Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химотрипсин, взаимодействие

    Субстратная специфичность химотрипсина. Специфические каталитические свойства ферментов обусловлены многоточечным (многоцентровым) взаимодействием между субстратом и белком [54] (см. гл. I и II). В многоцентровом взаимодействии фермент — субстрат важная роль отведена сорбции на белке боковых, химически инертных фрагментов субстратной молекулы. При анализе этого вопроса для реакций, катализируемых химотрипсином, будем исходить из модельной структуры [55 его субстратов  [c.132]


    Влияние среды на гидрофобное взаимодействие активного центра химотрипсина с субстратами и ингибиторами. Исследование эффектов среды — это классический подход к изучению природы комплексообразования. В-приложении к химотрипсину результаты таких исследований подтвердили гидрофобный характер фермент-субстратных взаимодействий. [c.143]

    Электростатические взаимодействия вносят вклад в специфичность трипсина к остаткам Lys и Arg. Трипсин [244, 245, 536] связывает свои субстраты существенно тем же способом, что и химотрипсин. Однако трипсин специфичен к положительно заряженным остаткам субстрата боковая цепь Lys или Arg электростатически связывается с остатком аспарагиновой кислоты на дне связывающего кармана фермента. Кристаллографические исследования комплексов трипсина и белковых ингибиторов трипсина [269, 632] показали, что способ связывания очень сходен с образованием комплекса сериновая протеаза — субстрат. Очевидно, ингибитор точно-воспроизводит субстрат. Механизм, ведущий к расщеплению субстрата трипсином и к стабилизации комплекса трипсин — ингибитор-[269, 536], рассматривается в разд. 11.2. [c.248]

    Вообще говоря, существуют еще три уровня специфического узнавания субстратов в ферментативном катализе. Давайте рассмотрим пептидную связь в полипептидной цепи. Боковая цепь Рг определяет нормальную специфичность фермента. Для а-химотрипсина Нг — это ароматическая боковая цепь, а гидрофобная полость (ароматическая щель) в активном центре предназначена для взаимодействия с аминокислотой, узнаваемой ферментом. Такую избирательность называют первичной структурной специфичностью. [c.235]

    СВЯЗЬ настолько тесна, что они фактически неразделимы. В катализе химотрипсином это положение проявляется особенно ярко. В проявлении обоих уникальных свойств этого фермента, как будет показано, большое значение имеет сорбционное взаимодействие химически инертных фрагментов молекулы субстрата с активной поверхностью белка. [c.128]

    С другой стороны, константа диссоциации фермент-субстратного комплекса Ks сохраняет постоянное значение при кислых и нейтральных значениях pH, но с дальнейшим увеличением pH она возрастает [13, 46]. Последнее объясняют тем, что правильная стереохимическая конформация активного центра обусловлена взаимодействием ионной пары (Asp-194)—СОО . .. " NHa — (11е-16), находящейся внутри ферментной глобулы (См. рис. 31). В результате депротонизации а-аминогруппы Пе-16 (с рКа — 8,5—9) происходит разрушение солевого мостика , что приводит к потере ферментом сорбционной способности. Это представление согласуется с данными рентгеновского анализа структуры кристаллического химотрипсина [17], однако ван<ность именно а-аминогруппы Пе-16 для катализа поставлена под сомнение в ряде работ ]47, 48]< [c.132]


    Представление о конформационной подвижности активного центра при взаимодействии его с субстратом не противоречит современным рентгеноструктурным данным, которые в литературе начали трактовать так, как если бы химотрипсин имел исключительно жесткое строение [18]. В этой связи следует учесть, что разрешение кристаллографического метода не превышает 2 А. В то же время Кошланд мл. и сотр. [124] (см. также [125]) полагают, что высокая эффективность катализа может быть достигнута лишь в том случае, если точность [c.156]

    Нуклеофил в активном центре химотрипсина при отсутствии сорбционных фермент-субстратных взаимодействий. ................... 310-= fe ) [c.162]

    Л e в a Ш 0 в A. B. Исследование гидрофобного взаимодействия активного центра химотрипсина с конкурентными ингибиторами. Канд. дисс., МГУ, 1970. [c.168]

