Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Раствор полимера, особенности

    Растворы полимеров по многим свойствам существенно отличаются от обычных растворов низкомолекулярных веществ. Чтобы отчетливее представить основные причины этого различия, остановимся прежде всего на самом процессе растворения, который в этом случае тоже обладает существенными особенностями. [c.598]

    Аномалия вязкости растворов полимеров обусловливается особенностями макромолекул, а также образованием структур в растворе при увеличении концентрации полимера. Находящиеся в растворе свернутые в клубки макромолекулы всегда удерживают внутри себя некоторое количество растворителя. Наличие связанного растворителя приводит к увеличению размеров полимерных клубков-частиц и существенно влияет на вязкость системы. [c.194]


    При растворении полимеров в низкомолекулярных жидкостях энтальпия смешения АН в большинстве случаев мала в случае эластомеров она, как правило, положительна. Хорошая растворимость полимеров в большом числе растворителей обусловлена необычайно высокими значениями энтропии смешения. Именно с последним обстоятельством связаны и отклонения свойств растворов полимеров от свойств идеальных растворов. Теория растворов полимеров [2—5] позволила рассчитать энтропию смешения полимера с растворителем исходя из определения числа способов, которыми могут разместиться молекулы растворителя среди связанных в длинные гибкие цепи сегментов макромолекул (конфигурационную энтропию смешения). Несмотря на ряд существенных приближений используемой модели, полученные с ее помощью уравнения свободной энергии смешения и, соответственно, парциальных мольных свободных энергий компонентов системы (химических потенциалов полимера н растворителя) позволили объяснить важнейшие особенности поведения растворов полимеров. [c.33]

    Вследствие больших размеров макромолекул и значительного межмолекулярного взаимодействия процесс растворения полимеров и свойства их разбавленных растворов имеют характерные особенности, по которым растворы полимеров отличаются от растворов низкомолекулярных соединений, как истинных, так и коллоидных. Как уже указывалось выше, растворению полимеров всегда предшествует набухание, и растворы полимеров, особенно линейных, имеют высокую вязкость. При одинаковой концентрации вязкость раствора полимера всегда выше, чем вязкость коллоидного и истинного растворов низкомолекулярного соединения, что объясняется зависимостью вязкости раствора от молекулярной массы. Кроме того, разбавленные растворы полимеров проявляют некоторые термодинамические аномалии. Они имеют более высокие, по сравнению с теоретическими, значения осмотического давления и температурных депрессий, что обусловлено участием в физико-химических процессах не цепных макромолекул в целом, а их независимых сегментов. [c.165]

    Для полимерных соединений характерна очень большая молекулярная масса, изменяющаяся нередко от 8—10 тыс. до нескольких миллионов. Высокие молекулярные массы полимеров, содержащих в молекуле 1000—1500 и более атомов, обусловливают и особенность их свойств. Они в отличие от иизкомолекулярных веществ полидисперсны по молекулярной массе, растворяются с предварительным набуханием и иногда образуют коллоидные растворы. Полимеры не летучи, их очистка затруднена и в большинстве случаев ее осуществляют переосаждением. Если в низкомолекулярных соединениях форма молекулы оказывает незначительное влияние иа их свойства, то строение макромолекулы полимеров наряду со строением элементарных звеньев в основном их определяет. [c.31]


    Как расчет термодинамических величин, отнесенных к молю раствора или компонента, так и развитие статистической теории требуют знания состава раствора, выраженного через мольные (л ,) или мольно-объемные (ср,) доли компонентов. Для расчета этих величин необходимо знать молекулярные веса компонентов, особенно полимера. Эта задача не проста. Для определения молекулярного веса Ма необходимо, как мы знаем, измерить кол-лигативное свойство предельно разбавленного раствора. Вследствие того что в растворах высокомолекулярных веществ имеют место большие отрицательные отклонения от закона Рауля, свойства предельно разбавленных растворов проявляются лишь при малых концентрациях растворенного вещества. Прн этих условиях такие коллигативные свойства, как понижение давления пара или понижение точки затвердевания, используемые для определения молекулярного веса, становятся настолько малыми, что их крайне трудно измерить. Только осмотическое давление таких растворов имеет достаточно точно измеримую величину (например, осмотическое давление 5%-ного раствора каучука в бензоле ( 2=4-19 ) равно 10 мм рт. ст.]. В связи с этим измерение осмотического давления растворов полимеров получило широкое распространение как метод определения молекулярного веса высокомолекулярных веществ в растворе. Точное измерение малых осмотических давлений проводится с помощью специальных, тщательно разработанных методик. [c.258]

