Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий определение марганца

    Как показали контрольные опыты, до 20% олова и молибдена, 10% алюминия и 5% хрома или ванадия не мешают определению. Марганец при содержании более 0,25% окрашивает слой хлороформа в розовый цвет, но влияние его (до 20%) можно устранить энергичным встряхиванием слоя хлороформа с раствором аммиака. Марганец осаждается в водной фазе, а комплексное соединение остается в органической фазе. [c.43]


    В присутствии ПАН-2 индий можно определять при pH 2,3—2,5 и pH 7—8 [583]. В кислой среде не мешают щелочные, щелочноземельные элементы, алюминий и марганец. Селективность титрования при pH 7—8 повышают введением цианида калия. В этом случае определению индия не мешают Ag, Сс1, Си, Н , N1, 2п и другие катионы, образующие устойчивые цианидные комплексы. Ионы Ре(П1) маскируют фторидом. Мешают В1, Са, РЬ и 5п. [c.171]

    Анализ алюминия и его сплавов обычно сводится к определению железа, кремния, меди, магния, марганца, реже калия, натрия, цинка, кальция, никеля. Добавление указанных элементов изменяет свойства чистого алюминия. Так, марганец повышает устойчивость к коррозии, но понижает пластичность магний уменьшает массу и повышает прочность кремний увеличивает прочность, но уменьшает пластичность медь увеличивает прочность. Состав некоторых алюминиевых сплавов приведен в табл. 36. [c.377]

    Определению кадмия не мешают свинец, висмут, мышьяк, сурьма, олово, хром, алюминий, железо, марганец, цианиды, роданиды, фосфаты, сульфиты, тиосульфаты и другие ионы, обычно присутствующие в водах в концентрациях ниже 50 мг/л-. [c.289]

    Алюминий, железо, титан не мешают определению, марганец не мешает определению до 10 мкг. [c.321]

    При анализе питьевой воды помехи маловероятны. Магний, цинк, кальций, натрий, калий, фосфаты, сульфаты и нитраты не препятствуют определению. Марганец, цирконий, хром, титан, медь, ванадий, алюминий, бериллий и железо не позволяют провести анализ с высокой точностью. Помехи, вызванные окрашиванием пробы, наличием гуминовых кислот и/или нерастворенными веществами могут быть устранены известными приемами (обесцвечиванием, фильтрованием через фильтр с активированным углем и т.п.). [c.189]

    Кроме бора, флуоресцирующие соединения с бензоином образуют лишь бериллий и германий (яркость их свечения на один порядок меньше, чем у бора) [50, 53], а в присутствии магния и кремнезема — сурьма и цинк [5, 75]. Но ряд элементов ослабляет флуоресценцию борного комплекса наиболее активны алюминий, железо, марганец, ванадий и хром. Поэтому при анализе минерального сырья бор следует от них отделить. Сплавление пробы с карбонатом натрия и последующее водное выщелачивание устраняет влияние многих вредных примесей. Карбонат натрия плохо растворим в 75%-ном этаноле поэтому в принятых условиях определения при конечном объеме 6 мл можно вводить лишь 1 мл его 2%-ного раствора. Такой объем принят для аликвотной части раствора пробы. [c.216]

    Многие другие металлы, присутствующие в анализируемом растворе, титруются аналогично, а некоторые металлы, например железо, реагируют необратимо с рекомендуемыми индикаторами. Железо, алюминий и марганец можно маскировать добавкой триэтаноламина. Однако если концентрации этих элементов превышают следовые, даже при использовании указанного способа маскирования может произойти изменение окраски индикатора, что затруднит определение конечной точки титрования. Даже при титровании чистых растворов магния и кальция определить конечную точку титрования довольно сложно, поэтому, [c.285]


    Чувствительность определения отдельных элементов алюминий, железо, марганец, медь, магний, серебро — 1.10 кальций, титан — 3.10 % свинец, хром, олово — 8.10 % никель—1.10" %. [c.26]