    Связывание субстрата можно разделить на несколько стадий. В каждой стадии принимают участие взаимодействия с атомами основной цепи химотрипсина. Рассмотрим этапы, предшествующие расщеплению химотрипсином пептидной связи со стороны карбо-лильного конца аминокислотного остатка I [537, 538]. Этот остаток [c.247]

    Попытка обобщить данный материал сделана в настоящей книге, которая представляет собой логическое продолжение первой части, опубликованной ранее отдельным томом и посвященной анализу специфичности и кинетических аспектов действия ферментов на относительно простые субстраты, такие как алифатические и ароматические спирты и альдегиды, производные карбоновых кислот, замещенные аминокислоты и их производные (не выше ди- или три-пептидов). Главное внимание в первой части книги уделялось характеру фермент-субстрат ных взаимодействий на достаточно ограниченных участках активного центра и кинетическим проявлениям этих взаимодействий. В основе первой части книги лежит экспериментальный материал, полученный при изучении специфичности, кинетики и механизмов действия цинк- и кобальткарбоксипеп-тидазы, химотрипсина и трипсина из поджелудочной железы быка, алкогольде-гидрогепаз нз печени человека и лошади и пенициллинамидазы бактериального происхождения. Итогом первой части книги явились обобщение и формулировка кинетико-термодинамических принципов субстратной специфичности ферментативного катализа. [c.4]

    Свободная энергия связывания субстрата расходуется на катализ и на обеспечение специфичности. Начиная с химотрипсина, возникла традиция раздельного рассмотрения специфических связывающих взаимодействий между субстратом и ферментом (разд. 10.2) и собственно каталитического процесса, который описывается в терминах химических модельных реакций (см. ниже). [c.274]

    Процессы в каталитическом центре могут стабилизировать переходное состояние. До сих пор подчеркивался тот факт, что дальние взаимодействия поставляют свободную энергию активируемым группам в каталитическом центре фермент-субстратного комплекса. Однако взаимодействия и в самом каталитическом центре могут стабилизировать переходное состояние и тем самым вносить вклад в эффективность ферментативного катализа. В химотрипсине выигрыш энергии, обеспечивающийся образованием двух водородных связей между активированным субстратом и атомами азота остова, а также частичной компенсацией заряда скрытого внутри белка остатка Азр-102 (рис. 11.1), способствует компенсации энергии образования напряженной связи между ферментом и субстратом в тетраэдрическом комплексе [5371. [c.281]

    Каталитическую активность а-химотрипсина нельзя приписать исключительно наличию системы переноса зарядов. Из рентгено структурных исследований следуют многие другие факторы, от ветственные за каталитический процесс. Было обнаружено де вять видов специфических ферментсубстратных взаимодействий которые повышают эффективность а-химотрипсина. Например стабилизация тетраэдрического интермедиата, а следовательно понижение энергетического барьера переходного состояния, со провождается образованием водородной связи между карбониль ной группой субстрата и амидным атомом Ser-195 и Gly-193 В химотрипсиногене эта водородная связь отсутствует. Действи тельно, уточнение структур химотрипсиногена и а-химотрипсина с помощью рентгеноструктурного анализа показывает различия в расположении каталитической триады в зимогене и ферменте. Это конформационное изменение в общей трехмерной структуре фермента, возможно, вызывает значительные изменения химических свойств каталитического центра, что может играть важную роль в увеличении ферментативной активности при активации зимогена. [c.221]

    Как уже упоминалось, существует значительная перекрестная специфичность для а-химотрипсина, папаина и субтилизииа. Результаты подобных исследований хиральной специфичности, видимо, прольют свет на новые аспекты эволюционной дивергенции протеаз млекопитающих, бактерий и животных. Кроме того, активация зимогена, как правило, — это промежуточный этап как в биосинтезе протеаз, так и в самых разнообразных биологических процессах, например коагуляция крови, комплементарные реакции, выработка гормонов, фибриполпз и т. д. Такой точный и ограниченный протеолиз ферментами с широкой первичной специфичностью также показывает решающую важность третичной структурной специфичности протеаз в их взаимодействиях с природными субстратами [107]. [c.238]


    Было показано, что синтетические сополимеры также проявляют каталитические эффекты, сравнимые с ферментативным катализом. С целью ныяснения возможности кооперативного взаимодействия имидазольной и гидроксильной групп получен сополимер винил-имидазола и винилового спирта. Он напоминает фермент а-химотрипсин. Однако сополимер лишь немногим более активен, чем поливинилимидазол в реакциях гидролиза эфиров. [c.298]