    Исследования растворов полимеров показали, что характерное для ннх сильное отрицательное отклонение от неидеальности связано с различием в размерах молекул ВМС и растворителя и особенно с гибкостью линейных макромолекул, которые сильно увеличивают энтропию смешения при растворении. Вклад конформаций макромолекул в энтропию смешения был учтен в теории растворов полимеров, в основе которой лежит уравнение Флори и Хаггинса, полученное с помощью статистической термодинамики. [c.321]

    Близость механизмов течения низкомолекулярных и полимерных жидкостей приводит к тому, что формулы (1.1) и (1.2) вполне удовлетворительно применимы для расплавов и растворов полимеров, особенно в ограниченном диапазоне температур [13,21—23]. [c.8]

    В сборник вошли важные обобщающие работы, резюмирующие достижения последних лет в области изучения вязкостных свойств растворов полимеров, особенностей течения расплавов и т. п. Многие исследователи в настоящее время работают с узкими фракциями полимеров этой проблеме посвящен ряд статей в сборнике. В современной практике важное место занимает изучение сополимеров, так как в развитии этой группы веществ возможно решение важных прикладных вопросов, связанных с использованием полимеров. Изучение физико-химии полимеров немыслимо без создания новых и развития известных методов и методик. Это также нашло отражение в подборе материала. [c.4]

    Гель-хроматография (или гель-проникающая хроматография) является одним из вариантов жидкостной хроматографии, в котором растворенное вещество распределяется между свободным растворителем, окружающим гранулы геля, и растворителем, находящимся внутри гранул геля. Так как гель представляет собой набухшую структурированную систему, имеющую различные по размерам поры, то разделение в данном виде хроматографии зависит от соотношения размеров молекул разделяемых веществ и размеров пор геля. Помимо размеров молекул, которые можно принять пропорциональными молекулярным массам, существенную роль для гель-хроматографии играет форма молекул. Особенно большое значение этот фактор имеет для растворов полимеров, в которых при одной и той же молекулярной массе молекулы могут принимать различную форму (сферическую или другую произвольную) в соответствии с их конформацией и вследствие этого по-разному вести себя в колонке. Дальнейшие рассуждения справедливы для молекул, имеющих сферическую форму. [c.237]

    Систематическими исследованиями Каргина и его школы было показано, что одним из основных факторов, определяющих свойства полимеров и, в частности, целлюлозы, является так называемая надмолекулярная структура. Как правило, не только в твердой фазе, но в большинстве случаев и в растворах полимеров, особенно в концентрированных растворах, находятся не отдельные макромолекулы, а их агрегаты, образующие достаточно прочные и устойчивые элементы структуры (так называемые надмолекулярные структуры). Строение этих элементов структуры, названных указанными исследователями пачкаМи, может быть различным и их размеры, определяемые для большинства типов полимеров на основании результатов электронномикроскопических исследований, могут изменяться при различных воздействиях. Для препаратов целлюлозы и ее производных такими первичными элементами надмолекулярной структуры в ряде случаев являются микрофибриллы (стр. 63). Поэтому при исследовании химических и физико-химических свойств целлюлозы необходимо учитывать, что они определяются не только, а в ряде случаев не столько взаимным положением макромолекул и их изменением при различных обработках, сколько строением и взаимным расположением элементов надмолекулярной структуры. [c.60]


    При изучении влияния солей в пластовой системе на процесс вытеснения нефти мицеллярными растворами установлено, что при большом содержании солей в породе и пластовой воде полнота вытеснения резко снижается. Особенно нежелательны в пластовой системе многовалентные ионы. Главная причина снижения эффективности процесса — повышение солености промежуточной жидкости. Наиболее действенный способ компенсации этого — изменение состава загущенной воды добавлением нейтрализующих соединений (карбоната натрия, фосфата натрия и др.). Растворение 0,5% Ыа СОз (рис. 116) в оторочке водного раствора полимера (0,1 % Пушер-700) позволяет повысить извлечение остаточной нефти из образцов песчаников с 65—70 до 75—80 %. [c.197]

