Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гиббса простых

Таблица 57. Энтальпии и энергии Гиббса реакций распада индивидуальных углеводородов на простые вещества (графит, водород) и приведенных в табл. 56 модельных реакций коксообразования при температурах 300. 500, 1000 К Таблица 57. Энтальпии и <a href="/info/347217">энергии Гиббса реакций</a> <a href="/info/1333896">распада индивидуальных</a> углеводородов на <a href="/info/3252">простые вещества</a> (графит, водород) и приведенных в табл. 56 <a href="/info/145003">модельных реакций</a> коксообразования при температурах 300. 500, 1000 К

    V Стандартная энергия Гиббса образования. Под стандартной энергией Гиббса образования А0° понимают изменение энергии Гиббса при реакции образования 1 моля пещества, находящегося в стандартном состоянии, из простых веществ, каждое из которых также находится в стандартном состоянии. Это определение подразумевает, что стандартная энергия Гиббса образования простого вещества, устойчивого в стандартных условиях, равна нулю. [c.175]

    Последовательность расположения линий на рисунке соответствует повышению устойчивости оксидов по мере увеличения отрицательных значений их энергий Гиббса образования. Простое вещество, которое образует более устойчивый оксид, является поэтому потенциальным восстановителем для менее устойчивого оксида. Иначе говоря, оксид будет восстанавливаться простым веществом, для которого линия АС образования оксида расположена ниже. [c.244]

    Введенная Гиббсом величина представляет избыток числа молей компонента г в объеме поверхностного слоя с площадью 3=1 по сравнению с числом его молей в том же объеме, если бы смежные фазы встречались у поверхности раздела без изменения их плотности. Эту величину мы будем называть абсолютной величиной гиббсовской адсорбции (часто ее называют короче—гиббсовской адсорбцией) или даже просто адсорбцией компонента / у данной поверхности.  [c.468]

    Бром и иод — достаточно сильные окислители, хотя и уступают по активности фтору и хлору. В ряду F — At снижается окислительная активность простых веществ. Так, изменение энергии Гиббса в реакциях взаимодействия галогенов с водородом [c.299]

    В ряду О — 5 — 8е — Те — Ро уменьшается окислительная и возрастает восстановительная активность, о чем, в частности, свидетельствует сопоставление их электродных потенциалов. Об уменьшении окислительной активности можно судить и по характеру изменения АО однотипных реакций с участием рассматриваемых простых веществ. Так, изменение энергии Гиббса в реакции На + Э = НгЭ отвечает следующим значениям  [c.338]

    Для реакции в растворе вычисляют алгебраическую сумму значений стандартной энергии Гиббса компонентов АО]. При этом допускают, что стандартная энергия Гиббса простых веществ и гидратированного иона водорода в водном растворе равна нулю. Стандартную энергию Гиббса образования вещества в растворе из простых веществ и гидратированного иона водорода связывают с константой равновесия  [c.40]


    Уравнение (VII, 166) может быть получено более просто путем использования уравнения (VI, 24) RT na и уравнения Гиббса—Гельмгольца (IV, 19а) AG=AH- -T [c.229]

    Гиббс разработал простое уравнение, правило фаз, позволяющее предсказать характер изменения температуры, давления и коицентрации различных компонентов при различных сочетаниях числа компонентов и фаз. [c.114]

    Проиллюстрируем проведение расчетов по методу минимизации энергии Гиббса на простом примере смеси веществ Ai и Aj. Особенностью излагаемого, ниже подхода будет то, что не рассматривается химический процесс получения Aj из Al (т. е. закон действующих масс), а для расчета используют табличные данные о логарифмах констант равновесия образования Ai и А . Рассмотрим реакцию образования А из простых веществ L  [c.115]

    Величина может быть названа стандартной энергией Гиббса реакции. Эта величина составлена нз стандартных значений и [х компонентов реакции и, следовательно, не зависит от пути, по которому проходит реакция. Поэтому ее можно выразить через стандартные энергии Гиббса образования компонентов реакции из простых веществ А0° . Величина А0°( для некоторого г-го компонента реакции есть разность стандартного значения С°г или компонента и суммы стандартных значений энергии Гиббса простых веществ, умноженных на числа молей, входящих в 1 моль компонента. Например, АО для уксусной кислоты есть разность стандартного значения 0° уксусной кислоты и суммы энергии Гиббса двух молей графита, одного моля Оа и двух молей На, причем последние взяты при давлении 1,013 10 Па (1 атм). [c.217]