    Не менее поучительно сопоставление сорбционных функций а-химотрипсина и другой сериновой протеазы — трипсина. Размеры и форма субстратсвязывающего (сорбционного) участка в активных центрах обоих ферментов примерно одинаковы [3]. Единственное различие в первичной структуре полипептидных фрагментов, образующих гидрофобный карман , состоит в том, что в а-химотрипсине остаток 189 — это серин (см. рис. 9), а в трипсине в соответствующем положении находится отрицательно заряженная аспарагиновая кислота. Это приводит к тому, что в отличие от а-химотрипсина трипсин обнаруживает специфичность к гидролизу пептидных связей, образованных положительно заряженной аминокислотой (Lys, Arg). Сорбция положительно заряженного субстрата на ферменте (вблизи каталитически активного нуклеофила активного центра) происходит в данном случае за счет электростатических взаимодействий (рис. И, б). [c.35]

    Наиболее важная информация о строении молекулы химотрипсина (молекулярная масса 25 ООО) была получена с помощью рентгеност-зуктурных исследований последних лет, проведенных Блоу с сотр. 14, 17—19]. Как итог своих исследований авторы представили трехмерную модель молекулы химотрипсина (см. рис. 3). В согласии с ранними общими представлениями о строении белков было найдено, что все заряженные группы в молекуле этого фермента направлены в сторону водного растворителя (за исключением трех, которые выполняют специфические функции либо в механизме активации зимогена, либо в механизме действия активного центра). Особенности расположения аминокислотных остатков с гидрофобными боковыми цепями внутри белковой глобулы также согласуются с ранними представлениями о важной роли гидрофобных взаимодействий в стабилизации третичной структуры белков (см. гл. I). [c.127]

    Для объяснения этих фактов активный центр химотрипсина представляют обычно (в развитие идей школы Нимэнна [55, 64]) состоящим из участков, комплементарных по отношению к отдельным фрагментам молекулы специфического субстрата [7, 59, 65]. Движущая сила сорбции фрагмента К на ферменте — это гидрофобное взаимодействие. Фактически образование комплекса фермент — субстрат обусловлено тем, что боковая гидрофобная субстратная группа подвергается термодинамически выгодной экстракции из воды в органическую среду белка (см. 4—6 этой главы). Молекулярная модель активного центра была предложена Блоу с сотр. [66] на основании результатов рентгеноструктурного анализа кристаллического химотрипсина (см. рис. 9). Размеры гидрофобной полости в районе активного центра составляют (10—12) х(5,5—6,5)Х(3,5—4) А. Эти размеры достаточны, чтобы вместить боковую цепь триптофана или тирозина, но вместе с тем форма полости делает возможной только лишь одну, строго определенную ориентацию плоскости ароматического кольца. [c.134]

    Это интересное явление еще не нашло достоверной физико-химической трактовки. Можно лишь полагать, что причины его заложены в том, что сложноорганизованный (микрогетерогенный) и относительно жесткий сорбционный участок активного центра в отличие от жидких экстракционно-адсорбционных моделей представляет собой (если рассматривать это явление в высшей степени формально) как бы щипцы , которые в результате гидрофобных взаимодействий ухватывают в молекуле ингибитора лишь ее гидрофобный остов, центральной группой которого является плоское ароматическое ядро. Эта гипотеза находит отражение в молекулярной модели активного центра, предложенной Блоу с сотр. [66] на основании результатов рентгеноструктурного анализа кристаллического химотрипсина (см. рис. 9). Как уже отмечалось, форма полости делает возможной лишь одну, строго определенную ориентацию плоскости ароматического кольца. [c.141]

    Поскольку специфическое взаимодействие углеводородных субстратных фрагментов с активным центром химотрипсина гидрофобно (см. 2 и 4 этой главы), то специфический член S в уравнении (4.25) разумно представить в виде функции от показателя гидрофобности заместителя R. Таким параметром может служить константа я по Ганшу [105, 106], где я = IgP величина Р — это парциальный коэффициент распределения группы R между водой стандартным органическим растворителем (н-октанол) [см. уравнение (4.11)]. [c.149]

