Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Силы взаимодействия частиц молекулярные

    Первое слагаемое в правой части характеризует силу гидродинамического взаимодействия частиц, второе определяет силу их взаимного притяжения, которая прямо пропорциональна величине А, называемой константой молекулярного взаимодействия, или константой Гамакера. Для системы вода — органическая жидкость величина А имеет порядок 10 —10 Дж. [c.86]


    В зависимости от природы частиц, из которых построена кристаллическая решетка, и природы сил взаимодействия между ними, различают ионные, атомные, металлические и молекулярные кристаллы (рис. 1.10). [c.36]

    В работе [107] определялось сечение захвата для случая, когда меньшая из частиц радиусом Я 2 несет свободный заряд Q . Обе частицы проводящие. При расчетах не учитывалось молекулярное взаимодействие частиц и силы их гидродинамического взаимодействия. Сумма этих сил ранее определялась формулой (5.18). Электрические силы взаимодействия считались кулоновскими и определялись взаимодействием заряда Са с индуцированным зарядом на частице Я . Для сечения захвата было получено выражение [c.87]

    Флокуляция дисперсных систем (рис. 1.17, б) в определенной степени объясняется соотношением сил молекулярного притяжения и электростатического отталкивания. Естественно, что силы взаимодействия частиц при их сближении очень быстро возрастают. Агрегатирование глобул дисперсной фазы в некоторых случаях является переходным к обращению фаз. [c.44]

    Исследование устойчивости дисперсии ПА в растворах различных электролитов проводили методом поточной ультрамикроскопии. При рН = 2 и рН = 3 в широком интервале концентраций КС1 (от 1-10 2 до 3-10 М) дисперсия ПА является агрегативно устойчивой. При концентрации 5-10 М при рН = 2 в системе наблюдается обратимая агрегация (степень агрегации ш = 1,7). Из расчетов энергии взаимодействия частиц по теории ДЛФО следует, что при концентрациях электролита 1 1, превышающих 1-10 моль/л, на всех расстояниях молекулярные силы преобладают над ионно-электростатическими. Таким образом, наблюдаемое отсутствие агрегации частиц вплоть до концентраций КС1 5-10 моль/л может быть объяснено тем, что реальная потенциальная яма не достигает достаточной глубины, необходимой для образования агрегатов. Это, очевидно, связано с существованием ГС воды у поверхности частиц ПА, что обусловливает возникновение структурной составляющей расклинивающего давления. [c.183]

    При системном анализе процессы измельчения- смешения сыпучих материалов [4] определяются как процессы взаимодействия ансамбля измельчаемых и смешиваемых частиц различного сорта и различных размеров с несущей средой и между собой при наличии внешних воздействий на двух уровнях иерархии. На локальном (микро) уровне действуют внешние поверхностные и массовые силы и силы взаимодействия между несущей фазой и частицами (силы Архимеда, Стокса, Жуковского и Магнуса). При определенных свойствах обрабатываемых веществ и несущей среды возможны дополнительные электромагнитные силы. В результате этого в системе происходит перенос массы, импульса, энергии и заряда. Внешняя механическая энергия или энергия другого вида, превращенная в нее внутри системы, расходуется на работу против сил молекулярного сцепления и электростатического взаимодействия, преодоление сил взаимодействия внутри частицы, на накопление упругих деформаций, переходящих в пластические и во внутреннюю энергию. Частично энергия упругих деформаций создает в системе дефекты, микронапряжения и микротрещины. [c.113]


    Объектами исследования в термодинамике являются только макроскопические системы, т. е. системы, состоящие из очень большого количества частиц. При термодинамических исследованиях любого процесса не рассматривается молекулярная структура вещества, характер сил взаимодействия между молекулами, механизм процесса, ничего не говорится и о скорости процесса. Та часть термодинамики, которая имеет дело с применением указанных трех законов к химическим процессам и фазовым переходам, называется химической термодинамикой. Химическая термодинамика разрабатывает наиболее рациональные методы расчета тепловых балансов при протекании химических и физико-химических процессов раскрывает закономерности, наблюдаемые при равновесии определяет наиболее благоприятные условия для осуществления термодинамически возможного процесса выясняет условия, при которых можно свести к минимуму все побочные процессы определяет термодинамическую устойчивость индивидуальных веществ. [c.181]

