Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Макромолекула хим. изомерия

    Особенности строения самой полимерной молекулы также существенно влияют на термостойкость полимера. К числу таких особенностей относятся регулярность строения макромолекулы, изомерия замещения в ядре, наличие сшивок между молекулами, наличие слабых связей в цепи и др. [c.25]

    Вращение отдельных атомных группировок вокруг направлений валентных связей в молекулах даже небольшой длины приводит к появлению большого количества особого типа стереоизомеров, которые получили название поворотных изомеров (ротамеров). Происходящее под влиянием теплового движения вращение отдельных частей молекулы реализуется без существенного изменения валентных углов и межатомных расстояний вариации их значений находятся в пределах 2-3%. При достаточно большой длине макромолекула может последовательно приобретать различную форму от растянутой (рис. 2.1, [c.77]


    Поворотные изомеры макромолекул, возникающие в результате теплового движения звеньев, называются конформациями цепи. [c.77]

    Обе полимерные молекулы построены из ангидро-О-глюкозных звеньев. Звенья цепи связаны полуацетальными мостиками. Целлюлоза характеризуется транс- и гой/-положением элементарных звеньев, а амилоза - ч с-положением. Эти пространственные различия обусловливают более высокую гибкость макромолекул амилозы. Амилоза и целлюлоза относятся к конфигурационным пространственным изомерам, и их структурный взаимный переход невозможен. [c.79]

    Конформация макромолекул - форма полимерной цепи, обусловленная возможностью вращения звеньев вокруг валентных связей в результате теплового движения, не сопровождающегося разрушением химических связей между атомами и атомными группами. Вид поворотных изомеров, ротамеров (см. Гибкость макромолекул). [c.400]

    Синтетические каучуки имеют менее регулярную структуру, чем натуральный каучук. Наиболее близки к нему стереорегуляр-ные изомеры синтетических каучуков, получаемые методами анион-1юй полимеризации в присутствии гетерогенных катализаторов (катализаторы Натта, алфиновые катализаторы, металлалкил , , литий). Однако эти методы, применение которых связано с известными трудностями, пока не получили широкого распростра нения. В макромолекулах стандартных промышленных синтетических каучуков имеются 1-4-, 1-2-, 3—4-структуры, звенья с различным расположением замещающих групп относительно [c.236]

    Конформацию на первый взгляд можно было бы определить как конфигурацию с включенным тепловым движением. Иными словами, это переменное (из-за теплового движения) распределение в пространстве атомов и атомных групп, образующих макромолекулу. В первом приближении конформация характеризуется неизменными валентными углами и связями, но переменными ориентациями связей. Флори [26] и многие его последователи полагают, что при условии неизменности связей конформации достаточно полно могут быть описаны двумя углами, определяющими ротамеры, или поворотные изомеры , но мы бы сделали акцент на слове достаточно , а не полно . [c.29]

    РЕАЛЬНЫХ МАКРОМОЛЕКУЛ И ПОВОРОТНЫЕ ИЗОМЕРЫ [c.132]

    По современным представлениям, гибкость макромолекул связана с изменением взаимного расположения смежных атомов цепи или звеньев. При этом звенья обладают набором устойчивых конформаций (поворотных изомеров), соответствующих минимумам потенциальной энергии. Изменение конформаций макромолекул происходит путем перехода звена от одних минимумов к другим через потенциальные барьеры. Чем выше потенциальный барьер, тем реже происходит переход от одного поворотного изомера к другому. При этом среднее время т, характеризующее процесс перехода от одной равновесной конформации к другой, тем больше, чем выше потенциальный барьер 11, и тем меньше, чем больше интенсивность теплового движения, характеризуемая величиной кТ (где k — постоянная Больцмана, Т — температура). Согласно статистике Больцмана, т = С ехр [ //(йГ)] (здесь С — постоянная, равная кон-формационному времени в условиях, когда U = 0 или Г- оо). [c.17]


    Различают термодинамическую и кинетическую гибкости полимерных цепей. Так, если время воздействия 0 на полимер механических, электрических или других внешних сил больше, чем т, то всегда будет наблюдаться равновесное распределение звеньев по различным поворотным изомерам. При этом будет наблюдаться равновесная или термодинамическая гибкость макромолекулы, которая характеризуется статистическим сегментом. [c.17]