    Теперь о сложности теории Гиббса. Будучи очень простой в математическом отношении, она все же трудна для восприятия происходит это по нескольким причинам. Во-первых, теорию капиллярности Гиббса невозможно понять в отрыве от всей гиббсовской термодинамики, в основе которой лежит весьма общий, дедуктивный метод. Большая общность теории всегда придает ей некоторую абстрактность, что, конечно, отражается на легкости восприятия. Во-вторых, сама теория капиллярности Гиббса есть обширная, но условная система, требующая единства восприятия без отвлечения от отдельных ее положений. Дилетантский подход к изучению Гиббса просто [c.14]

    Как уже было упомянуто, движущая сила химической реакции определяется энергией Гиббса AG. В выражении (3) АН представляет энтальпийный, а TAS — энтропийный фактор. Первый из них отражает тенденцию системы к образованию связей в результате взаимного притяжения частиц — молекул или атомов, что приводит к их усложнению, а второй — тенденцию к усилению процессов диссоциации сложных частиц на более простые и их менее упорядоченному состоянию. Оба фактора обычно действуют в противоположных направлениях и общее направление реакции определяется влиянием преобладающего фактора. [c.80]

    Выбор восстановителя. Выбор того или иного восстановителя для получения простого вещества определяется при сопоставлении значений 31 ергии Гиббса образования соответствующих соединений. На [c.243]

    Как видно из рис. 129, энергия Гиббса образования Н 0 при низких температурах имеет отрицательное значение, а при высоких — положительное. Следовательно, этот оксид может образоваться только при низких температурах, а при нагревании он распадается на простые вещества. Поэтому, в частности, при обжиге сульфидных руд ок- [c.244]

    Кинетическая теория равновесия позволяет достаточно простым способом описать свойства разреженного газа, состоящего из жестких сферических молекул. Однако она становится все более сложной и трудной для приложения как в случае плотных систем, так и в случае систем, в которых имеются силы взаимодействия между частицами. Чтобы рассмотреть такие системы, мы кратко в общих чертах рассмотрим здесь очень эффективный статистический метод Гиббса [1—4]. [c.174]

    Вычислите растворимость иодида серебра в воде при 25° С исходя из величин стандартных энергий Гиббса для образования Agl(Kp), Ag+ и 1 из простых веществ. [c.307]

    Химическое равновесие. Самопроизвольно, т. е. без затраты работы извне, каждая система может переходить только из менее устойчивого состояния в более устойчивое. При постоянных температуре и давлении такой переход всегда сопровождается уменьшением энергии Гиббса системы. Пределом протекания реакции,, т. е. условием равновесия, является равенство AG = 0. Согласно равенству (1,7) самопроизвольному течению реакции благоприятствуют большие отрицательные значения АН (т. е. значительное выделение энергии в ходе реакции) и большие положительные значения AS (т.е. возрастание энтропии). Для многих не слишком сложных реакций первый (энергетический) фактор отражает обычное повышение устойчивости системы при уменьшении запаса ее внутренней энергии, которое проявляется в тенденции к большей агрегации вещества, укрупнению частиц. Второй же фактор энтропийный отражает тенденцию к дезагрегации, к усилению всяческих процессов диссоциации на более простые частицы, происходящих под действием теплового движения частиц. В реакциях, которые приближают систему к состоянию равновесия, эти два фактора действуют в противоположных направлениях, и общее течение процесса определяется действием преобладающего фактора и сопровождается сближением значений величин АН и TAS до тех пор, пока не будет достигнуто равенство их между собой,. [c.25]


    Уже отмечалось, что если число простых реакций велико, то выявление из них независимых лишь незначительно упрощает расчет. Поэтому можно сформулировать подход к расчету равновесия следующим образом поскольку при равновесии минимальны энергия Гиббса G (реакция при Т, p= onst) или Гельмгольца F (реакция при Г, o = onst), то нужно найти состав смеси, обеспечивающий минимум G или F. [c.112]