    Пиридин, являясь слабым основанием, образует с сильными минеральными и органическими кислотами соли, в водном растворе сильно гидролизованные. С уксусной кислотой и угл. -кислотой пиридин прочных солей не образует это представляет большое удобство при пользовании им для отделения полуторных окислов от кальция, стронция и бария. Действие пиридина аналогично действию аммиака. Если к слабо кислому (азотно- или солянокислому) раствору, содержащему железо, алюминий, хром, марганец, кобальт и никель, прибавить пиридин, то железо, алюминий и хром выделяются в осадок в виде гидроокисей Ре (ОН),,, А1(0Н)з и Сг(ОН)з. С марганцем е, кобальтом и никелем пиридин образует комплексные растворимые соединения. При прибавлении пиридина к слабо кислому раствору устанавливается определенная концентрация водородных ионов, по нашим наблюдениям, примерно соответствующая pH = 6,5. [c.21]

    Действие пиридина аналогично действию аммиака. При добавлении пиридина к слабокислому (азотно- или солянокислому) раствору, содержащему железо, алюминий, хром, марганец, кобальт и никель, в осадок выделяются железо, алюминий и хром в форме гидроокисей— Ре(ОН)з, А1(0Н)з и Сг(ОН)з, тогда как с марганцем, кобальтом и никелем пиридин образует комплексные растворимые соединения. При добавлении пиридина к слабокислому раствору устанавливается определенная концентрация водородных ионов, по нашим наблюдениям, соответствующая примерно pH 6,5. [c.19]

    Смесь кипятят под тягой в течение 30 минут, оставляют на ночь, размешивают и переносят на фарфоровую воронку, отфильтровывают при отсасывании, промывают 8—10 раз дистиллированной водой. Затем уголь переносят в фарфоровую чашку и прокаливают при помешивании на плитке. При определении хлора обязательно делают пробу на полноту его удаления. Очищенный уголь поглощает из материала частично железо и в меньшей степени алюминий и марганец. Поэтому данные по этим элементам будут уменьшенные. [c.92]

    Пламя используют в качестве источника света в так называемом методе фотометрии пламени, а также как один из основных способов атомизации веществ в методе атомно-абсорбционного анализа (см. разд. 3.2). В зависимости от состава горючей смеси температура пламени может поддерживаться в интервале 2000—3000 К, что обеспечивает достаточно низкий предел обнаружения элементов, энергии возбуждения резонансных линий которых не превышают 5 эВ и соединения которых атомизируются в пламени в достаточной мере. Особое значение метод фотометрии пламени имеет для определения микроколичеств соединений щелочных и щелочноземельных металлов, для которых предел обнаружения этим методом находится в диапазоне 0,001 — 1 нг/мл. Предел обнаружения порядка 0,1—1 нг/мл достигается также для таких элементов, как европий, иттербий, свинец, медь, серебро, индий, таллий, хром, марганец, алюминий и галлий, причем в некоторых случаях в качестве аналитического сигнала используют молекулярную эмиссию пламени. Освоение высокотемпературных пламен (водородно-кислородного, ацетилен-кислородного) позволило значительно увеличить число определяемых элементов. [c.58]

    Определению не мешают алюминий, барий, кальций, кадмий, кобальт, калий, магний, марганец, молибден (VI), никель, теллур (IV), натрий, цинк, аммоний, бромид, хлорид, нитрат, фосфат, сульфат, цитрат, оксалат и тартрат. [c.383]

    В пламени с большой точностью и высокой чувствительностью легко определяются многие элементы все щелочные и щелочноземельные металлы, а также медь, марганец, хром, железо и другие металлы. Из-за сравнительно низкой температуры пламени многие вещества, введенные в пламя или образовавшиеся в нем, находятся в виде двухатомных молекул. Молекулярные полосы, излучаемые возбужденными молекулами, используют для аналитических целей, например для определения бора, алюминия и других элементов. [c.274]

    Добавки металлов к титану по-разному влияют на температуру превращения а->р. К металлам, стабилизирующим а-фазу, относится алюминий. р-Фазу стабилизируют ванадий, ниобий, тантал, молибден. Марганец, железо, никель, медь понижают температуру перехода а-фазы в Р-фазу, но сплавы титана с этими металлами, достигнув определенной, так называемой эвтектоидной температуры, при дальнейшем охлаждении претерпевают превращения, при которых Р-фаза полностью распадается, образуя а-фазу и промежуточную -фазу, обога- [c.86]