    Сечение захвата зависит от радиусов сближающихся частиц, их гидродинамического и силового взаимодействия, порождаемого молекулярными и электрическими силами. В работе [104] показано, что если учитывать только гидродинамическое взаимодействие сферических частиц, то сечение захвата будет всегда равно нулю, т. е. силовое взаимодействие частиц является существенным фактором в процессе их коалесценции. [c.85]

    Выражение для силы и энергии молекулярного взаимодействия плоских частиц в жидкой дисперсионной среде имеет простой вид для расстояний, существенно больших по сравнению с основной длиной волны в спектре поглощения веществ, составляющих дисперсную систему. [c.143]

    Молекулярные сита [13]. Сита применяют для разделения частиц по величине и форме. При совпадении размеров ячеек сита (в данном случае пор сорбента) с размером молекул (порядка 0,3—1,5 нм) говорят о молекулярноситовом разделении. Свойством разделять частицы молекулярных размеров по. их величине обладают многие вещества, например крахмал, хелатные комплексные соединения. Молекулярными ситами в узком смысле слова называют вещества определенной пористости. Основой молекулярных сит могут служить, например, цеолиты, стекла и углерод (в виде продуктов пиролиза пластмасс). Величину пор молекулярных сит можно задавать в процессе их изготовления, т. е. можно получать большое разнообразие сит для различных целей. На процесс хроматографического разделения, наряду с ситовым действием, оказывают влияние и силы адсорбции (диполь-дипольное взаимодействие) в ряду алканы, алкены, алкины адсорбционная способность возрастает. [c.350]

    Высокомолекулярные соединения линейной и разветвленной структуры отличаются от ннзкомолекулярных органических соединений значительно большими силами взаимодействия между молекулами. С увеличением молекулярного веса и полярности полимера силы межмолекулярного взаимодействия возрастают. Размеры отдельных макромолекул полимеров приближаются к )азмерам коллоидных частиц (10 —10 " см). [c.61]

    Рис, VII.и. Потенциал парного взаимодействия частиц ( /с —энергия связи, Ло—координата вторичного энергетического минимума, Аа —радиус действия сил молекулярного притяжения) [c.195]

    Таким образом, адсорбционный слой, представляющий нечто иное, как структурно-механический барьер, влияет на взаимодействие частиц, не устраняя их притяжения. Следовательно, адсорбционные пленки не должны были бы привести к повышению устойчивости системы. Однако если Кг-а = О, то молекулярным притяжением между пленками можно пренебречь. В то же время стабилизующие пленки могут являться препятствием, мешаюш,им тесному сближению частиц. Если частицы не могут приблизиться друг к другу, то молекулярные т-и- о i силы притяжения между ними будут Схема взаимодействия малы, поскольку расстояние велико. Это частиц, стабилизованных полислоями и приводит к повышению устойчивости. поверхностно-активного вещества  [c.285]

    Итак, особенностями кристаллов являются высокая степень упорядоченности частиц (наличие ближнего и дальнего порядка), определенная симметрия образуемых частицами элементарных ячеек и, как следствие, анизотропия свойств. В зависимости от природы частиц, находящихся в узлах кристаллической решетки, и от того, какие силы взаимодействия между ними преобладают в данном кристалле, различают молекулярные, атомные, ионные и метал.пические решетки. [c.160]

    Строение простых жидкостей. Моноатомные жидкости и расплавленные металлы часто объединяются под названием простые жидкости, поскольку для них истолкование рентгенографических и нейтронографических данных менее затруднено, чем для других классов жидкостей. Атомы сжиженных благородных газов и некоторых жидких металлов имеют сферическую симметрию. К простым жидкостям относятся также и некоторые молекулярные жидкости, состоящие из неполярных молекул со сферической симмет-Рис. 111.46. Радиальная функция распре- рией И характеризующиеся неделания направленными и ненасыщенными силами взаимодействия. Для количественного описания структуры жидкостей в настоящее время широко применяется так называемая радиальная функция распределения (г). Ее типичный вид для одноатомных жидкостей изображен на рис. П1.46, Радиальная функция распределения представляет собой вероятность обнаружения частицы на расстоянии г от некоторой другой частицы, выбранной в качестве объекта наблюдения. Из рис. И1.46 видно, что для области г от г = О до г = Гх величина g (г) = 0 равно эффективному диаметру частиц. Эта величина также называется радиусом первой координационной сферы. В области г, превышающих молекулярный диаметр, радиальная функция испытывает несколько затухающих колебаний относительно единицы за единицу условно принимается значение g (г) при г- оо. Максимуму радиальной функции отвечают расстояния (г , г , Гд), где наблюдается наиболее высокая вероятность встретить частицу, а минимуму — расстояние с наиболее малой вероятностью нахождения частицы. В минимумах величина g (г) не равна нулю, что служит указанием на передвижения молекул от одной координационной сферы к другой, т. е. на наличие трансляционного движения. [c.228]


