные трубы. Очень хорошие результаты были получены при крекинге сланцевой смолы в ретортах из хромоникелевой стали (Кожевников, 1936 г.). В качестве катализаторов для крекинга различными авторами были предложены Разнообразные металлы и сплавы. Были испробованы почти все элементы периодической системы и их соединения. Установлено, что все металлы так или иначе благоприятствуют разрыву С—С-связи, дегидрированию и полному разложению на углерод и водород. Некоторые металлы проявляют свое избирательное влияние на отдельные стадии крекинга например, Си и Pd способствуют дегидрированию в олефины, Fe, Со и Ni—полному разложению углеводородов на углерод и водород. [c.309]

    Проведен синтез углеродных нанотруб мегодом термического газофазного разложения углеводородов. Структура нанотруб (размер, ориента11ия, дефектность, наличие примесей других элементов и т.д.) регулировалась изменением параметров синтеза (температура, исходные углеродсодержащие вещества, вид катализатора и т.д.). Проведено комплексное исследование полученных материалов методами электронной микроскопии, рентгеновской спектроскопии, фотоэлектронной спектроскопии и рентгеновской дифракции. [c.124]

    Изоамилены нри дегидрировании в присутствии водяного пара и катализаторов, применяемых для получения дивинила из к-бутилена, дают 28—35% изопрепа па пропущенные и 75—85% на разложенные углеводороды. [c.619]

    Изомеризацию осуществляют в присут. бифункциональных Катализаторов - Pt или Pd на кислотном носителе (7-А120э, цеолит), про.мотированном галогеном (С1. F). Для предотвращения разложения углеводородов и отложения кокса на катализаторе процесс проводят под давлением циркулирующего в системе Н2 при след, параметрах т-ра 360-450 °С, давление 3,0-3,5 МПа, объемная скорость подачи сырья 1,5-2,0 ч , соотношение водородсодержащий газ сырье 900 1. Детонац. стойкость И. зависит от углеводородного состава прямогонного бензина. Напр., из фракции ромашкинской нефти, содержащей 44% пентана, 26,2% гексана и изогексаиов, получают И. с октановым числом 85. [c.187]

    Химизм и механизм катализа при пиролитическом разложении углеводородов до сих пор мало исследованы. На основании изучения пиролиза модельных углеводородов при 650— 700 °С в присутствии катализаторов — оксидов магния, железа и алюминия — пришли к заключению [386], что результатом применения катализатора является увеличение степени конверсии исходного сырья, но распределение продуктов пиролиза не зависит от наличия и природы дополнительной поверхности пиролиз углеводородов в присутствии исследованных катализаторов протекает по гетерогенно-гомогенному радикальноцепному механизму. На поверхности катализатора могут существовать несколько типов активных центров, ускоряющих, по данным работы [387], реакцию пиролиза в несколько раз. К таким центрам относятся центры со свободной валентностью (поверхностные анион-радикалы — 5 о), а также поверхностные гидрокси-группы — 1—ОН, которые, как правило, имеются в оксидных катализаторах. На поверхности катализатора при пиролизе углеводородов возможны [387] следующие реакции  [c.182]


Смотреть страницы где упоминается термин Катализаторы разложения углеводородов: [c.283]    [c.657]    [c.165]    [c.225]    [c.306]    [c.43]    [c.27]    [c.93]    [c.325]    [c.197]    [c.37]    [c.43]    [c.149]   
Производства ацетилена (1970) -- [ c.86 ]




ПОИСК





Смотрите так же термины и статьи:

Катализаторы углеводородов



© 2025 chem21.info Реклама на сайте