    Кривая потенциальной энергии внутреннего вращения имеет несколько максимумов, вообще говоря, не одинаковых по глубине. Большую часть времени связь С—С находится в положениях, соответствующих минимумам энергии. Эти устойчивые конформации звена, получающиеся путем вращательных движений вокруг единичных связей, называются поворотными изомерами. По М. В. Волькенштейну [4.1], развившему теорию поворотных изомеров в полимерах, макромолекулу можно приближенно рассматривать как смесь поворотных изомеров. В поворотно-изомерном приближении внутреннее вращение в цепи представляет собой переходы от одних к другим поворотным изомерам. [c.84]

    Формулы Бреслера Френкеля и Тейлора Поворотные изомеры 0 Распределение линейной макромолекулы по длинам [c.92]

    В этой главе приведены в наиболее простой форме достижения статистической физики полимеров, которая является разделом статистической физики вообще и поэтому использует идеи и методы этого раздела теоретической физики. Вначале рассматривается статистика линейных макромолекул в приближении модели свободно сочлененных сегментов и в приближении к реальным макромолекулам (конформационная статистика, поворотные изомеры). Выводится распределение свободной макромолекулы по ее длинам (свернутости) в процессе теплового движения. Это распределение подчиняется нормальному (гауссову) закону распределения аналогич- [c.122]

    Чтобы понять причину гибкости линейных макромолекул, рассмотрим строение молекулы этана. Ее можно представить как две группы —СНз, соединенные одинарной связью. Из органической химии известно, что группы —СНз в молекуле этана способны вращаться вокруг одинарной связи С—С. Это хорошо согласуется с тем, что, например, симметричный дихлорэтан не имеет изомеров. Однако при низких температурах свободное вращение вокруг связи С—С затруднено, так как не все возможные положения групп —СНз относительно друг друга равноценны в энергетическом отношении. Такая неравноценность обусловлена тем, что при повороте одной группы —СНз по отношению к другой изменяются расстояния между атомами водорода обеих групп. Это ведет к изменению энергии взаимодействия между группами —СНз. Поэтому при низких температурах —СНз-группы не вращаются вокруг оси С—С, а лишь вращательно колеблются на сравнительно небольшой угол. Только при достаточно высокой температуре благодаря увеличению кинетической энергии может быть преодолен энергетический барьер и группы —СНз будут свободно вращаться вокруг соединяющей их связи. [c.427]

    Для определения конформации макромолекулы сравнивают теоретическое и экспериментальное значения периодов идентичности. Теоретическое значение периода идентичности рассчитывают, исходя из модели макромолекулы ориентированного полиизопрена в виде плоского зигзага. При расчете учитывают тип изомерии, валентные углы и длины валентных связей, которые определяют из радиусов атомов (табл. VI. 2). [c.193]

    Поскольку разные виды конфигураций стабильны во времени и не изменяются в процессе теплового движения, они представляют собой стабильные изомеры макромолекул. [c.11]

    Большая длина макромолекулы при возможности вращения частей молекулы вокруг простых связей обусловливает еще один вид изомерии — поворотную изомерию, которая выражается в возникновении различных конформаций. Конформацией макромолекулы называют пространственное расположение атомов или групп атомов в молекуле, которое может меняться под действием теплового движения без разрушения химических связей. Конфор-мационные перестройки происходят и в малых молекулах, где разнообразие поворотных изомеров намного меньше, чем в макромолекулах. [c.92]

    Благодаря большому числу атомов в макромолекуле высокомолекулярные соединения могут иметь необозримое число изомеров даже [c.16]