    Отложения с наружной стороны низкотемпературных поверхностей нагрева мазутных парогенераторов, например с пластин регенеративных воздухоподогревателей, с трубок водяных экономайзеров, содержат сернокислые соли железа, никеля, ванадия, меди и свободную серную кислоту. Коррозионные образования в трубках пароперегревателей кроме окислов железа содержат хром, марганец, молибден и другие вещества. Эти материалы отличаются исключительной стойкостью, и обычно их удается перевести в раствор лишь нагреванием в смеси серной и фосфорной кислот. Сплавление с содой, едкими щелочами, пирофосфатом или гексаметафосфатом натрня практически не приводит к разложению этого материала. Отложения из парогенераторов высокого давления содержат в различных соотношениях окислы железа и алюминия, кремниевую кислоту, фосфаты железа, алюминия и кальция, металлическую медь, а иногда соединения цинка и магния. В качестве менее существенных примесей, а иногда и следов в накипи присутствуют марганец, хром, олово, свинец, никель, молибден, титан, вольфрам, стронций, барий, сурьма, бор, ванадий и некоторые другие элементы. При обычном анализе ограничиваются определением фосфатов, кремниевой кислоты, железа, меди, алюминия, натрия, кальция, магния и сульфатов. [c.411]


    Образует соли (типа аммиакатов), например с титаном (IV) и цирконием (IV). Применяют для фотометрического определения титана (IV) в интервале кислотности от 0,1 до 5—6 н. Определению не мешают ванадий, молибден, вольфрам, тантал, ниобий, железо, кобальт, никель, хром, марганец, алюминий, цинк, кадмий и ртуть. [c.134]

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]

    Определению плутония не мешают уран, молибден, алюминий, бериллий, галлий и, естественно, железо. Мешают марганец и хром, так как перманганат и бихромат, получающиеся в результате окисления двуокисью свинца, прекрасно титруются ионами Fe +. Перманганат может быть предварительно восстановлен щавелевой кислотой до обесцвечивания раствора. Хромат может быть восстановлен до трехвалентного хрома мышьяковистой кислотой, которая не восстанавливает плутоний. [c.239]

    Чжен Гуан-лу [304] разработал быстрый и точный прямой метод определения небольших количеств индия титрованием раствором динатриевой соли этилендиаминтетрауксусной кислоты при pH 2,3—2,5 или при pH 7—8 в присутствия 1-(2-пиридил-азо)-2-нафтола. Пря pH 2,3—2,5 не мешают щелочные и щелочно-гемельные металлы, алюминий и марганец. При pH 7—8 не мешают медь, цинк, кадмяй, никель, серебро, ртуть и некоторые другие элементы, если к титруемому раствору добавить достаточное количество цианида калия. Трехвалентное железо связывают фторидом калия в присутствии тартрата и небольших количеств цианида. Не мешают хлориды, сульфаты, нитраты, перхлораты, фториды, тартраты и цитраты. Мешают свинец, висмут, галлий и олово. [c.107]

    При проведении нами определения элементов, содержащихся в золе испытуемых проб, готовилась серия эталонных порошков, содержащих алюминий, медь, марганец, стронций, свинец, никель, кобальт и титан с последовательно убывающими их концентрациями. Они разбавлялись синтетической основой, состоящей из химически чистых сернокислых солей натрия, кальция и магния, т. е. элементов, составляющих основную массу золы анализируемых организмов. Изготовление эталонных порошков на указанной основе производилось путем введения в эту основу сернокислых соединений элементов из расчета получения начального эталона с 1%-ной примесью каждого элемента. Смешивание основы со взятыми солями осуществлялось в яшмовой ступке в течение 45 мин с добавлением небольшого количества этилового спирта для обеспечения более быстрого и равномерного перемешивания, солей. Получе1Нные смеси сушились при температуре 105° С и затем переносились для хранения в стеклянные бюксы. Эталоны с меньшими концентрациями элементов получали последовательным разбавлением 1%-ного порошка основой до концентрации второго, третьего и четвертого знаков (1,0 0,1 0,05 0,005 0,0025 0,001 0,0005 0,00025 0,0001%). [c.80]