    Переходя от рассмотрения молекулярного взаимодействия конденсированных фаз, разделенны плоской прослойкой дисперсионной среды, к анализу молекулярного взаимодействия частиц дисперсной фазы, необходимо прежде всего отметить, что энергию и силу взаимодействия следует относить к паре частиц в целом, а не к единице площади прослойки, как это делалось выше. При этом энергия и сила взаимодействия частиц определяются не только расстоянием между частицами и значением сложной константы Г амакера, но также размером и формой взаимодействующих частиц. [c.299]

    Расчету сечения столкновения частиц посвящено довольно много работ, которые можно разделить на три группы в зависимости от степени учета сил взаимодействия частиц. Укажем лищь некоторые из них. Первые работы были выполнены Смолуховским [8] в них построена теория коагуляции коллоидов без учета гидродинамических сил взаимодействия частиц. В большинстве последующих работ рассматривалось движение частиц в маловязкой среде применительно к проблемам коагуляции капель и частиц в атмосфере [9, 10]. Учет гидродинамического взаимодействия двух медленно движущихся сферических частиц в вязкой жидкости на основе приближенных выражений, полученных методом отображений и справедливых, только если частицы находятся относительно далеко друг от друга, был сделан в работах [11 — 13]. В частности, в [И] таким образом определено сечение столкновения для двух сферических частиц разного радиуса, осаждающихся в поле силы тяжести. Результаты этой работы были использованы в [12] для расчета сечения столкновения частиц сравнимых размеров в электрическом поле. Расчет сечения столкновения двух заряженных частиц, когда одна из них значительно меньше другой, сделан авторами работы [14]. Более точный учет гидродинамических сил был осуществлен в [13, 15, 16]. Отметим, что в [15] определено сечение столкновения проводящих капель различного размера во внешнем электрическом поле, а в [16] — и с учетом заряженных капель. В последних двух работах учитывались как гидродинамические, так и электрические силы, полученные при точном решении соответствующих гидродинамических и электростатических задач. Во всех указанных работах рассматривалось взаимодействие частиц без учета внутренней вязкости. В работе [17] определено сечение столкновения двух сферических капель, внутренняя вязкость которых отлична от вязкости окружающей жидкости. Там же учтена также сила молекулярного взаимодействия капель, обеспечивающая возможность их коалесценции. [c.255]

    Эта теория исходит из того, что сольватные слои, окружающие частицы, обладают упругостью и повышенной вязкостью, препятствуя слипанию частиц, а между поверхностями частиц действует дополнительно расклинивающее давление , вызванное ионной атмосферой и противодействующее силам молекулярного взаимодействия. Коагуляция происходит тогда, когда молекулярные силы взаимодействия частиц превышают расклинивающее давление дисперсионной среды между частицами. Коагуляция возможна тогда, когда к одному золю добавить другой золь с противоположным зарядом частиц (взаимная коагуляция). При этом электростатические силы меняют знак и становятся силами притяжения. При взаимной коагуляции в осадок выпадают совместно частицы обоих золей. Взаимную коагуляцию широко используют в практике для очистки природных и промышленных вод от тонкодисперсных взвешенных частиц. Например, на водопроводных станциях перед поступлением воды на песчаные фильтры к воде добавляют немного Ab(S04)3 или Fe ls, которые, подвергаясь гидролизу, образуют положительно заряженные золи гидроксидов алюминия или железа  [c.158]

    Коагуляционные структуры характеризуются сравнительно слабыми по силе взаимодействия контактами между частицами. Прочность этих контактов определяется ван-дер-ваальсовыми молекулярными силами сцепления по лиофобным участкам макро-мозаичной поверхности частиц через тончайшие прослойки дисперсионной среды, фиксированная толщина которых соответствует минимальному значению поверхностной энергии Гиббса [5]. По данным теоретических расчетов и экспериментальных исследований сила взаимодействия частиц дисперсной фазы в коагуляционных структурах составляет в среднем 10 Н на контакт [16-18]. [c.16]