    Таким образом, комбинируя в изохорных процессах эиергию Гельмгольца Р = Е(Г, Т) с уравнением (1.36), а в изобарных—эиергию Гиббса 0=0(Р,Т) с уравнением (1.40), можно найти связь между Р, Т иГ, т. е. получить уравнение состояния. Подчеркнем, что подобное простое дифференцирование приведет к уравнению состояния только в том случае, если соответствующие потенциалы будут заданы в своих переменных. Если же они заданы как функции чужих аргументов,то необходим анализ дифференциального уравнения в частных производных, однако для такого анализа необходимо знать граничные условия. В общем случае это позволяет получить новые термодинамические соотношения, однако задача не так проста, как кажется на первый взгляд. [c.29]

    Если реакция не простая, а сложная, то возникает проблема связи различных химических потенциалов (точнее, их изменений) между собой. Для этого необходимо построить новое характеристическое уравнение по независимым переменным. Используем то обстоятельство, что, например, свободная энергия Гиббса есть, во-первых, однородная функция первого порядка но отношению к n , и, во-вторых, что она является величиной экстенсивной. Тогда сразу можно записать [c.38]

    Более содержательными в этом смысле оказываются неравновесные термодинамические характеристики. Для процессов в простой кинетике их можно сконструировать на основе функции изменения неравновесной свободной энергии Гиббса (3.16). Нетрудно видеть разницу между изменением равновесной энергии Гиббса (1.46) и выражением (3.16). В (3.16) учитывается не только термодинами- [c.235]

    Химические свойства простых веществ. В химических реакциях металлы обычно выступают как восстановители. Неметаллы, кроме фтора, могут проявлять как окислительные, так и восстановительные свойства. При этом характер изменения восстановительной и окислительной активности простых веществ в группах и подгруппах су-щест венно зависит от природы партнера по реакции и условий осуществ-ленпя реакции. Обычно в главных подгруппах проявляется общая тенденция с увеличением порядкового номера элемента окислительные свойства неметаллов ослабевают, а восстановительные свойства металлов усиливаются. Об этом, в частности, свидетельствует характер изменения стандартной энергии Гиббса образования однотипных соединений. Например, в реакции окисления хлором металлов главной подгруппы И группы [c.237]

    Понятно, что при использовании данных стандартных термодинамических таблиц, где приведены характеристики веществ в состоянии идеального газа, наиболее просто определить стандартную энергию Гиббса реакции  [c.63]

    Самая простая жидкая система, которую иногда применяют при исследовании массообмена, состоит из двух частично смешивающихся жидкостей, образующих две фазы. Согласно правилу Гиббса, для определения такой системы нужны два независимых параметра, например давление и температура. Если рассматривать систему [c.22]

    Подобно энтальпии N энергию Гиббса С определить нельзя, однако можно точно измерить разность АС для различных процессов. Обычно пользуются аналогичной ANf величиной АС/ — энергией Гиббса образования соединений из простых вешеств. [c.184]

    Выше было показано, что число степеней свободы простого элемента в соответствии с правилом Гиббса Р = с 2. Определим числа степеней свободы элементов разделения и смешения. [c.68]

    Другие параметры реакций. Изменение энергии Гиббса в результате реакции (Л0°) определяется по уравнению (11,3) через компонентов реакции из простых веществ. Значения AGf для большого числа веществ имеются в справочных изданиях, тоже главным образом для 298,15 К. При отсутствии в литературе готового значения AG для какого-нибудь из компонентов реакции оно может быть рассчитано по уравнению (1,13), если для него известны АН и 5 при данной температуре. Наряду с этим А0° реакции может быть рассчитано через константу равновесия по уравнению (1,13) или через функции энергии Гиббса компонентов по уравнению (1,22) и тепловой эффект реакции по равенству  [c.56]

