Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие между частицами в сольватном

    В пластовых нефтях, где структура образуется асфальтеновы-ми частицами, роль поверхностно-активных веществ играют смолы [ 1 ]. Последние образуют вокруг асфальтеновых частиц адсорбционно-сольватные слои и тем самым ослабляют силы их взаимодействия. Добавление к таким нефтям ПАВ может привести к образованию более мощных адсорбционно-сольватных слоев. Вследствие этого силы взаимодействия между частицами асфальтенов ослабнут, прочность структуры в нефти уменьшится. Стабилизация асфальтеновых частиц молекулами ПАВ облегчит разрушение связей между ними при механическом воздействии. Это выразится в снижении аномалий вязкости нефти. [c.16]


    Вещества дисперсной фазы и дисперсионной среды на поверхности раздела фаз взаимодействуют друг с другом за счет межмолекулярных сил. В зависимости от природы веществ эти взаимодействия могут быть различны. Если силы взаимодействия велики, то на поверхности дисперсной фазы образуется прочная сольватная оболочка, способствующая, как и при образовании истинных растворов, уменьшению взаимодействия между частицами диспергируемой фазы и тем самым переходу ее в раствор в виде золя. [c.108]

    Механизм защитного действия. Защитное действие достаточно убедительно объясняется теорией Зигмонди, хотя она и не является вполне исчерпывающей. В основе этой теории лежит представление об адсорбционном взаимодействии между частицами защищаемого и защищающего веществ сравнительно крупная частица лиофобного золя, адсорбировав на своей поверхности большое число более мелких частиц лиофильного коллоида вместе с их сольватными оболочками, становится в целом тоже лиофильной. Мицеллы лиофобного (необратимого) золя предохраняются, таким образом, от непосредственного соприкосновения друг с другом, а тем самым и от агрегации как в случае концентрирования такого золя, так и в случае действия на него ионов-коагуляторов (рис. 54,а). Следовательно, высокополимеры можно рассматривать в качестве стабилизаторов лиофобных золей. [c.234]

    Теория активированного комплекса в классическом варианте практически не делает различия между предварительным сближением реагирующих частиц с образованием пары (в растворе — диффузионной пары, см. гл. I, 3) и истинным химическим взаимодействием между частицами, происходящим при более тесном сближении реагентов и приводящим к образованию активированного комплекса. Действительно, часто распределение зарядов в диффузионной паре, время жизни которой в среднем составляет 10 сек, очень близко к ожидаемому для активированного комплекса. Это происходит в тех случаях, когда реакция между частицами протекает за счет дальнодействующих сил ион—ион (Е г- ), в меньшей мере ион—диполь Е г- ). Тогда задолго до начала самого акта реакции, длящегося 10 сек, сольватная оболочка успевает принять почти необходимую конфигурацию. В этих достаточно распространенных случаях должно выполняться [c.160]

    Это особенно актуально при рассмотрении вопроса о ионных парах и сольватных оболочках ионов.) Ионные растворы с измеримыми концентрациями существуют только благодаря тому, что взаимодействия между ионами и молекулами растворителя достаточно сильны, чтобы преодолеть взаимодействие между ионами. В противном случае соль была бы нерастворима. При рассмотрении ионных систем мы, таким образом, сталкиваемся с так называемыми силами, действующими на далеких расстояниях, т. е. между сильно взаимодействующими частицами. Чтобы оценить величину этих взаимодействий, подсчитаем их, исходя из чрезвычайно простых, но полезных электростатических моделей. Из электростатической теории следует, что сила взаимодействия между двумя точечными зарядами 218 и на расстоянии г в вакууме равна [c.444]


    По формуле (2.13) можно приближенно оценить взаимодействие между ионами и соответствующей сольватной оболочкой, считая, что для соседних частиц = I. В случае воды при координационном числе 6 имеем U (Г) = 122 ккал/г-ион, что вполне сравнимо с теплотой химических реакций и дает основания рассматривать гидратированные ионы как комплексы. [c.34]