    Примечательной особенностью желатинированных растворов полимеров является синерезис. Процесс этот наблюдается при продолжительном стоянии желатинированного раствора полимера и представляет собой образование уплотнений в системе. Он объясняется медленным углублением структурирования раствора, начавшегося еще при его желатинировании. При этом происходит стягивание молекул полимера между собой, вследствие чего из гомогенной желатинированной системы выделяется плотное тело, копирующее форму сосуда, в котором находится система, и окруженное разбавленным раствором полимера (рис. VI. 17). По мере углубления синерезиса выделившееся тело все более уплотняется, сокращаясь в размерах. [c.302]

    Излагаются основные понятия современной теории адгезии и фазовых переходов. Предложена модель адгезии на межфазной границе раствор полимера - субстрат , как расширение двумерного поверхностного газа в поле межмолекулярных сил субстрата. Показаны особенности фазовых переходов и адгезии в полимерных смесях. Изложены результаты экспериментов по изучению влияния хаоса компонентного состава на характеристики фазовых переходов в многокомпонентных высокомолекулярных системах. Установлено, что концентрационный хаос искажает критические константы фазовых переходов, определяемые из классов универсальности. Обнаружен эффект пространственно-временного совмещения фазовых переходов в многокомпонентных высокомолекулярных системах с концентрационным хаосом. Учебное пособие предназначается для студентов и аспирантов химических, химико-технологических и инженерных специальностей вузов и может быть рекомендовано специалистам в области технологии, физики и химии полимеров, композиционных материалов, текстильной промышленности и нефтехимии. [c.2]

    Растворы полимеров во многом подобны дисперсным системам, хотя и являются молекулярными растворами. Например, они склонны к структурированию. Это сообщает им так называемую структурную вяз-кость, характерной особенностью которой является ее зависимость не только от концентрации раствора, но и от интенсивности движения жидкости. В связи с этим растворы полимеров характеризуются  [c.219]

    Одна из важнейших особенностей растворов полимеров состоит в том, что их вязкость значительно больше вязкости растворов мономеров такой же массовой концентрации. Зависимость вязко- [c.299]

    Уравнение Эйнштейна не распространяется на растворы полимеров с линейным и пространственным строением молекул. Вязкость таких растворов зависит не только от их концентрации, но и от скорости взаимного перемещения их слоев. Это явление получило название аномальной вязкости и представляет собой еще одну особенность растворов полимеров. Для пояснения аномальной вязкости обратимся к реологическим кривым, изображающим зависимость вязкости жидкостей от скорости взаимного перемещения их слоев (рис. VI. 16). [c.300]

    Выход и молекулярный вес полимера возрастают с увеличением интенсивности перемешивания независимо от природы органической фазы [4]. При этом кинетическая область достигается при скорости перемешивания 2000— 4000 об/мин и дальнейшее ее увеличение не влияет на выход и молекулярный вес образующегося поликарбоната [5—9]. Это объясняется тем, что при увеличении интенсивности перемешивания образуется развитая поверхность и наступает равновесие между коалесценцией и дроблением капель. Этот процесс протекает при определенной частоте вращения мешалки, зависящей от природы взятой пары растворителей, их объемного соотношения и конструкции реакционного сосуда и мешалки. При фазовом числе, равном 1 для одной и той же пары растворителей и при установившемся режиме удельная поверхность раздела мало зависит от интенсивности перемешивания. Если органическая фаза не растворяет полимер, особенно необходимо интенсивное перемешивание. [c.16]

    Большое практическое значение имеют студни (структурированные, обладающие упругостью растворы полимеров), особенно термически и реологически обратимые, в которых полимерные цепи связаны в структурную сетку физическими силами. Обычно они возникают в растворителях низкого термодинамического качества.  [c.822]

    От недостатков, присущих газожидкостной хроматографии (необходимость применения высоких температур, возможность разложения полимера), свободен метод ГПХ. Он наиболее перспективен для определения пластификаторов в растворах полимеров, особенно при содержании в полимере только одного пластификатора. Этим методом можно определять пластификаторы в полистироле, используя УФ-детектор. В работе [274] методом внутреннего стандарта определяли триэтиленгликоль-дибензоат и трициклогексилцитрат в их смеси с полистиролом при содержании 5—30%- 7—10 %-ные растворы полимера хроматографировали на последовательных колонках с наполнителем разной пористости. [c.255]