    Гидрофобное фермент-субстратное взаимодействие вносит важный вклад в специфичность химотрипсинового катализа (см. 2, 4, 5 этой главы). Это связано с тем, что составной нукЛеофил, входящий в активный центр фермента и принимающий участие в атаке сорбированной молекулы субстрата, расположен в поверхностном слое белковой глобулы [17—19, 66, 67]. Реакции, катализируемые химотрипсином, протекают таким образом вблизи поверхности раздела фаз вода — белок и сопровождаются термодинамически выгодным переносом (полным или частичным) гидрофобных фрагментов молекулы субстрата из одной среды (вода) в другую (белок). Свсбодная энергия такого рода гидрофобного взаимодействия, сопровождающего химическую реакцию между ферментом и субстратом, зависит от структуры субстрата, а также от геометрической конгруэнтности ее по отношению к активному центру (см. 5 этой главы). [c.150]

    Из рис. 43 видно, что все эти величины (ДС , ДОа, ДС , ДС ), характеризующие свободную энергию фермент-субстратного взаимодействия в различных промежуточных состояниях реакции, линейно зависят от свободной энергии переноса субстратного фрагмента К из воды в органический растворитель (ДО итр) - Поэтому на рис. 44 профиль свободная энергия — координата реакции приведен лишь для крайних членов исследуемого ряда субстратов. При построении диаграммы были сделаны два допущения 1) свободная энергия валовой реакции 5 + Н2О Р1 + РдН — это постоянная величина для всех членов изохимического ряда субстратов и равная приблизительно нулю [116, 117 ] 2)/Ср.н Кз, поскольку константа Михаэлиса в реакциях, катализируемых химотрипсином, слабо зависит от природы уходящей группы (см. табл. 25 и 26) [6, 7, 119]. Проанализируем далее, как изменяется профиль свободная энергия — координата реакции при вариации структуры субстрата. [c.151]

    В согласии с механизмом (4.40) субстратоподобный ингибитор действительно вытесняет из активного центра несколько молекул воды, как это было обнаружено при рентгеноструктурном анализе кристаллического химотрипсина [123]. Однако этот механизм не согласуется с данными по влиянию среды на гидрофобное фермент-субстратное взаимодействие (см. 4 этой главы). Кроме того, механизм (4.40) противоречит тому, что двойной выигрыш свободной энергии экстракции реализуется лишь в переходном состоянии химической реакции [см. уравнение (4.39)], в то время как в комплексе Михаэлиса вклад гидрофобного фермент-субстратного взаимодействия меньше [см. уравнение (4.29)]. Иными словами, в химотрипсиновом катализе не вся потенциальная свободная энергия сорбции, которую предполагает модель (4.40), равная 2АСэкстр, реализуется в виде прочного связывания субстрата с ферментом. Из диаграммы, представленной на рис. 44, видно, что в комплексе Михаэлиса (или ацилферменте) реализуется в виде свободной энергии связывания E-R лишь инкремент свободной энергии сорбции, отражающий перенос субстрата из воды в неводное окружение (в среду белковой глобулы), равный АО кстр [см. также уравнение (4.29)]. Для объяснения этих фактов следует допустить, что гидрофобное фермент-субстратное взаимодействие идет в две стадии 1) образование фермент-субстратного комплекса протекает по механизму (4.19), который не противоречит данным по солевому эффекту (на их основании он был и предложен), и термодинамические закономерности его согласуются с уравнением (4.29). Этот механизм также предполагает вытеснение нескольких молекул воды из [c.155]

    Как видно из уравнения (4.50), характеристика реакционной способности нуклеофила, действующего в фермент-субстратном комплексе, зависит от природы сорбированного субстрата. В табл. 29 приведено значение/гц,Ез для.реакции ацилирования химотрипсина одним из наиболее специфических субстратов, производным фенилаланина. Интересно сравнить это значение с реакционной способностью алкоксильных ионов, поскольку головная группа ферментного нуклеофила — это алифатический гидроксил остатка 5ег-195, протон которого взаимодействует с имидазольной группой Н1з-57. Значение константы скорости реакции метилового эфира М-ацетил-1-фенилаланина с алкоксиль-ным ионом М-ацетилсеринамида [c.163]