    Однако было бы неправильным считать, что все сводится к взаимодействию заряженных частиц со средой, к действию электростатических сил. Так, может происходить частичный или полный перенос электронов от ионов к молекулам растворителя, приводящий к распределению заряда между ионом и его сольватной оболочкой. При больших концентрациях растворенного вещества,— а для растворителя с низкой диэлектрической проницаемостью и при сравнительно небольших его концентрациях,— в результате усиления влияния заряженных частиц друг на друга могут образоваться ионные пары и более сложные группировки, содержащие как ионы, так и молекулы. [c.168]

    В непосредственной близости от иона располагается структурированный растворитель. Число его частиц, находящихся в этом сольватном слое, называется координационным числом сольватации. Для большинства катионов оно равно 4, 6 или 8. При записи различных уравнений (электролитической диссоциации, взаимодействий между ионами) обычно координационная сфера ионов не указывается. [c.170]

    Еще в более сильной степени происходят подобные взаимодействия между ионами и полярными молекулами (ионно-дипольная связь). Многие свойства растворов электролитов целиком зависят от такого взаимодействия молекул растворителя с находящимися в растворе ионами. В результате у иона образуется как бы оболочка из молекул растворителя ее называют сольватной или — в частном случае водных растворов — гидратной оболочкой ( 156). Подобные же взаимодействия играют роль в образовании кристаллогидратов различных солей или других соединений. В таких процессах большую роль играет и происходящая при этом взаимная поляризация частиц. [c.81]

    В соответствии с законом Ламберта - Бера увеличение оптической плотности нефти после растворения в ней оптически менее плотных ПАВ происходит из-за увеличения дисперсности частиц основного красящего вещества нефти - асфальтенов. Молекулы введенных в нефть ПАВ адсорбируются на поверхности частиц асфальтенов, образуя сильно развитые сольватные оболочки. Адсорбция ПАВ частицами асфальтенов сопровождается разрушением агрегатов частиц, т.е. пептизацией асфальтенов. Увеличение сольватации асфальтеновых частиц, как известно, обусловливает ослабление взаимодействия между ними, т.е. уменьшение структурообразования в нефти. [c.19]

    Сольватные оболочки играют важную роль в создании агрегативно устойчивых дисперсных нефтяных систем. При столкновении двух сольватированных частиц сольватные оболочки взаимодействуют между собой наподобие двух упругих шаров, они вдавливаются друг в друга и при этом возникает мощное расклинивающее давление. Следует, конечно, иметь в виду, что при столкновении двух сольватированных частиц дисперсной фазы в зависимости от расстояния действуют как силы притяжения в поле сольватных оболочек, так и силы взаимного отталкивания. [c.65]

    Для объяснения пеп-тизации пользуются методом потенциальных кривых. В случае взаимодействия частиц с развитыми сольватными или адсорбционными слоями потенциальные кривые имеют минимум (рис. 46). Существование минимума связано с появлением на очень коротких расстояниях сил отталкивания между частицами. Отталкивание происходит при сжатии сольватных или адсорбционных слоев. Таким образом, энергетическое состояние частиц в коагуляте может быть охарактеризовано некоторой потенциальной ямой А на рис. 46. Уменьшение концентрации электролита (это достигается отмыванием коагулята) расширяет диффузный слой, в результате чего появляется дополнительное отталкивание. Если энергия теплового движения больше потенциального барьера в направлении роста расстояния, то частицы разойдутся и произойдет пептизация. Для разрушения коагулята при пептизации достаточно механического перемешивания. [c.118]

    Слой молекул растворителя, примыкающий к растворенной частице, называют сольватной оболочкой. Образование этой оболочки называется сольватацией частицы растворенного вещества. Даже если между этой частицей и молекулами сольватной оболочки действуют только вандерваальсовы силы, наблюдается определенная энергетически преимущественная ориентация молекул растворителя в сольватной оболочке, т. е. она имеет определенную структуру. Это тем более относится к случаю, когда между частицей растворенного вещества и молекулами растворителя существуют специфические взаимодействия, например образуются водородные связи, т. е. возникают комплексы определенной структуры. Тогда говорят о специфической сольватации растворенного вещества. [c.122]