    Таблицы содержат следующие данные для чистых веществ мольную теплоемкость (Ср), значения эмпирических коэффициентов уравнений (VI-14), энтальпию (ДЯща) и энергию Гиббса (ЛСзэв), которые рассчитываются как изменения значений этих функций при образовании 1 моль данного соединения в стандартных условиях из простых и устойчивых в этих условиях веществ, и, наконец, абсолютную энтропию в стандартных условиях 5° . Примеры таких данных для некоторых веществ приведены в табл. VI- [12]. [c.135]

    Константы равновесия химических реакций определяются непосредственно по экспериментальным данным о составе реакционной системы при равновесии, а расчетным путем по уравнениям (I,13) или по константам равновесия реакций образования компонентов из простых веществ по уравнению (11,3). При выражении через изменение функции энергии Гиббса, (0°—Н° 1Т, константа равновесия для температуры Т определяется равенством (1,22). Стандартные изменения энтальпии и энтропии для многих групп химических реакций относительно слабо изменяются с изменением температуры. Поэтому для таких реакций член ГА5° возрастает практически прямо пропорционально абсолютной температуре и, следовательно, А0° в таких случаях можно приближенно рассматривать как линейную функцию температуры, а 1д— как линейную функцию обратной температуры Для реакции термической диссоциации Ь на свобод ые атомы [c.64]

    Из этих выражений следует, что энергия Гиббса позволяет с помощью первых производных выразить в простейшем и явном виде свойства рабочего тела, поэтому при переменных Р и Т она является характеристической функцией. [c.134]

    Интересно отметить, что разложение в степенной ряд по плотности было произведено почти одновременно как экспериментаторами, так и теоретиками. Но этому не следует придавать большого значения так же, как и форме уравнения, хотя коэффициенты каждого члена уравнения имеют простую и определенную физическую интерпретацию. Правда, вириальное уравнение состояния необходимо, как воздух, но, видимо, не из-за отражения глубокого физического смысла, а из-за пути решения всех проблем (когда все, что бы вы ни пробовали, не получилось, берите степенной ряд ). Это относится и к экспериментаторам, которые не могут получить эмпирически универсальное уравнение состояния в замкнутой форме, и к теоретикам, которые не могут вычислить вириал Клаузиуса или фазовый интеграл Гиббса. Вряд ли вызывает удивление тот факт, что коэффициенты двух разложений могут быть приравнены. С позиций пристрастной критики можно было бы не без основания утверждать, что вириальное уравнение состояния есть больше акт полной безнадежности, чем изящное выражение строгого физического закона. Тем не менее к настоящему времени с помощью вириального [c.13]

    Так как для СцНзо значения АО при любых температурах не только больше энергии Гиббса простых веществ, но превышают А0° для простейших алканов, эти углеводороды неустойчивы даже при обычных температурах. [c.465]

    В (противоположность бинарным системам, в которых возможен единственный способ изменения состава при дистилляции и ректификации, изменение состава трехкомпонентных смесей в этих процессах различно для систем разных типов. Кривые, изображающие в треугольнике Гиббса изменение состава тройного раствора при простой дистилляции, были названы Шрейнема,керсом [П2] дистилляционньши линиями . Дифференциальное уравнение дистилляционной линии легко получается из уравнений материального баланса процесса дистилляции [c.113]

    Другой класс ХМК — гидрофобизованные кремнеземы, содержащие привитые алкильные, фенильные и полифторалкильные группы и полиметилсилоксановые слои. Газохроматографические и адсорбционные измерения для н-алканов и ароматических углеводородов дают согласующиеся результаты при измерении теплот сорбции на кремнеземах с привитыми фенильными группами. Таким образом пока-занб что газовая хроматография не только применима для измерения термодинамических величин на ХМК, но и является более чувствительным методом измерения остаточной неоднородности поверхности ХМК, чем методы ИКС или адсорбции в статических условиях. Предложенный и примененный в работе [67] метод определения индексов удерживания по скорректированным вкладам позволяет проводить более точное сравнение неподвижных фаз в газовой хроматографии и избежать выбора стандартного состояния, что сказывается на численных значениях объема удерживания. Метод расчета вкладов отдельных групп и фрагментов молекул в теплоты сорбции и энергии Гиббса — простой и удобный подход к количественной оценке традиционных и новых материалов и сравнения между собой различных неподвижных фаз. [c.397]