    Какой бы вариант метода ни применялся, мешающие элементы — медь, железо, алюминий, титан, марганец, цинк и кальций должны быть удалены. При объемНом окончании определения можно кальций не удалять, но превращать его в оксалат кальция и, не фильтруя, проводить осаждение оксихинолята магния. Описанный ниже ход определения магния разработан для анализа цементов, не содержащих в заметных количествах элементов, которые не выпадают в осадок от аммиака меди, цинка и марганца Определение магния заканчивается объемным способом.,  [c.725]

    Методы определения кальция и магния практически совпадают с приведенными в предыдущих параграфах. Отдельные варианты различаются главным образом способами разложения анализируемых проб в зависимости от их химического состава. Различные отклонения в методах, имеющиеся при отделении мешающих элементов, часто бывают вызваны личными вкусами того или иного исследователя. Так, например, при анализе силикатов Бэнкс [27] рекомендует выделять железо, алюминий и марганец добавлением аммиака и бромной воды, после чего в аликвотных порциях фильтрата определять кальний и магний по разности в результатах двух титрований в присутствии мурексида и эриохрома черного Т. Беккер [28] точно также осаждает полуторные окислы аммиаком при анализе цементов. Аналогично поступает и Хабёк [29]. При анализе шлаков и руд Граус и Цёллер [30] рекомендуют после растворения пробы и выделения кремнекислоты осаждать тяжелые металлы в мерной колбе сульфидом аммония. После доведения объема раствора до метки достаточно профильтровать только его часть и определить в нем суммарное содержание кальция и магния или содержание одного только кальция. При проведении таких анализов не следует ограничиваться только комплексометрическим определением кальция и магния. Другие присутствующие в растворе катионы в зависимости от их концентрации можно определять комплексометрически (А1, Ре), колориметрически (Т1, Ре), полярографически или воспользоваться методом фотометрии пламени (щелочные металлы). Такой количественный полумикрометод полного анализа силикатов описывают Кори и Джексон [31]. Пробу силиката разрушают плавиковой кислотой или сплавлением с карбонатом натрия. В зависимости от способа разложения пробы в соединении с известными операциями разделения (осаждение аммиаком, щелочью и т. п.) они методом фотометрии пламени определяют натрий и калий, колориметрически — кремнекислоту молибдатом аммония, железо и титан раздельно с помощью тирона, алюминий — алюминоном и, наконец, кальций и магний комплексометрическим титрованием. За подробностями отсылаем читателя к оригинальной работе авторов метода. О некоторых полных анализах сили- [c.453]

    В различных органических растворителях роданидный комплекс более устойчив, чем в водных растворах. В этиловом эфире или в смеси из 2 частей этилового и 1 части петролейного эфира, которые предварительно встряхивались с роданидом и хлоридом олова (II), интенсивность окраски остается практически постоянной или же слабо vnaflaeT после часового стояния, а затем очень медленно повышается. Предварительно насыщенный реактивами оиклогексанол дает раствор, в котором интенсивность окраски практически не меняется несколько часов, но при более долгом стоянии медленно увеличивается. Растворы комплекса в бутил-ацетате при стоянии довольно быстро темнеют, особенно если растворитель сначала встряхивался со смесью роданида, хлорида олова (II) и кислоты. Иногда рекомендуют выполнять реакцию в водно-ацетоновой среде, так как ацетон стабилизует окраску и предотвращает ее изменение с течением времени . Если определение производят при экстрагировании молибденово-роданид. ного комплекса эфиром или др/гими органическими растворителями, то большинство элементов не мешает. Среди немешающих элементов отметим железо, алюминий, титан, марганец, никель, кобальт, уран и тантал. [c.328]