    Стабилизируя поверхностно-активным веш,еством некоторые структурированные пасты, можно сделать их текучими. Например, пасты АЬОз или цемента в вазелиновом масле — структурированные и хрупкие, так как поверхность частиц полярного порошка плохо смочена маслом, и силы сцепления между частицами ничем не ослаблены. Однако, если к пасте добавить немного олеиновой кислоты, она становится пластично-текучей, так как олеиновая кислота, адсорбируясь на полярных частицах порошка, изменяет их поверхность и делает хорошо смачиваемыми вазелиновым маслом. Взаимодействие между вазелиновым маслом и поверхностью частиц порошка ослабляет действие сил молекулярного сцепления, экранируя их сольватным слоем. [c.140]

    Рассматривая свойства аэрозолей, прежде всего необходимо отметить, что они обладают значительно меньшей агрегативной устойчивостью, чем коллоидные и дисперсные системы с жидкой дисперсионной средой. Как мы видели выше, агрегативная устойчивость дисперсных систем с жидкой дисперсионной средой обусловлена существованием либо двойного электрического слоя, либо сольватной оболочки, либо, наконец, прочной пленки на поверхности частиц. В системах с газообразной дисперсионной средой всякое взаимодействие между поверхностью частиц и средой отсутствует. Правда, ионы, обычно присутствующие в небольшом количестве в газообразной среде, способны адсорбироваться на поверхности частиц и придавать им электрический заряд, однако возникающий заряд невелик и фактором устойчивости служить не может. Поэтому аэрозоли агрегативно неустойчивы, и в них всегда идет самопроизвольная коагуляция, скорость которой зависит от начальной концентрации аэрозоля и подчиняется уравнению Смолуховского для кинетики быстрой коагуляции (см. гл. VI). [c.149]

    Степень протекания химических сольватационных процессов зависит от электронной структуры молекул и частиц компонентов растворителя и растворенного вещества, способности частиц к ком-плексообразованию, диссоциации, ассоциации, образованию ионных пар и т. д. При сольватационных близкодействующих взаимодействиях их энергия достигает 400 кДж/моль. К дальнодействующим силам взаимодействий относят электростатические взаимодействия между ионами, металлическую связь и силы Ван-дер-Ваальса. Молекулы растворителя ориентируются в структуры различной устойчивости вокруг растворенных частиц с образованием сольватных оболочек. Число частиц растворителя в первой сольватной оболочке определяют как координационное число сольватации (гидратации) Пс- Значение Пс в водных растворах достигает 6—8. [c.91]

    Сольватные оболочки, окружающие ионы, ослабляя электростатические взаимодействия между ионами, препятствуют, в частности, взаимной нейтрализации разноименно заряженных ионов и делают возможным в растворителях с достаточно высокими значениями е существование ионов в качестве независимых устойчивых частиц. При высоких концентрациях и в растворителях с умеренными значениями диэлектрической постоянной разноименно заряженные ноны в основно.м объединены в электрически нейтральные ионные пары. [c.29]

    Лиофобные (гидрофобные) золи — это такие золи, частицы которых лишены сольватной (гидратной) оболочки, т. е. взаимодействие между дисперсной фазой и дисперсионной средой отсутствует или выражено весьма слабо. К ним относятся золи металлов, сульфидов, различных солей и другие. Деление золей на лиофильные и лиофобные является условным. [c.133]

    Прочность структуры, которую образуют в нефти частицы асфальтенов, зависит от того, насколько развиты сольватные слои, окружающие эти частицы. Адсорбция молекул ПАВ на частицах может обеспечить высокую стабильность сольватных слоев, а взаимодействие между отдельными частицами будет ослаблено. Это приведет к ослаблению структуры нефти. Процесс адсорбции молекул ПАВ частицами асфальтенов рассмотрен в работах [3,4].  [c.48]