    Таким образом, критерий коагуляции в динамических уело-ВИЯХ является условием, накладываемым на число Рейнольдса Reo, причем зависимость критического числа Рейнольдса R kp, (> от параметров поверхностных сил Ло и А выражена слабо. Иными словами, если в теории ДЛФО, пренебрегающей динамикой сближения частиц, критерий коагуляции определяется соотношением электростатических и молекулярных сил взаимодействия частиц, то в динамических условиях возможность коагуляции определяется в первую очередь гидродинамикой вязкой дисперсионной среды в зазоре между поверхностями частиц. Отсюда легко понять, что для коагуляции в динамических условиях чрезвычайно существенное значение приобретает фактор формы поверхностей частиц, т. е. для анизометричных частиц потеря агрегативной устойчивости в динамических условиях более вероятна. Рассмотрим в связи с этим процесс взаимодействия двух частиц, имеющих форму плоских дисков радиусом Ri и толщиной 2Ri (Ri — радиус кривизны боковой поверхности). Получив от внешнего источника начальную относительную скорость Vo в момент, когда расстояние между их поверхностями составляет ho Ri, диски сближаются так, что один из них все время остается перпендикулярным другому. [c.19]

    Вап-дер-вальсовы силы взаимодействия уменьшаются пропорционально 1// , а энергия взаимодействия ближайших соседних частиц обычно составляет величину порядка кТ. Взаимодействие же между ионами уменьшается пропорционально 1/г , а энергия этого взаимодействия — пропорционально Иг. Кроме того, энергии такого взаимодействия обычно велики по сравнению с кТ. Это означает, что в случае ионных растворов весьма трудно установить, находится ли вещество в растворе в виде молекулярных комплексов , или в виде отдельных независимых молекулярных единиц. [c.443]

    В зависимости от природы частиц, находящихся в узлах кристаллической решетки, и от того, какие силы взаимодействия между ними преобладают в данном кристалле, различают молекулярные. атомиыа, ионные и металлические решетки. [c.161]

    Силу аутогезии можно представить в виде суммы нескольких составляющих сил Ван-дер-Ваальса и сил когезионного взаимодействия, имеющих молекулярную природу, а также сил электрических, мехапического сцоплеиия частиц н каннлляриьгх пя 1 лаж1 ых сыпучих материалов). [c.151]

    Еще во времена Бенджамина Франклина и Джона Дальтона высказывалось предположение, что силы взаимодействия между частицами материи должны иметь главным образом электрическое происхождение. Однако поскольку одноименные заряды отталкиваются друг от друга, существовало неправильное мнение, что между одинаковыми атомами не могут возникать связи тем не менее в настоящее время все хорошо знают, что большинство распространенных газов состоит из двухатомных молекул Н2, N2, О2, р2, С12 и т.д. Эта грубая ошибка привела к почти полувековой путанице с молекулярной структурой и атомными массами так, полагали, что газообразный водород описывается формулой Н, а не Н2, воду описывали формулой НО вместо Н2О, а кислороду приписывали атомную массу 8 вместо 16. Лишь в 1913 г. Льюис ввел представление о том, что электронные пары являются тем клеем , который соединяет между собой атомы с образованием ковалентных связей, однако теоретическое объяснение роли электронных пар было дано спустя еще 20 лет. Опыты Фарадея показали, что заряды на ионах всегда кратны некоторым элементарным единицам заряда, причем моль этих зарядов составляет 1 Р, а Стоней назвал эту элементарную единицу заряда электроном. Однако Стоней отнюдь не отождествлял электрон с какой-либо частицей, которую можно было попытаться изолировать и исследовать. [c.47]

    Рассмотрим вначале случай, когда сила Р является центральносимметричной. Такими силами являются силы молекулярного взаимодействия частиц, а также силы, обусловленные свободными электрическими зарядами на частицах. Решая уравнение (5.35) в сферической системе координат с началом в центре частицы ЯхИ граничными условиями п=0 при и = 0 при г оо, получим следующее выражение для потока частиц на частицу [c.90]