    Известно [17], что неконкурентное ингибирование ферментативной активности а-химотрипсина борной кислотой обусловлено взаимодействием ингибитора с имидазольной группой остатка гистидина-57 активного центра фермента. В табл. 20 приведены результаты совместного воздействия борной и н-гексилборной кислот на кинетику гидролиза анилидного субстрата, катализируемого а-химотрипсином [18]. Определить, принимает ли гистидин-57 активного центра фермента участие в связывании н-гексилборной кислоты. [c.97]

    При взаимодействии а-химотрипсина е Ы-ацетил-Ь-трип-тофаном происходит быстрое образование равновесного комплекса фермент-кислота, за которым следует реакция ацилирования фермента свободной кислотой [11]. При низких значениях pH ([Н+] Жа, где /Са — константа диссоциации Ы-ацетил-Ь-триптофа-на) кинетическую схему этой реакции можно записать в виде [c.154]

    Кинетика установления равновесия при взаимодействии а-химотрипсина с Ы-ацетил-Ь-триптофаном. Условия опыта pH 2,3 (цитратный буфер) 25° С ионная сила 0,0Ш [Р о = 5,9410- М. Концентрация свободного фермента определялась титрованием его -нитрофениловым эфиром N-aцeтил-L-тpиnтoфaнa [c.155]

    В последнее время работами Хесса с сотрудниками [5—7] на примере а-химотрипсина был развит новый метод изучения кинетики начальных стадий ферментативных реакций, получивший название метода вытеснения профлавина . Метод основан на том факте, что краситель профлавин (3,6-диаминоакридин) при связывании с а-химотрипсином в водном растворе изменяет свой спектр поглощения в ультрафиолетовой области. Величина разностного спектра поглощения, имеющего максимальное значение при длине волны 465 нм, пропорциональна -концентрации комплекса фермент-профлавин. Введение в систему фермент-профлавин субстрата, конкурирующего с красителем за связывание на активном центре а-химотрипсина, приводит к двум последовательным процессам вытеснения профлавина. Первый, очень быстрый процесс, заключается в обратимом вытеснении красителя из комплекса его с ферментом за счет образования нековалентного фермент-субстратного комплекса. Второй процесс, времена прохождения которого лежат обычно в пределах разрешения установок типа остановленной струи , вызван химическим взаимодействием субстрата с ферментом (например, образованием ацилферментного промежуточного соединения), что приводит к дополнительному уменьшению концентрации комплекса фермент-профлавин. Изучение кинетики второго процесса при различных концентрациях субстрата в дополнение к изучению кинетики ферментативной реакции в стационарном режиме позволяет сделать заключения о стадийности изучаемой реакции, а также найти значения констант скоростей промежуточных стадий ферментативной реакции. [c.188]

    Трипсин и химотрипсин, очевидно, имеют второй активный центр, содержап ий гистидин. Второй участок удален от первого, но на спиральной цепочке они сближены. Установление активной роли гистидина основывалось частично на изменении скорости ферментативной реакции в зависимости от pH, что соответствовало предположению о стратегическом расположении слабоосновного остатка, имеющего характер гистидина. Даже сам имидазол также катализирует гидролиз простейших сложных эфиров (БрюИ С" и Шм Ир 1965—.19i57 Бендер, 1957). 7 о, что фермент в 10 раз эффективнее, чем имидазол, имеет аналогию в модельных опытах по мутаротации глюкозы — реакции, катализируемой кислотами и основаниями. о -Оксипиридин, содержащий кислотный и основной центры (оба относительно слабые), более эффективен как катализатор, чем смесь пиридина и фенола (Свайн, 1952). И в а-окси-пиридине, и в протеолитическнх ферментах бифункциональность повышает каталитическую активность, поскольку протоны могут быть одновременно поданы и отщеплены в сопряженной реакции. Механизм действия, предложенный, Нейратом (1957) для химотрипсина, сводится к следующему. При взаимодействии гидроксильной группы серина с имидазольным кольцом гистидина отщепляется протон и образуется активированный комплекс П, имеющий электрофильный и нуклеофильный центры. [c.714]