    Для более правильного понимания механизма химического взаимодействия между частицами коллоидов, которое может происходить при, взаимной коагуляции их, необходимо учесть следующее. Если два вещества, способные химически реагировать между собой, находятся в коллоидном состоянии, то соприкосновение частиц, возникающее при смешении золей и при взаимной коагуляции их, еще недостаточно для возникновения химической реакции, так как сольватные оболочки разделяют частицы. В таких случаях химические реакции между коллоидами происходят через образование истинного раствора. Так, указанная выше реакция между золями кремнезема и глинозема протекает при растворении SiOa. [c.523]

    Механизм защитного действия достаточно хороига объясняется теорией Зигмонди, в основе которой лежит представление об адсорбционном взаимодействии между частицами защищаемого и защищающего золей. Более крупная частица гидрофобного золя адсорбирует на своей поверхности более мелкие макромолекулы ВМС с их сольватными (гидратными) оболочками, и в результате этого она приобретает лиофильные (гидрофильные) свойства. В данном случае коллоидные мицеллы необратимого гидрофобного золя предохраняются от непосредственного соприкосновения друг с другом, а следовательно, и от агрегации как в случае действия на такой золь электролита-коагулятора, так и в случае концентрирования золя. На рис. 121, а показана схема подобного защитного действия. Таким образом, высокомолекулярные соединения выступают в роли стабилизатора лиофобных (гидрофобных) золей, То, что именно на адсорбции основано защитное действие, подтверждается не только избирательным характером взаимодействия между макромолекулами ВМС и мицеллами, но и тем, что степень защитного действия увеличивается с концентрацией защищающего раствора ВМС только до полного адсорбционного насыщения поверхности мицелл защищаемого золя. [c.387]

    Проведенные эксперименты показали, что наиболее заметное изменение аномально-вязкостных свойств под действием СО2 происходит у нефти, содержащей растворенный газ. Растворяясь в нефти, молекулы двуокиси углерода адсорбируются на асфальтенах, вытесняя из их сольватной оболочки азот и легкие предельные углеводороды от С] до С5. А именно эти газы, как ранее показано, обусловливают усиление аномалий вязкости нефтей [3]. В результате десорбции азота и легких предельных углеводородов взаимодействие между частицами асфальтенов ослабляется и аномалии вязкости становятся менее заметными. Появление в выделившемся из нефти газе после растворения в ней двуокиси углерода таких компонентов, как азот, С1—С , отмечается и в работах Л.И. Мирсаяповой, А.Ю. Намиотта, И.И. Дунюшкина. [c.98]

    СОЛЬВАТАЦИЯ — взаимодействие между частицами (ионами, молекулами и т. д.) растворенного вещества и растворителя. С, в водных р-рах наз, гидратацией. Молекулярные групны, образовавшиеся в результате такого взаимодействия, паз, сольватами, В отличие от С,, объединение однородных частиц в растворе наз. ассоциацией. Слой молекул растворителя, связанный с центральной частицей сольвата силами притяжения, составляет сольватную оболочку. Наименьшее число молекул, удерживаемых в непосредственной близости от сольватированной частицы, принято называть координационным числом сольватации п . [c.478]