    Энергия Гиббса образования дициана имеет большое положительное значетие (ДС/ = + 309,2 кДж/моль), поэтому непосредственным взаи-моденгтвием простых веществ он не получается. По этой же причине дицийн легко окисляется кислородом, давая очень горячее пламя ( 4780 С). Дициан можно назвать псевдогалогеном, так как в некоторых реакциях он ведет себя подобно галогену. Так, при взаимодействии днциана с водородом образуется газ H N [c.409]

    Свободная энергия образования Гиббса. Методы, использующие принцип аддитивности, дают возможность рассчитать термодинамические функции (энтальпию, энтропию и свободную энергию образования Гиббса), если известна структурная формула молекулы. Существует много способов вычисления значений этих величин от простых и наименее точных, основанных на суммировании долей атомов, до сложных и очень точных, в которых учитываются конститутивные факторы (соседство групп и т. д.). В качестве примера рассмотрим аддитивный метод расчета свободной энергии образования Гиббса, разработанный Ван Кревеленом и Чермином  [c.82]

    Простейшая диаграмма состояния трехкомпонентной системы, основанием которой служит треугольник Гиббса, а на перпендикулярах, восстановленных из каждой точки треугольника, откладываются температуры фазовых превращений, изображена на рис. XV, 2. [c.424]

    В 1869 г. Ф. Массье вводит представление о характеристических функциях, а Дж. В. Гиббс в 1875 г. развивает термодинамику химических неоднородных систем на основе понятия о химическом потенциале и вводит в термодинамику новую функцию— свободную энтальпию (или энергию Гиббса по современной терминологии). Гиббс вводит в термодинамику метод термодинамических функций, позволяющих составлять любые термодинамические уравнения, которые ранее выводили методом термодинамических циклов. Этот метод был более удобным, простым при составлении термодинамических уравнений для изучаемого процесса, но он менее наглядный по сравнению с методом термодинамических циклов. В 1882 г. Г. Гельмгольц открывает термодинамическую функцию — свободную энергию, которую по современной терминологии вызывают энергией Гельмгольца—А. Он же вывел уравнение зависимости А=А Т), которое получило название уравнения Гиббса—Гельмгольца. [c.14]

    При Бычнелении стандартных изменен а энтальпия и энергии Гиббса реакций обычно используют стандартные энтальпии и энер-Г1Н1 ГиГ бса образования вещес Ш. Эти величины представляют собой А/7 и А0° реакции образопа 1ИЯ данного вещества нз простых при стандартных условь ях. При этом, если элемент образует несколько простых веществ, то берется наиболее устойчивое из них (при данных условиях). Энтальпия образования и энергия Гиббса образования наиболее устойчивых простых веществ принимаются равными нулю. [c.201]

    Как изображается состав трехкомпонентной системы по методу Гиббса и по методу Розебома Какой вид имеет диаграмма состояния для простой трехкомпонент-иой системы  [c.219]

    Вследствие того, что по условию процесс перемешивания зазнородных газов проводится при Т, Р=сопз1, убыль энергии иббса при обратимом проведении процесса равна максималь-но-полезной работе и просто работе — в необратимых процессах. Следовательно, в прямом процессе преобладает доля самопроизвольного, в обратном процессе — разделение смеси газов на отдельные компоненты, который может проходить только при затрате работы и в таком количестве, которая должна компенсировать уменьшение энергии Гиббса в прямом процессе, преобладает доля несамопроизвольного процесса. В обратимом процессе затраченная работа будет минимальной. Фактически же процесс разделения газов проводят с конечной скоростью, поэтому на него затрачивается гораздо больше работы, чем в обратимом процессе. Однако затрачивая в необратимом процессе избыток энергии на разделение газов, значительно выигрывают время на их разделение. [c.127]

    На основе уравнения Гиббса—Дюгема можно получить формулу Гиббса—Маргулеса, которая наиболее проста для бинар- [c.149]


Смотреть страницы где упоминается термин Гиббса простых: [c.464]    [c.38]    [c.23]    [c.78]    [c.246]    [c.267]   
Краткий справочник физико-химических величин Издание 8 (1983) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Гиббс

Гиббсит



© 2024 chem21.info Реклама на сайте