    Алюминий, магний, марганец, медь, цирконий и др. редко земельные элементы, а также кобальт и никель не образуют с диантипирилметаном окрашенных соединений и не мешают определению титана. Цинк, кадмий и ртуть образуют труднораствог римые осадки и в их присутствии необходимо употреблять большие количества реагента. [c.35]

    Согласно Шверу и Сухи [38], лселезо, алюминий, кобальт, марганец и цинк мешают при полярографическом определении селенит-иона. Самуэльсон. [25] предложил удалять эти катионы с помощью ионного обмена. [c.242]

    Определение железа и алюминия. При анализе силикатов, известняков, некоторых руд и других горных пород эти элементы часто определяют гравимеФрическим методом в смеси с титаном, марганцем и фосфатом как сумму так называемых полуторных оксидов. Обычно после отделения кремниевой кислоты в кислом растворе приводят осаждение сульфидов (меди и других элементов) и в. фильтрате после удаления сероводорода осаждают сумму полуторных оксидов аммиаком в аммиачном буферном растворе. Осадок гидроксидов промывают декантацией и переосаждают, после чего фильтруют, промывают и прокаливают. Прокаленный осадок содержит оксиды ЕегОз, АЬОз, ТЮг, МпОг. Иногда анализ на этом заканчивается, так как бывает достаточным определить только сумму оксидов и не требуется устанавливать содержание каждого компонента. При необходимости более детального анализа прокаленный осадок сплавляют с пиросульфатом калия для перевода оксидов в растворимые сульфаты и после растворения плава определяют в растворе отдельные компоненты — железо титриметрическим или гравиметрическим методом, титан и марганец — фотометрическим и фосфор — гравиметрическим (марганец и фосфор анализируются обычно из отдельной навески). Содержание алюминия рассчитывают по разности. Прямое гравиметрическое определение же- [c.165]

    Успешная попытка систематизировать многочисленные аналитические реакции с участием соединений металлов по определенной логической схеме была осуществлена немецким химиком Генрихом Розе (1795—1864) и описана в 1829 г. в его книге Руководство по аналитической химии . Разработанная им общая схема систематического качественного анализа металлов (катионов металлов — на современном языке) основана на определенной последовательности действия химических реагентов (хлороводородная кислота, сероводород, азотная кислота, раствор аммиака и др.) на анализируемый раствор и про укты реакций компонентов этого раствора с прибавляемыми реагентами. При этом исходный анализируемый раствор в схеме Г. Розе содержал соединения многих известных к тому времени металлов серебро, рт>ть, свинец золото, сурьма, олово, мышьяк кадмий, висмут медь, железо, никель, кобальт, цинк, марганец, алюминий барий, стронций, кальций, магний. Здесь химические элементы перечислены в последовательности их разделения или открытия по схеме Г. Розе. [c.35]

    В условиях определения алюминия Ре (III), 2г, Н/, Оа, Тп, Рс1, ТЬ и Т образуют окрашенные соединения с арсеназо и, следовательно, мешают определению алюминия. Влияние железа устраняют аскорбиновой кислотой. Медь (до 10-кратного избытка) можносвязать вбесцветный комплекс с тиомочевиной [214]. 25-кратный избыток цинканемешает [214]. Бериллий сильно мешает (0,7 мкг его эквивалентны 1 ж/сг алюминия) [656]. Не мешают до 10 мкг хрома [656], 40 мкг вольфрама [503]. Не мешают значительные количества щелочных и щелочноземельных металлов, магний и марганец. Фториды, фосфаты, оксикислоты и другие вещества, связывающие алюминий в комплекс, мешают. Сульфаты оказывают слабое влияние. [c.127]