    Это должно привести к значительному увеличению положительного заряда атома углерода, что в свою очередь должно облегчить нуклеофильную атаку. Такое взаимодействие должно также стабилизировать тетраэдрическое промежуточное соединение [уравнение (7-13)]. Карбонильный кислород проявляет очень слабую основность, но он может прото-нироваться подходящим образом ориентированной кислотной группой фермента [НВ в уравнении 7-16)]. В сериновых протеиназах эта функция, очевидно, выполняется двумя ЫН-группами амидных связей, одна из которых в химотрипсине принадлежит остатку 5ег-195 (рис. 7-2). По-видимому, подгонка субстрата к полости оксианиона между двумя NH-гpyппaми хорошо выполняется только для тетраэдрического промежуточного соединения [33]. [c.111]

    Иными словами, в белках пространственная форма основной цепи остатка типа Phe в значительной мере предопределяет положение его боковой цепи. Обратное влияние проявляется в уменьшении значений углов ф основной цепи, что также следует из расчета монопептида. Распределение по углам Xi = -60, 180 и 60° конформаций боковых цепей Phe и его стереохимических аналогов Туг, Тгр и His в белках составляет соответственно 56, 24 и 20% от их общего количества. Интересно, что согласно теоретической и экспериментальной оценкам приблизительно такие же веса трех ротамеров имеет свободная молекула метиламида К-ацетил- -фенилаланина. Наиболее вероятной величиной угла вращения вокруг связи С -С Х2 в монопептиде Phe является 90° (см. табл. 11.14). Такое же значение %2 чаще всего имеют остатки типа Phe в белках. Например, в миоглобине из 23 остатков этого типа угол %2. равный -90°,. имеют 16 остатков, %2 150° - 3 и - 30° - 4 в а-химотрипсине из 20 остатков угол Х 90° имеют 16. Из шести остатков на неспиральных участках в обоих белках с иными чем -90° значениями углов в пяти остатках углы близки к 150°. Теоретически такое положение ароматических колец также возможно только при %] = -60°. Действительно, во всех случаях, где Xi 150°, угол Xi близок к -60°. На а-спиральных участках белков боковые цепи остатков типа Phe имеют углы Xi —60 и 180° угол Xi - 60° в отношении ближних взаимодействий столь же вероятен, как и два отмеченных. Однако в а-спирали он не может реализоваться из-за наталкиваний, возникающих между ароматической группой и соседними боковыми цепями. Таким образом, в белках конформации всех остатков типа Phe близки к наиболее предпочтительным оптимальным конформациям метиламида М-ацетил- -фенилаланина. Распределение углов вращения в боковых цепях соответствует свободным энергиям ротамеров монопептида Phe. Идентичность распределения конформаций [c.187]

    ЯВЛЯЮТСЯ каталитические центры сериновых протеаз химотрипсина и субтилизина [18, 239, 240]. Для обоих ферментов при взаимодействии с субстратом характерно одинаковое расположение водородных связей, фиксирующих основную цепь субстрата, идентичное положение полости, принимающей боковые цепи, один и тот же механизм переключения заряда при расщеплении связей н один и тот же набор доноров водородных связей (NH-rpynn остова), фиксирующих карбонильные 0 -группы каталитического промежуточного продукта [537]. Несмотря на все это, оба фермента совершенно не скоррелированы в отношении их аминокислотных последовательностей, укладки цепей и, например, нумерации остатков Asp, His, Ser [18, 239, 240] в цепи переключения заряда. [c.233]

    А между атомом углерода карбонильной группы-15 псевдосубстрата и остатком5ег-195фермента. Обычным субстратам химотрипсина и трипсина, в которых осуществляется несколько выгодных контактов, для достижения стадии ацилирования необходима энергия активации от 5 до 4- 15 ккал/моль. Однако при образовании комплекса трипсин — ингибитор оптимизируются многочисленные другие взаимодействия, и величина ЛС оказывается равной —18 ккал/моль, несмотря на напряженность С—О -аддукта (табл. 5.6). Таким образом, различие энергий стабилизации можно объяснить различием контактирующих областей в комплексах, которые трипсин образует с ингибитором и с обычными субстратами [7491. [c.281]

    Неоднократно предпринимались попытки количественно оценить вклады различных эффектов (например, сближенности, направленности орбиталей, дестабилизации, общего кислотно-основного катализа и др.) в увеличение скорости, к которому приводит действие данного фермента. Однако пример химотрипсина показывает, что эти эффекты представляют разные способы описания одного и того же действия в активном центре и в действительности их нельзя отделить друг от друга. С другой стороны, представления, развитые при анализе фермент-субстратных взаимодействий, расширили наши представления о химическом катализе и способствовали созданию аналогов ферментов на основе полимеров непептидной природы [745, 750J. [c.282]