    В целом сложные структурные единицы нефтяных остатков находятся в динамическом равновесии со средой и изменение размеров ядер и толщины сольватной оболочки их могу г протекать по различным законам [14]. Главными факторами, определяющими возможность существования их в остатках и, соответственно, геометрические размеры, является наличие в них структурирующихся компонентов и ассоциатов, а также степень теплового воздействия. Нефтяные остатки относятся к свободнодисперсным системам, частицы которых могут независимо друг от друга перемещаться в дисперсной среде под влиянием теплового движения или гравитационньк сил. С изменением температуры в таких дисперсных системах изменяется энергия межмолекулярного взаимодействия дисперсной фазы и дисперсионной среды. Толстая прослойка дисперсионной среды между частицами снижает структурно-механическую прочность нефтяных дисперсных систем. Утоньшение сольватного слоя на поверхности ассоциатор повышает движущую силу расслоения системы на фа ы. Размеры основных зон структурной единицы при определенных температурах различны за счет того, что часть наиболее полярных компонентов сольватного слоя может переходить в дисперсную фазу (ядро), а часть в дисперсионную среду, находящуюся в молекулярном состоянии. Таким образом, по мере повышения температурь размеры радиуса ядра и толщины сольватного слоя могут проходить через экстремальные значения [14]. Ядро, состоящее из ассоциатов, при достижении максимальных размеров может распадаться на осколки, что ведет к образованию новых частиц дисперсной фазы, вокруг которых формируется сольватный слой и по мере изменения температуры для этих частиц характерны аналогичные стадии изменения размеров ядра и толщины сольватной оболочки. При высоких температурах и большой длительности нагрева внутри ядра может зародиться новая дисперсная фаза — кристаллит, представляющий собой надмолекулярную неябратимую структуру, обычно характерную для карбенов и карбоидов [14]. [c.26]

    Под сольватацией понимают совокупность энергетических и структурных изменений, происходящих в растворе при взаимодействии частиц растворенного вещества с молекулами растворителя. Обычно рассматривают два вида такого взаимодействия взаимодействие за счет короткодействующих сил (близкодействие) и за счет дальнодей-ствующих сил (дальнодействие). Близкодействие относят к сильному взаимодействию, дальнодействие —к слабому. В связи с этим принято считать, что вокруг частицы растворенного вещества расположены две сольватные оболочки — первичная и вторичная. В первичную сольватную оболочку входят молекулы растворителя, находящиеся в непосредственной близости от частицы растворенного вещества и совершающие движение в растворе вместе с ней. Число молекул растворителя в первичной сольватной оболочке называется координационным числом сольватации данной частицы, значение которого зависит от природы растворенного вещества и растворителя. Во вторичную сольватную оболочку входят молекулы растворителя, находящиеся от частицы растворенного вещества на больших расстояниях. Молекулы растворителя вторичной сольватной оболочки влияют на протекающие в растворе процессы за счет взаимодействия их с первично сольватированной частицей. Сольватация частиц растворенного вещества оказывает влияние как на тепловое движение молекул растворителя, так и на обмен между частицами растворителя, находящимися вблизи частиц растворенного вещества, и частицами растворителя более удаленными. Сольватация очень сильно проявляется в водных растворах гидратация) и особенно в водных растворах электролитов благодаря взаимодействию заряженных ионов с поляр- [c.342]

    Процессы сольватации происходят в любой нефтяной дисперсной системе, однако в этих случаях они имеют некоторые особенности и понятие сольватации приобретает несколько иной смысл. В отличие от истиных растворов нефтяные дисперсные системы гетерогенны, то есть характеризуются наличием поверхности ра,здела частиц дисперсной фазы с дисперсионной средой. В этих случаях на поверхности частиц дисперсной фазы образуются сорбционно-сольватные слои или сольватные оболочки, включающие молекулы дисперсионной среды. Между сольватными оболочками и дисперсионной средой практически отсутствует граница раздела, вследствие того ч то межмолекулярные взаимодействия молекул в сольватном слое и дисперсионной, сво [c.39]

    Особенности воздействия сил притяжения на молекулы проще всего рассматри- ать, выделяя две однородные или разнородные по химическому составу молекулы. (2илы притяжения между двумя частицами, имеющими поверхность раздела и сольватную оболочку, можно рассматривать как взаимодействие между двумя пластинами. Величина расклинивающего давления жидкой прослойки может быть как положитель-1юй, так и отрицательной по величине, то есть на определенном минимальном расстоянии пластинок силы притяжения становятся по величине меньше сил отталкивания. [c.65]