    Электролизом на ртутном катоде отделяются следующие металлы Ре, Сг, Со, N 1 Си, 2п, Мо, Сс1, 5п, РЬ, В , Н , Т1, 1п, Ga, Ge, Ag, Аи, Pt, Рс1, КЬ, 1г, Ке. Не отделяются А1, Т , 2г, V, и, ТЬ, Ве, NЬ, Та, W, Р, Аз, 8с, У, РЗЭ, Mg, щелочные и щелочноземельные металлы. Марганец отделяется неполностью, часть его окисляется до МпОа и выделяется на аноде, может также окислиться до Мп04", окрашивая раствор в малиновый цвет. Дюбель и Флюршютц [689] считают, что если во время электролиза в электролит добавить несколько капель 30%-ной перекиси водорода, то достигается количественное отделение марганца. Хром медленно удаляется при электролизе. Поэтому при анализе сталей, содержащих > 5% хрома, большую часть его рекомендуется отделять до электролиза в виде хлорида хромила [555]. Небольшая часть железа всегда -остается в электролите. Однако эти остающиеся количества железа не мешают во многих фотометрических методах определения алюминия, если восстановить железо аскорбиновой кислотой до Ре (П). В электролите могут остаться также следы хрома и молибдена. [c.191]

    Применяют для определения алюминия при pH 7—8 методом обратного титрования солью цинка в присутствии пиридина. Барий, кальций и ртуть титруют при pH 10 в присутствии комплексоната магния. Кадмий и кобальт при pH 10 определяют прямым титрованием. Магний, цинк, железо (III) и титан (IV)—методом обратного титрования солью цинка в присутствии пиридина. Галлий (III) при pH 6,5—9,5 определяют обратным титрованием солью цинка. Индий определяют при pH 8—10 в присутствии сегнетовой соли марганец при pH 10 —с добавлением гидроксиламина. Никель и свинец при pH 10—методом обратного титрования солью магния или цинка. Титан (IV) определяют при pH 10 обратным титрованием солью магния или с добавлением комплексоната магния. Ванадий (V) определяют при pH 10 методом обратного титрования солью марганца. Переход окраски от винно-красной к синей. [c.279]

    В качестве окислителя Мп(11) до Mn(VIl) используют висмутат натрия при определении содержания марганца в воде [9021. Нитрит калия применяют ири определении марганца в алюминии. Марганец предварительно выделяют в виде MnOj [330[. [c.57]

    Экстракция оксихинолината марганца Мп(С9НбОХ)2 осуществляется хлороформом [604, 1002, 1263, 1447, 1496, 1497], четыреххлористым углеродом, бензолом [196], изоамиловым спиртом [228]. Марганец количественно экстрагируется из водной фазы 0,1 М раствором оксихинолина в хлороформе при pH 6,5—11. Уменьшение концентрации реагента в 10 раз сдвигает pH начала экстракции оксихинолината Мп (II). При более высоком значении pH оксихинолинат Мп(П) окисляется кислородом воздуха до оксихинолината Мп(1П). Для предотвращения окисления Мп(И) вводят солянокислый гидроксиламин [239, 1447]. Изучено влияние различных комплексообразователей на экстракцию оксихинолината Мп(П) хлороформом [1002, 1447] (рис. 30). Метод экстракции оксихинолината Мп(И) хлороформом нашел широкое применение для отделения и определения содержания марганца различными методами (фотометрии, нейтронной активации, пламенной фотометрии) в разных объектах [344, 684, 832, 904, 1002, 1014, 1253, 1263, 1473, 1496, 1497]. При помощи экстракции окси-хинолинатов можно разделить Ге(1П), А1(1П) и Мп(П) [1263]. Железо экстрагируется хлороформом при pH 2,8, алюминий — при pH 5,6, а марганец — при pH 10. Для отделения марганца от Ха, К, Са и Зг при анализе нефтяных продуктов на содержание марганца методом пламенной-фотометрии применяют экстракцию его оксихинолината хлороформом [903]. Экстракция марганца в виде 8-оксихинолината хлороформом была применена также для определения его в уране и алюминии [1253]. [c.123]


Смотреть страницы где упоминается термин Алюминий определение марганца: [c.133]    [c.443]    [c.66]    [c.124]    [c.179]    [c.21]    [c.20]    [c.58]    [c.135]    [c.177]    [c.122]    [c.57]    [c.76]    [c.115]   
Колориметрический анализ (1951) -- [ c.356 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий от марганца

Марганец определение



© 2025 chem21.info Реклама на сайте