    Силы молекулярного взаимодействия частиц вследствие их корот-кодействия можно учитывать в (5.36) только на малых расстояниях и вычислять по формуле, приведенной в работе [П7] [c.91]

    При сближении двух тел до расстояний, сопоставимых с дальностью действия межмолекулярных сил, между ними возникают поверхностные силы взаимодействия, которые действуют лишь в сфере молекулярного поля и на расстояниях от поверхности раздела, превышающих радиус этой сферы, равны нулю. Эти силы, являющиеся следствием ненасыщенности межмолекулярных сил на поверхности фаз и зависящие от природы когезионных сил в фазах, всегда выступают как силы притяжения. Ненасыщен-ность межмолекулярного взаимодействия на внешней поверхности частицы приводит к образованию избыточной поверхностной энергии между фазами. Наличие определенного избытка свободной энергии, сосредоточенной в поверхностньге слоях на границе раздела фаз и пропорциональной этой поверхности, обусловливает стремление любых дисперсных систем занять минимальную поверхность раздела фаз. Следствием такого свойства дисперсных систем является стремление в изотермических условиях жидких частиц к коалесценции и твердых частиц к агрегированию, сопровождающихся понижением свободной поверхностной энергии пропорционально убыли поверхности. Термодинамически поверхностную энергию можно характеризовать через уравнение для внутренней энергии и=Р+Тз. Применительно к процессу образования новой поверхности и есть поверхностная энергия, Р - свободная энергия образования поверхности и Тз - тепловой эффект процесса, где 8 = с1Р МТ - температурный коэффициент свободной энергии образования поверхности. Известно, что внутренняя энергия системы является результатом взаимодействия частиц и их кинетической энергии. В изотермических процессах определяемая температурой кинетическая энергия частиц остается постоянной, поэтому все изменения внутренней [c.93]

    В любом случае для возниююветт адгезии необходимо перемещеипе молекул адгезива (транспортная стадия) к дефектам и активны. центрам поверхности субстрата и их взаимодействие между собой. Механизм адгезии заключается в различных типах. межмоле-ку.трного взаимодействия. молекул контактирующих (раз. На дальних расстояниях, многократно превосходящих размеры взаимодействующих частиц, действуют ван-дер-ваальсовы силы типа дисперсионных, ориентационных, индукционных взаимодействий На расстояниях порядка молекулярных размеров действуют силы обменного и ионного взаимодействия. Роль взаимодействий проявляется в зависимости адгезии от структурных функциональных групп молекул адгезива, что установлено Притыкиным Л.М. В работе [2] установлено, что для данного субстрата каждая функциональная группа органических соединений вносит строго определенный вклад в энергию адгезии. Кроме того, адгезия зависит от природы субстрата, так прочность органических адгезивов к металлическим субстратам изменяется в ря- [c.8]

    Прочность коагуляционных контактов определяется ван-дер-ваальсовыми молекулярными силами сцепления через тончайшие прослойки дисперсионной среды, фиксированная толщина которых соответствует минимальному значению поверхностной энергии Гиббса [185]. Поэтому коагуляционные структуры отличаются сравнительно слабыми контактами между частицами (в среднем 10-">Н на контакт) и тиксотропной обратимостью вследствие наличия частиц, способных совершать броуновское движение. Истинная прочность контакта зависит от условий его образования, природы компонентов системы и расстояния между взаимодействующими частицами [185]. Сила сцепления в контактах должна быть достаточ- [c.102]

    Из формул (VI.25) —(VI.28) следует, что на больших касстояниях молекулярные силы взаимодействия одина-ровых частиц в любой среде являются силами притяжения. [c.144]

    Сольватные оболочки образуются на границе раздела фаз. Между сольватными оболочками отсутствует молекулярное притяжение, поскольку сила взаимодействия молекул слоя практически равна силе взаимодействия молекул среды. При сближе ии, частиц необходимо совершить работу, расходуемую на удаление сольватного слоя (работа десорбции), что приводит к появлению значительных сил отталкивания между частицами. Наиболее убедительно подтверждают существование граничных слоев с особой структурой исследования Б. В. Дерягина, Н. В. Чураева, С. В. Нерпина, Ю. М. Поповского, М. С. Мецика, Г. М. Зорина и др. [c.281]