    В химической физике полимеров решение многих задач значительно упрощается, если их удается сформулировать в терминах теории графов. Такой подход особенно эффективен при описании разветвленных и сетчатых полимеров, которые представляют собой наборы макромолекул с различным числом структурных единиц (звеньев), соединенных между собой всевозможными способами. Для того чтобы учесть возникающую в таких системах структурную изомерию макромолекул, каждой из них удобно поставить в соответствие молекулярный граф, аналогичный структурной формуле в классической органической химии. Однако синтетические полимеры являются наборами практически бесконечного числа индивидуальных химических соединений, а поэтому отвечающие им статистические ансамбли молекулярных графов содержат такое же число различных представителей. Их распределение в полимерном образце является случайным и определяется условиями его синтеза. Следовательно, в теории полимеров приходится иметь дело с ансамблями случайных графов, для нахождения вероятностной меры которых нужно рассматривать процесс получения полимерного образца, когда происходит формирование соответствующего этому образцу набора макромолекул. Такая необходимость совместного физического и химического рассмотрения полимерных систем, как будет видно из дальнейшего, является одной из основных особенностей их теоретического онисания. [c.145]


    Оксикарбоновая кислота (II) является мономером типа АВ и получается к виде смеси изомеров (6- и 7-изомеры). В то время как полиэфир, полученный из чистого изомера (не установлено какого — G- или 7-изомера), обладает т. пл. выше 300° и плавится с разложением, полиэфир из смеси изомеров (синтез которой приводится ниже) устойчив выше температуры его плавления (210 ). Это является еще одним примером влияния строения цепи на свойства в ряду сополимеров с хаотическим распределением звеньев в макромолекулах. [c.147]

    Возможно чередование типов присоединения, те. в пределах одной макромолекулы звенья могут присоединяться друг к другу различным образом. Наличие большого количества звеньев в полимерной цепи и возможность всего лишь нескольких вариантов их присоединения создает огромное количество изомеров уже по отношению ко всей макромолекуле. Иными словами, полимер может содержать (и действительно содержит) макромолекулы не строго одинакового химического строения, но смеси большого количества макромолекул, что, конечно, сразу же отличает его от низкомолекулярных веществ, построенных из совершенно одинаковых молекул. [c.21]

    Синтез макромолекул из цис-изомеров приводит к получению эритро-ди-изотактических полимеров [c.23]

    В отличие от кристаллической части, в аморфной части ПЭВД, доля которой составляет 60—80%, макромолекулы лишены упорядоченности и располагаются друг относительно друга нерегулярно. В аморфной части реализуются различные свернутые гош-изомеры, а в кристаллической — вытянутые гракс-изомеры. [c.143]

    Гибкость макромолекул, для которых к < Ю нм, проявляется преимушественно как поворотная изомерия (ротамерия). Для полимеров с к > 40 нм конформационные переходы реализуются в результате суммирования малых колебаний валентных углов и углов внутреннего врашения. [c.88]

    Мы видели уже в гл. I, что большую часть времени связи хребта цепи проводят в положениях, соответствующих минимумам энергии и отвечающих одному транс- и двум гош-поворотным изомерам (ротамерам). По Волькенштейну [7, с. 169], развившему поворотно-изомерную теорию гибкости полимеров, макромолекулу можно приближенно рассматривать как смесь поворотных изомеров внутреннее вращение при этом представляет собой переходы от одних к другим поворотным изомерам. Процесс растяжения полимера состоит в его поворотной изомеризации. Он сопровождается, во-первых, перефаспределенйем поворотных изомеров звеньев цепи без изменения их полного набора и, во-вторых, изменением набора поворотных изомеров, когда происходит переход от свернутых гош-изомеров к трамс-изомерам. Первое связано с изменением энтропии цепи, но не ее внутренней энергии, второе — с изменением обеих функций. [c.124]

    Внутреннее вращение —это процесс, состоящий из крутильных колебанвй внутри потенциальных минимумов с перескоками время от времени между поворотными изомерами. Для молекулы этана с высотой барьера 13 кДж/моль частота перескоков равна при 20 °С примерно 10 ° с , что практически воспринимается как свободное вращение. Равновесные свойства молекул (такие, как дипольный момент, оптическая активность, форма макромолекул и т. д.), представляют собой результат усреднения по всем поворотным изомерам. Отдельные молекулярные характеристики, проявляющиеся за время, меньшее времени жизни поворотных изомеров позволяют наблюдать поворотные изомеры и доказывать их существование. Например, о поворотных изомерах можно судить по спектральным линиям, частоты которых различны для различных поворотных изомеров. Так, поворотные изомеры были в 1932 г. открыты с помощью спектров комбинационного рассеяния. В настоящее время поворотные изомеры обнаруживаются как по спектрам комбинационного рассеяния света, так, особенно, по инфракрасным спектрам поглощения. [c.136]