    Для ниэкомолекулярных жидкостей энергия активаций вязкого течения имеет значение лорядка 12— 20 кДж/моль. Это же уравнение вполне удовлетворительно применимо для рашлавов и растворов полимеров, особенно в ограниченном диапазоне температур [8 12—14]. [c.58]

    Изучение вязкости, светорассеяния и других свойств разбавленных растворов полимеров позволяет сделать заключения о величине и форме макромолекул, полидисперсности, наличии ассоциации в растворах [102]. Аналогичные сведения может дать также и исследование электропроводности растворов полимеров, особенно полиэлектролитов [18]. С данной точки зрения интересны растворы полимерных диэлектриков. Действительно, электропроводность органических жидкостей (гл. 1), к которым относятся и многие мономеры, определяется движением ионов примесей. Поэтому вязкость растворов полимеров в органических растворителях должна существенно влиять на подвижность переносящих заряды ионов. Удельное же электрическое сопротивление низкомолекулярных жидкостей изменяется с температурой прямо пропорционально изменению вязкости [1]. Аналогичные результаты быди получены и при полимеризации высыхающих масел [103]. Ниже будут приведены некоторые экспериментальные данные, показывающие, что и для растворов полимеров имеется корреляция между вязкостью и электропроводностью. Поэтому исследования электропроводности растворов полимерных диэлектриков могут быть использованы и для изучения таких характеристик полимеров, как молекулярный вес, взаимодействие с растворителем и т. д.  [c.74]

    Измерения подвижности воды, прокачиваемой вслед за раствором полимера, показывают, что характер ее течения идентичен течению полимерного раствора, хотя соответствующие кривые для воды всегда ниже. Остаточный фактор сопротивления для неминерализованной воды достаточно высок, в особенности при фильтрации после растворов полимеров с высокими значениями молекулярной массой и степенью полидисперс-ности. [c.120]

    В большинстве проведенных экспериментов по определению коэффициента нефтеотдачи моделей пласта подтверждается исходная гипотеза о выравнивании фронта вытеснения при закачке загущенной воды вместо обычной и, следовательно, повышении коэффициента нефтеоотдачи. Существует достаточно четкая корреляция между концентрацией и вязкостью раствора полимера и степенью вытеснения продукции из линейной пористой модели пласта. В опытах с карбоксиметнлцеллюлозон КМЦ (рис. 63) наблюдается резкое увеличение полной и особенно безводной нефтеотдачи модели пласта при концентрации полимера до 0,5—1 %. Заметим, что такая концентрация в промысловых условиях может быть достигнута лишь при использовании крупнотоннажной технологии. [c.120]

    Растворы полимеров раньше рассматривали как коллоидные растворы (лиофильные золи). Однако в работах Флори, Добри, В. А. Каргина и др. было показано, что эти растворы, в особенности при невысоких концентрациях полимера, должны рассматриваться как обычные растворы, отличающиеся от последних внутренним строением, термодинамическими и другими свой-. ствами, что обусловлено лишь большой величиной и особенностями строения макромолекул полимеров и сильным различием в величине частиц полимера и растворителя. Наиболее отчетливо это проявляется для очень разбавленных растворов. Для этих растворов применимы обычные соотношения, характеризующие зависимость осмотического давления растворов и других свойств от их концентрации, однако все же следует учитывать очень большую величину макромолекул полимера и гибкость цепей. Подвижность отдельных звеньев цепей приводит к тому, что макромолекула может обладать очень большим числом конформаций. Вследствие этого соответственно увеличивается термодинамическая вероятность и, следовательно, энтропия системы. [c.601]

    Главной особенностью полимеризации в растворе является ее проведение при температурах 110—150°С. Это делается для того, чтобы обеспечить растворение полимера. Остаток катализатора можно удалить фильтрацией горячего раствора полимера. При этом исключаются затраты, связанные со стадией обез-золивания, и получается очень чистый полипропилен. Полимер выделяют из раствора кристаллизацией и центрифугированием. Для сокращения времени пребывания в реакторе и повышения [c.202]

    Особенности технологического процесса в растворитель, содержащий катализатор, вводят изопрен и смесь пропускают через батарею полимеризаторов. Готовый раствор полимера пхюмывают для отделения катализатора и высаживают в горячую воду. Это непрерывный процесс. [c.194]