    Свойственная полипептидам и белкам, содержащим остатки тирозина и триптофана, естественная флуоресценция чувствительна к окружению этих остатков. Это обстоятельство можно в ряде случаев использовать, чтобы получить информацию о конформационной подвижности боковых радикалов остатков тирозина п триптофана в отношении близлежащих группировок в полипептидной цепи. Один пример — это истолкование изменений флуоресценции а-химотрипсина, возникающих при изменении состава растворителя, откуда следует достаточно близкое для протекания взаимодействия с переносом заряда расположение группировки — ONH— к остаткам тирозина и триптофана [59]. Доступность такого рода остатков тирозина в рибонуклеазе установлена в результате в основном качественного изучения флуоресценции [60] три обращенных наружу остатка тирозина в ферменте теряют флуоресценцию после 0-ацетилирования, в то время как боковые группировки трех других остатков тирозина скрыты . Этот вывод подкрепляется увеличением флуоресценции после денатурации трис (0-ацетил) фермента [60]. [c.441]

    Подобные рассуждения приложимы и к электростатическим взаимодействиям. Ионные пары между моновалентными ионами существенны в неполярных растворителях, однако их стабильность в воде мала. Значительные эффекты наблюдаются в том случае, когда один из ионов является полиэлектролитом 85], в этом случае могут образовываться стабильные комплексы с полиэлектролитами противоположного заряда. Полилизин, например (поликатион при нейтральном pH), образует нерастворимый комплекс с ДНК (полианионом) 86]. Во многих внутрибелковых и фермент-субстратных взаимодействиях электростатические силы усиливают водородные связи, как в солевом мостике СО НзМ описанном выще для химотрипсина, а также в случае бифункциональных взаимодействий (52) между карбоксилат- или фосфат-анионом и гуанидиновой группой аргинина, наблюдаемых, например, в активном центре креатинкиназы [87]. [c.504]

    Фактором, определяющим силу взаимодействия между двумя молекулами, возможно, даже более важным, чем водородная связь или электростатическое притяжение, является гидрофобное связывание [8,84]. Молекулы или части молекул, недостаточно сольватируемые водой, разрушают сеть водородных связей, составляющую структуру растворителя. Это разрушение снижается в случае сближения таких молекул, в результате чего уменьшается общая площадь контакта неполярной поверхности с водой. Углеводороды, например, образуют отдельную вторую фазу, в то время как детергенты, обычно представляющие собой длннноце-почечные углеводороды с полярными группами с одного конца, образуют мицеллы [9]. Последние представляют собой шарообразные агрегаты молекул с заряженными концевыми группами на поверхности, сольватпрованными водой и с углеводородными цепочками внутри, в контакте только друг с другом. Маленькие неполярные участки или полости на поверхности белка также слабо сольватированы водой, однако они не контролируют состояния агрегации молекулы в целом. Эти участки могут, однако, взаимодействовать с гидрофобными молекулами или частями молекул близкого размера, соединяясь с ними, в результате чего уменьшается общая площадь контакта неполярной поверхности с водой, как это указано выше. При обсуждении трехмерной структуры химотрипсина уже рассматривался пример такого рода (см. с. 488). Вблизи активного центра этого фермента располагается образованный гидрофобными группами карман [46], размер которого позволяет связыванию в нем индольного бокового радикала остатка триптофана. Сам индол прочно связывается в этом кармане (энергия связывания 60 кДж-моль ) [88]. Селективность действия химотрипсина в отношении той или иной пептидной связи в большой степени определяется комплементарно-стью соответствующего бокового радикала аминокислоты этому гидрофобному карману. [c.505]


Смотреть страницы где упоминается термин Химотрипсин, взаимодействие: [c.4]    [c.45]    [c.93]    [c.139]    [c.146]    [c.160]    [c.386]    [c.183]    [c.199]    [c.224]    [c.510]   
Токсичные эфиры кислот фосфора (1964) -- [ c.95 ]




ПОИСК





Смотрите так же термины и статьи:

Химотрипсин

Химотрипсин взаимодействие с ароматическими субстратами



© 2025 chem21.info Реклама на сайте