    Согласно модели Волькенштер1на линейная макромолекула рассматривается как равновесная смесь поворотных изомеров, а внутреннее вращение в цепи представляет собой поворотную изомеризацию, реализуемую в виде переходов от одних к другим поворотным изомерам. [c.97]

    Аналогичные результаты для разделения гомологов и многих изомеров получают при модифицировании силикагеля путем предварительной адсорбции на его поверхности плоских молекул модификатора (фталоцианинов, порфиринов) или вытянутых макромолекул (например, углеводородных или алкилсилановых олигомеров). Такие модификаторы не должны растворяться в растворителях, служащих элюентами. На этих адсорбентах также лроисходит разделение гомологов и изомеров в соответствии со структурой их молекул. [c.311]

    Изомерия у полимеров. Большие размеры макромолекул полимеров обусловили и еще одну важную особенность их в сравнении с низкомолекулярными вен1ествами той же химической природы. Как известно, уже у бутана могут быть два структурных изомера — нормальный и изо-бутан. Огромная макромолекула полимера может быть линейной и разветвленной, т. е. иметь боковые ответвления от основной цепи. Если при этом молекулярная масса линейной и разветвленной молекул одинакова, то они являются изомерами. Физические и механические свойства полимеров, состоящих из линейных макромолекул, сильно отличаются от свойств полимеров, состоящих из разветвленных макромолекул (например, полиэтилен высокой плотности и полиэтилен низкой плотности). [c.8]

    Наличие асимметричных атомов углерода ведет к возникновению другой формы стереоизомерии, связанной с существованием с1- и 1-изомеров в соответствии с пространственным расположением четырех разных заместителей при одном атоме углерода в молекуле органического соединения. Эти четыре разных заместителя у каждого атома углерода в цепи — водород, группа X (или V), два разных по длине участка цепи макромолекулы влево и вправо от выбранного атома углерода. Однако в обычных углеводородных полимерах эта изомерия не доходит до способности вращать плоскость поляризации, как это имеет место у индивидуальных ё- и 1-изомеров простых органических соединений (например, молочные кислоты и др.). Существование же изо и синдиотактических структур у од-нозамещенных этиленовых углеводородов или дитактических у дву-замещенных приводит к существенным различиям их физических и механических свойств. Еще более ярко эти различия выражены у цис- и тра с-1,4-полидиенов (подробнее см. ч, II). [c.57]

    Гомополнмеры. Структура макромолекул гомополимера характеризуется а) молекулярной массой, б) распределением по размерам макромолекул, т. е. молекулярно-массовым распределением, в) наличием изомеров. Изомерными являются линейные, разветвленные И сшитые макромолекулы (например, частицы микрогеля). Обладая примерно одинаковой молекулярной массой, такие макромолекулы с ростом разветвленности становятся все более компактными , что приводит к существенным изменениям механических свойств. Среди макромолекул существуют цис- и транс- [c.91]

    Свойства и применение. П.-твердые аморфные или кристаллич. в-ва. Их св-ва зависят от мол. массы и строения макромолекулы, напр, от наличия заместителей в бензольных кольцах, изомерии фениленовых групп, наличия не-фониленовых звеньев и разветвленности. [c.35]

    Поворот звеньев более легко осуществляется вокруг одинарной связ — Hj- O—1 составляющей угол 20° с осью молекулярной цепи [3]. Благо даря таким поворотам может сильно нарушаться межцепной порядок вл реализоваться складчатая (флексуральная) форма макромолекулы, отдель ные звенья которой дополнительно соединяются вторичными связями. По ворот вокруг связи —СН247СН2— гликольного остатка обусловливает су ществование двух ротационных изомеров, а именно гош- и /ираис-изомеров Как видно на рис. 5.1, эти изомеры отличаются взаимным расположением [c.102]