    Известно, что силы, действующие между ковалентными молекулами, обычно иеспецифичны и для малополярных молекул невелики. В смеси двух жидкостей А и В, состоящих из молекул с малополярными ковалентными связями, энергия взаимодействия частиц А и В существенно не отличается от энергии взаимодействия между частицами А и А или частицами В и В. Поэтому различные жидкие вещества с ковалентной связью в молекулах обычно неограниченно растворяются друг в друге. По этой же причине молекулярные кристаллы также хорошо растворяются в таких жидкостях. Например, растворимость толуола в бензоле ие ограничена, а кристаллический на(рталин хорошо растворим в неполярных жидкостях. [c.251]

    Чем больше энергия связи между частицами в веществе, тем выше структ Для молекулярных кристаллов и жидкостей ван-дер-ваальсовы силы взаимодействия между молекулами и даже Н-связи недостаточно прочны, и обычно структ остается меньше сольв. Поэтому растворение таких веществ, как, например, сахара, глицерина, спирта, является также экзотермическим процессом. [c.147]

    Эбулиоскопический и криоскоп ический мето-д ы. Определение молекулярного веса этими методами основано на соответственном повышении температуры кипения и понижении температуры замерзания растворителя при растворении в нем 1каких-либо веществ. Величина температурной депрессии (АО определяется отношением числа частиц растворенного вещества к числу частиц раствора. Если количество растворенного вещества настолько мало, что отдельные его молекулы практически не испытывают сил взаимодействия, то каждая молекулы ведет себя в растворе как самостоятельная единица. Поэтому, если молекулы растворенного вещества не ассоциируются под влиянием сил взаимодействия, то между концентрацией его в растворе и величиной температурной депрессии соблюдается прямая пропорциональность и отношение-будет постоянным. [c.151]

    Сопоставление функций W R) для жидкости и кристалла показывает, что, в случае кристалла максимумы этой функции разделены промежутками, где WiR) = О, тогда как в жидкости даже первый пик не разрешен. Неразрешимость пиков радиальной функции связана, очевидно, с разбросом равновесных положений атомов и их трансляционным движением. Если функция W R) известна, то тем самым известен и характер взаимного расположения частиц. Поэтому основной характеристикой молекулярной структуры жидкостей является радиальная функция распределення. Нахождение этой функции для той или иной жидкости является важнейшей задачей структурного анализа. В дальнейшем изложении иод структурой жидкости будем подразумевать пространственное расположение атомов, ионов или молекул, обусловленное их формой, интенсивностью и характером сил взаимодействия между ними. Количественными параметрами структуры являются координационные числа, равновесные межатомные расстояния, средние квадратичные смещения атомов, а также расстояние, на котором исчезает корреляция в расположении частиц. Характеристиками структуры жидкостей являются также флуктуации концентраций, плотности и ориентации молекул. [c.15]

    Межмолекулярные силы принципиально отличаются от химических связей сво- еб. Зависимость энер-ей однозначностью — они представляют гии взаимодействия от меж-собой только силы притяжения. Однако молекулярного расстояния, при тесном сближении любых частиц начинают сказываться силы взаимного отталкивания их внешних электронных слоев. На некотором оптимальном расстоянии притяжение и отталкивание уравновешиваются, причем энергия системы становится минимальной. Половину равновесного расстояния между одинаковыми сферически симметричными молекулами определяют как ван-дер-ваальсозый радиус частицы. На рис. 66 представлена типичная кривая изменения энергии для межмолекулярного взаимодействия. Она характеризуется неглубоким минимумом, который расположен на значительном расстоянии от начала координат. Длина ван-дер-ваальсовой связи больше, а прочность меньше,, чем те же параметры для ковалентной связи. Кроме того, специфическая особенность сил Ван-дер-Ваальса — быстрое ослабление их с расстоянием, так как все составляющие эффекты обратно пропорциональны г [см. уравнение (V.6)]. [c.137]


Смотреть страницы где упоминается термин Силы взаимодействия частиц молекулярные: [c.256]    [c.121]    [c.155]    [c.345]    [c.593]    [c.103]    [c.58]    [c.345]    [c.108]    [c.29]    [c.235]    [c.259]   
Очистка воды коагулянтами (1977) -- [ c.32 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействия ион-молекулярные

Силы взаимодействия частиц

Частицы взаимодействие



© 2025 chem21.info Реклама на сайте