    В нефтяных системах, кроме взаимодействия растворенных веществ с растворителем большую роль играет взаимодействие между различными молекулами многокомпонентного растворителя. Это ведет к большим отклонениям их поведения от поведения идеальных смесей. Так, соотношение компонентов бинарного растворителя в сольватной оболочке растворенной частицы иное, чем в массе раствора, так как частица сольватируется преимущественно тем компонентом растворителя, для которого свободная энтальпия сольватации наиболее отрицательна (селективная или избирательная сольватация [167]). Известно, что многие ВМС растворяются лучше в смесях, чем в чистых растворителях, и наоборот [167]. Это связано с селективной сольватацией отдельных звеньев (например, полярной и неполярной) макромолекул компонентами бинарн010 растворителя. В этом аспекте явление селективной сольватации должно иметь широкое распространение в нефтяных системах, отличающихся разнозвенностью молекул компонентов. [c.71]

    Классификация по межфазному взаимодействию. На границе раздела фаз всегда проявляется взаимодействие между веществами дисперсной фазы и дисперсионной среды за счет межфазной свободной энергии (нескомпенсированных сил Ван-дер-Ваальса), но степень его проявления у различных веществ различна. В зависимости от этого дисперсные системы могут быть лиофильными (1уо — растворяю рЬ11ео — люблю) или лиофобными (рЬоЬоз — страх). Для первых характерно сильное межмолекулярное взаимодействие вещества дисперсной фазы со средой, а для второй — слабое. Это взаимодействие приводит к образованию сольватных (гидратных, если средой является вода) оболочек вокруг частиц дисперсной фазы. [c.72]

    Сольватные оболочки образуются на границе раздела фаз. Между сольватными оболочками отсутствует молекулярное притяжение, поскольку сила взаимодействия молекул слоя практически равна силе взаимодействия молекул среды. При сближе ии, частиц необходимо совершить работу, расходуемую на удаление сольватного слоя (работа десорбции), что приводит к появлению значительных сил отталкивания между частицами. Наиболее убедительно подтверждают существование граничных слоев с особой структурой исследования Б. В. Дерягина, Н. В. Чураева, С. В. Нерпина, Ю. М. Поповского, М. С. Мецика, Г. М. Зорина и др. [c.281]

    Для характеристики взаимодействия между веществом дисперсной фазы и жидкой дисперсионной средой служат понятия лиофиль-ность и лиофобность . Под взаимодействием фаз дисперсных систем подразумевают процессы сольватации (гидратации), т. е. образование сольватных (гидратных) оболочек из молекул дисперсионной среды вокруг частиц дисперсной фазы. Системы, в которых сильно выражено взаимодействие частиц дисперсной фазы с растворителем, называют лиофильными (по отно1пению к воде — гидрофильными). Если частицы дисперсной фазы состоят из вещества, слабо взаимодействующего со средой, системы являются лиофобными (по отношению к воде — гидрофобными). Термин лиофильный происходит от греч. 1уо — растворяю и philia — любовь лиофобный — от 1уо — растворяю и phobia — ненависть, что означает не любящий растворения . [c.369]

    Особенность растворов электролитов обусловлена, во-первых, тем, что в них находятся заряженные частицы, во-вторых, что эти частицы имеют заряд разного знака. Основная составляющая взаимодейстний в таких растворах — это взаимодействие между ионами и молекулами растворителя. Ион оказывает значительное поляризующее влияние — индуцируемый им дипольный момент в моле кулах растворителя соизмерим с динольным моментом мо лекул даже такого полярного растворителя, каким яв ляется вода (поэтому введение в воду первых порций элек тролита вызывает особенно большое возмущающее действие) Однако было бы неправильным считать, что все сво дится к взаимодействию заряженных частиц со средой к действию электростатических сил. Так, может происхо дить частичный или полный перенос электронов от ионов к молекулам растворителя, приводящий к перераспределению заряда между ионом и его сольватной оболочкой. При больших концентрациях растворенного вещества, а для [c.175]