    В кристаллическую фазу входят только звенья с траис-ковформацией, в то время как в аморфной фазе могут присутствовать транс- и гош-изомеры. По данным Казаряна и Цванкина [17], осуществивших рентгенографические исс.тедования, в аморфном ориентированном полиэтилентерефталате период идентичности равен 1,05 нм, что близко к величине оси С в кристаллической решетке. Отсюда был сделан вывод, что в аморфном ориентированном состоянии содержится в основном тракс-изомеры, относительные сдвиги цепей систематически правильны, так же как и в кристаллическом полиэтилентерефталате, но азимутальные повороты макромолекул остаются неупорядоченными. Последнее характерно для аморфной фазы, также обладающей определенным местным порядком [18]. [c.105]

    По этим данным можно судить, что на первой стадии вытягивания происходит увеличение доли свободного объема, распрямление части макромолекул или развертывание свернутых сегментов макромолекул в аморфных областях [93]. Однако при непрерывном уменьшении количества го(я-изомеров число транс-изомв-ров на начальной стадии вытягивания при 95 °С не увеличивается. Это объясняли [92] тем, что интенсивно протекающие релаксационные процессы при малых кратностях вытяжки препятствуют непосредственному образованию вытянутых транс-изомеров. Возможна), существует промежуточная конформация между гош- и транс-конформациями [94]. Предполагают [95], что при небольших деформациях полиэфирного волокна происходит увеличение свободного объема по слабым местам структуры, при этом плотность и доля звеньев в пракс-положении могут даже уменьшаться. Но эти изменения не связаны с разрушением структурных элементов, поскольку они обратимы — при отжиге система возвращается в первоначальное состоЯЕгие. [c.133]

    Кроме того, при таком рассмотрении обычно не разделяют эффектов КЦР и ДЦР, считая вклад КЦР в общий эффект уменьшения размера разветвленной макромолекулы по сравнению с линейным изомером пренебрежимо малым. Но если предположение о пренебрежимой малости вклада КЦР несправедливо, то величина X лишается физического смысла она уже не характеризует ДЦР, но не характеризует и суммарного эффекта разветвленности, поскольку найдена способом, справедливым только для ДЦР. В работе [119] рассмотрены последствия предположения, что X = onst, инеучета вклада КЦР при анализе ПЭВД этим методом. Рассмотрение Проведено для образца, обладающего 2,2 короткими бутильными ветвями на 100 углеродных атомов и характеризующегося зависимостя- [c.135]

    Применение С-ЯМР-спектроскопии в химии полимеров включает исследование стереохимии макромолекул (табл. 20.5), в том числе структурной изомерии, пространственной изомерии, конформации макромолекул и конформации спирали, коротко- и длинноцепного ветвления, структуры сшитых гелей, механизма полимеризации, механизма окисления и деструкции полимеров. [c.330]

    Рассмотренный метод позволяет не только определить химическое строение повторяющегося составного звсиа п коицевых групп, но также оценить конфигурацию макромолекулы. Напрнмер. присутствие в продуктах распада натурального каучука янтарной кислоты свидетелиствует о наличии структурны.х изомеров, в которых звенья соединены хвост к хвосту - [c.70]

    Термодинамическая гибкость характеризует способность цепи изменять свою конформацию под действием внутреннего теплового движения и зависит от величины АС/, т. е. от разности энергий поворотных изомеров. Чем меньше эта величина, тем выше вероятность перехода макромолекулы из одной конформации в другую Термодинамическая гибкость является равновесной характеристикой и опреде.пяется в условиях невозмущенной конформации макромолекулы, т. е. в сильно разбан-ленном растворе в 0-растворителс при 0-температуре. Термодинамическая гибкость оценивается несколькими показателями параметром жесткости, длиной термодинамического сегмента, персистентной длиной цепи н параметром гибкости Флори. [c.91]


Смотреть страницы где упоминается термин Макромолекула хим. изомерия: [c.127]    [c.306]    [c.265]    [c.96]    [c.58]    [c.453]    [c.58]    [c.467]    [c.619]   
Химия целлюлозы и ее спутников (1953) -- [ c.28 ]




ПОИСК







© 2024 chem21.info Реклама на сайте