    Показаны особенности фазовых переходов и адгезии в сложных высокомолекулярных системах. Изложены результаты экспериментов, проведенных на кафедре технологии полимерных материалов УТИС и в лаборатории новых материалов и методов ИПНХП АН РБ по изучению влияния хаоса компонентного состава на хара1гге-ристики фазовых переходов в многокомпонентных высокомолекулярных системах. Предложена модель адгезии на межфазной границе раствор полимера - субстрат как расширение двумерного поверхностного газа в поле межмолекулярных сил поверхности субстрата. Показана адекватность этой модели для адгезии растворов и гелей полимеров и сложных многокомпонентных адгезивов на металлических и полимерных субстратах. [c.4]

    Из сказанного выше ясно, насколько сложно реологическое поведение расплавов и растворов полимеров. Поэтому не удивительно, что тридцатилетние усилия реологов не привели еще к созданию определяющих уравнений, количественно описывающих все явления, возникающие при течении полимерных расплавов. Ученые и инженеры используют уравнения, описывающие те особенности течения полимеров, которые представляют для них наибольший интерес или важны для частной рассматриваемой задачи. Для описания реологического поведения расплавов полимеров было предложено множество определяющих уравнений, но только небольшая их часть была использована для решения задач, связанных с процессами переработки полимеров. Тем не менее интересно проследить историю их происхождения и выявить существующую между ними взаимосвязь. [c.140]

    В те же годы Штаудингером было доказано, что макромолекулы являются продуктами полимеризации и поликонденсацни мономеров с образованием ковалентных связей. Он ввел понятия степенн полнмеризации и статистической молекулярной массы. Одновременно разными исследователями было установлено, что сольватация макромолекул почти не отличается от сольватации мономеров. Оказалось, что особенности в поведении полимеров связаны не только с большим размером молекул, но и с гибкостью полимерных цепей, нследствне чего макромолекулы способны принимать большое число конформаций. Учет этих конформаций лежит в основе созданной Марком и Куном (1928) кинетической теории изолированной макромолекулы и разработанной Хаггинсом и Флори статистической термодинамики растворов полимеров. В результате этих исследований было доказано, что лиофильность молекулярных коллоидов (растворов полимеров) объясняется не столько взаимодействием с растворителем, сколько энтроиинной составляющей, обусловленной многочисленными конформациями макромолекулы, свернутой в клубок. [c.310]

    Несмотря на изменения представлений о строении макро моле-кул, растворы полимеров всегда рассматривались как коллоидные системы. Одиако в 1937 г. их принадлел ность к коллопдам была взята под сомнение. В. А. Каргиным с сотр. в 1937 г. было установлено, что растворы полимеров являются термодинамически устойчивыми системами. Этот факт явился большим вкладом в науку о полимерах и о коллоидных системах вообще. В то же время, считая термодинамическую неустойчивость принципиальной особенностью коллоидных систем, авторы сделали вывод о том, что растворы полимеров являются истинными растворами, а не коллоидными. В связи с этим некоторые ученые даже предлагали выделить физическую химию полимеров вообще из коллоидной химии. [c.310]

    Роль размера частиц дисперсной фазы в устойчивости растворов полимеров связывает их с другими коллоидными системами. Уже можно утверждать, что для систем с компактными сферическими частицами дисперсной фазы отклонения от идеальности хотя и меньше, чем для систем, содержащих линейные макромолекулы, но они все равно остаются отрицательными. Таким образом, только различие в размерах частиц дисперсной фазы и молекул дисперсионной среды вносит вклад в энтропийный фактор устойчивости коллоидных систем. Этот вклад возрастает для лиозолей, стабилизированных с помощью ПАВ и особенно высокомолекулярных соединений. [c.324]

    Прочность пространственной структуры характеризуется критическим напряжением сдвига Рк. С ростом концентрации растворов полимеров взаимодействие между макромолекулами повышается и образуются более прочные структуры. Поэтому при увеличении концентрации растворов значения Рк и г) акс повышаются. Таким образом, концентрационная зависимость вязкости растворов полимеров дает ценную информацию о структурных особенностях исследуемых систем и те1У самым позволяет оценить влияние межмолекулярных взаимодействи на их реологические параметры. [c.196]

    Учит 51вая особенности поведения ра бав.пенн1з1х растворов полимеров и связанные с этим отклонения от закономерностей для идеальных растворов, нри вычислениях обычно пользуются уравнением Оствальда, удовлетворительно отражаюи1им зависимость [c.79]