    В рассмотренных выше теориях не учитывают существования сольватного слоя жидкости с измененными свойствами на поверхности частиц. Между тем, вряд ли можно представить себе систему с полным отсутствием взаимодействия между веществами дисперсной фазы и дисперсионной среды, даже в случае типично гидрофобных коллоидов (например, золей металлов). Ориентация молекул в сольватных слоях приводит к свойствам, характерным для квазитвердых тел — высокой вязкости, упругости, сопротивлению сдвигу — и препятствующим взаимопроникновению слоев при сближении частиц. Наряду с кинетическими факторами (резкое уменьшение скорости вследствие высокой вязкости), следует учитывать и термодинамические необходимость затраты работы на преодоление упругих сил или на частичную десорбцию молекул сольватной оболочки при утончении зазора между частицами. Затрата работы приводит к увеличению потенциальной энергии, к подъему нисходящей ветви кривой II(Н) в области малых И. Влияние сольватных слоев должно резко искажать потенциальные кривые при к с1 где ё — расстояние от поверхности до границы скольжения жидкости. [c.259]

    Однако электростатическое отталкивание — это не единственная причипа агрегативной устойчивости золей. На поверхности коллоидных частиц благодаря взаимодействию поверхностных молекул дисперсной фазы с молекулами дисперсионной среды могут образовываться адсорбционно-сольватные оболочки. За короткое время столкновения частиц образующиеся вокруг частиц дисперсной фазы сольватные оболочки благодаря высокой вязкости и сопротивлению сдвигу не успевают выдавиться из зазора между частицами и тем самым препятствуют их контакту. Однако в большинстве случаев сольватация может служить лишь фактором, дополняющим действие электростатических сил. [c.203]

    Прочность структуры, которую образуют в нефти частицы асфальтенов, зависит от того, насколько развиты сольватные слои, окружающие эти частицы. Адсорбция на частицах асфальтенов молекул ароматических соединений может обеспечить высокую стабильность сольватных слоев, а взаимодействие между отдельными частицами будет ослаблено. Выше уже упоминалось о том, как влияют смолы на сфуктурно-механические свойства асфальтеносодержащей нефти. С увеличением отношения содержания смол к содержанию асфальтенов структурно-механические свойства нефти становятся менее заметными. Смолы, молекулы которых содержат ароматические соединения, адсорбируются на асфальтенах и ослабляют взаимодействие их частиц. [c.41]

    Эта теория исходит из того, что сольватные слои, окружающие частицы, обладают упругостью и повышенной вязкостью, препятствуя слипанию частиц, а между поверхностями частиц действует дополнительно расклинивающее давление , вызванное ионной атмосферой и противодействующее силам молекулярного взаимодействия. Коагуляция происходит тогда, когда молекулярные силы взаимодействия частиц превышают расклинивающее давление дисперсионной среды между частицами. Коагуляция возможна тогда, когда к одному золю добавить другой золь с противоположным зарядом частиц (взаимная коагуляция). При этом электростатические силы меняют знак и становятся силами притяжения. При взаимной коагуляции в осадок выпадают совместно частицы обоих золей. Взаимную коагуляцию широко используют в практике для очистки природных и промышленных вод от тонкодисперсных взвешенных частиц. Например, на водопроводных станциях перед поступлением воды на песчаные фильтры к воде добавляют немного Ab(S04)3 или Fe ls, которые, подвергаясь гидролизу, образуют положительно заряженные золи гидроксидов алюминия или железа  [c.158]


Смотреть страницы где упоминается термин Взаимодействие между частицами в сольватном: [c.22]    [c.10]    [c.83]    [c.432]    [c.135]    [c.1123]    [c.209]    [c.222]   
Термодинамика и строение водных и неводных растворов электролитов (1976) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Частицы взаимодействие



© 2025 chem21.info Реклама на сайте