    В разбавленном растворе полимера в хорошем растворителе гибкие макромолекулы находятся в виде рыхлых клубков, внутри которых заключен растворитель. При оседании молекул полимера растворитель увлекается вместе с ними, и количество свободного растворителя, заполняющего межмолекулярные пространства, соответственно уменьшается. Вследствие этого скорость седиментации частиц со временем уменьшается. Чем больше молекулярный вес, тем резче снинсается скорость седиментации в результате уменьше ния количества свободного растворителя, что особенно заметно прп повышении концентрации полимера в растворе (рис. 40). Поэтому определение скорости седиментации проводят в разбавленных растворах полимера в шлохом растворителе. [c.81]

    В большинством процессов радикгимыю-цеппой полимеризации, инициируемой светом, образование полимера продолжается некоторое время и после удаления источника облучения, с постепенным уменьшением скорости ироцесса (рис. 45). Особенно это за-к[етно при полимеризации соединений, полимеры которых нерастворимы в исходном мономере, например в случае полимеризации винилхлорида или акрилонитрила. Это обт ясняется малой подвижностью макрорадикалов в вязкой среде (раствор полимера п мономере), приводяш,ей к уменьшению скорости реакции обрыва цепей и увеличению длительности существования радикалов. Нели полимеры акрилоиитрггла, винилхлорида или винплпдоц- [c.94]

    Вторая особенность химических превращений полимеров связана с малой подвижностью макромолекул, обусловленной их громоздкостью и значительным межмолекулярным взаимодействием. Даже 2—3%-ные растворы полимеров имеют консистенцию вязких клееподобных систем, в которых свободное движение макромолекул затруднительно. Повышая температуру, можно [c.170]

    Мы попытались кратко рассмотреть взаимосвязь некоторых определяющих уравнений, которые ылироко применяются для описания свойств расплавов и растворов полимеров. Ни одно из них количественно не описывает всех особенностей реологического поведения этих сред. Одни из них лучше, чем другие, зато их применение для решения задач вместе с уравнением движения более затруднительно. В табл. 6.1 кратко суммированы возможности предсказания реологических эффектов с помощью упомянутых уравнений, а также некоторых других. [c.145]

    В природе и технологической практике чаще встречаются молекулярные растворы полимеров, которые, однако, обладают рядом свойств, прпдаюпитх им внешнее сходство с коллоидными спстсмами медленное течение лсех процессов, высокая (структурная) вязкость, отсутствие способности ( роппкать сквозь полупроницаемые перепонки и др. Причина этих особенностей одна — огромные размеры молекулы ВМС и малая скорость их диффузии. [c.193]

    Еще раз укажем, что аморфный полимер во всех трех областях, в частности, в области каучукоподобной эластичности II, надлежит рассматривать как расплав. Это существенно, ибо ряд в принципе кристаллизующихся полимеров (например, полиэтилен-терефталат) можно быстрым переохлаждением перевести в стеклообразное и вполне аморфное состояние. Правда, при этом в области II (именно из-за релаксационного расстекловывания ) возникает сегментальная подвижность, а она, в свою очередь, может способствовать кристаллизации. Расплав вновь появится в этом случае при Гх, п. Что касается агрегатных состояний, или степени твердоподобия, то, как уже указывалось, их не удается трактовать однозначно, как для простых веществ. Впрочем, различие это в значительной мере кажущееся, если мы ограничиваемся таким механическим свойством, как податливость тогда перемещая стрелку действия, можно нивелировать разницу между этими состояниями напротив, если рассматривать обратимость деформаций, специфика полимеров, особенно состояния каучукоподобной эластичности, станет бесспорной. Эта бесспорность лишь подчеркивается тем обстоятельством, связанным с зыбкостью границ (особенно для Гт), что расплавы выше Гт и даже достаточно разбавленные растворы гибкоцепных полимеров при очень быстрых воздействиях проявляют не только твердоподобие, но и высокоэластичность при вполне умеренных частотах (см. гл. V). [c.80]


Смотреть страницы где упоминается термин Раствор полимера, особенности: [c.108]    [c.65]    [c.136]    [c.155]    [c.41]    [c.376]    [c.272]    [c.119]   
Инфракрасная спектроскопия полимеров (1976) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Растворы полимеров



© 2024 chem21.info Реклама на сайте