Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионизация источником электронного удара

    Для получения иоиов в масс-спектрометрах наиболее часто используется ионизация посредством электронного удара или химическая ионизация. До настоящего времени большинство масс-спектров получали с использованием ионизации электронным ударом. На рис. 5-10 представлена схема ионного источника электронного удара. Современные библиотеки масс-спектров содержат более 120 ООО спектров, полученных с ионизацией электронным ударом. Самой обширной библиотекой данных является коллекция масс-спектров ЕРА/МН, которая используется для сопоставления и идентификации спектров при анализе лекарственных средств и объектов окружающей среды [15]. [c.84]


    Регистрация ионов и определение концентрации примесей. Заряженные частицы, возникающие в источнике ионов при анализе твердых веществ, не обладают одинаковой начальной энергией. Разброс ионов по энергиям составляет 30—50 эВ для ионного зонда и 200—2500 эВ — для искрового и лазерного. Поэтому обычные масс-анализаторы, предназначенные для работы с ионизацией паров электронным ударом, в этом случае непригодны. Вместо них используют специальные масс-анализаторы с двойной фокусировкой, позволяющие фокусировать пучки ионов с большим энергетическим разбросом. На выходе масс-анали-затора помещают фотопластину, на которой регистрируются одновременно линии ионов почти всех элементов, входящих в состав образца (например, в диапазоне атомных масс от 7 до 250 а,е.м.). [c.213]

    В методе химической ионизации в ионный источник непрерывным потоком дополнительно подается обладающий соответствующими характеристиками газ (именуемый газом-реактантом), что создает в ионизационной камере давление около Па — необычно высокое для традиционной масс-спектрометрии. Количественное соотношение газа-реактанта и исследуемого образца (который, например, может быть подмешан к потоку газа-реактанта) лежит в пределах 10 —10 в соответствии с этим парциальное давление образца в ионном источнике составляет примерно 10 -—10 Па, т. е. оказывается сравнимым с парциальным давлением образцов в ионном источнике электронного удара. [c.283]

    Ионный источник химической ионизации конструктивно аналогичен ионному источнику электронного удара. Однако ионизационная камера первого обладает более высокой герметичностью по отношению к газовому потоку, что необходимо для поддержания перепада давления между ионным источником и окружающим высоковакуумным пространством. Для отвода газа-реактанта, просочившегося из ионного источника, и для поддержания нормального рабочего вакуума (порядка Ю— Па) приходится использовать высоковакуумные насосы с повышенной производительностью (разд. 3.1.1). [c.283]

    На рис. 1.5 приведена схема прибора, в котором источники с химической ионизацией и электронным ударом соединены последовательно. Использование ионно-оптического затвора позволяет оптимизировать конструкцию каждого из источников и работать попеременно в режиме химической ионизации и в режиме электронного удара. В качестве простейшего ионно-оптического затвора используется источник с электронным ударом. На камеру с электронным ударом накладывается небольшой положительный потенциал по отношению к камере химической ионизации, поэтому ионы, образующиеся при электронном ударе, проходят в анализатор. При отрицательном потенциале в области источника с электронным ударом в анализатор поступают ионы из источника с химической ионизацией. [c.20]


    Ионный ИСТОЧНИК, в ионном источнике молекулы ионизируются, а образовавшиеся ионы ускоряются и формируются в ионный пучок, в случае органических соединений особое значение имеет ионизация методом электронного удара. Схема компоновки ионного источника и устройства для ионизации электронным ударом с другими узлами масс-спектрометра показана на рис. 5.37. Электроны испускаются раскаленным катодом 3. По пути к аноду 4 они сталкиваются с молекулами исследуемого газообразного, вещества, которые через дюзы натекателя 2 непрерывно подаются в ионный источник 5. Поскольку налетающие электроны обладают определенным минимумом энергии (см. стр. 275), молекулы ионизируются и распадаются на осколки. Обычно работают при энергии электронов около 70 эВ, потому [c.286]

    Если ионизация осуществляется электронным ударом, то М+ появляется при наиболее низком потенциале. Если чистый образец попадает в ионный источник через молекулярный натекатель, то М" " показывает ту же скорость эффузии, что и осколочные ионы. Интенсивность пика М+ пропорциональна давлению пробы в ионном источнике. [c.37]

    Масс-спектры состоят из линий, обусловленных осколками молекул эти осколки возникают в результате разрыва молекулы под действием электронного удара. Затем ионизированные осколки и ионы молекул ускоряются в магнитном поле в разной степени в зависимости от величины М е М — масса иона в атомных единицах е — заряд иона в единицах заряда электрона) и таким образом могут быть разделены. Ионизация происходит в ионном источнике масс-спектрометра, большей частью путем бомбардировки электронами. Ионные токи, обусловленные каждым видом ионов, усиливаются и регистрируются и являются мерой вероятности, с которой возникает данный осколок. Положение линий на шкале масс и относительные частоты ионов являются одинаково важными характеристиками масс-спектра данного соединения. Частоту наиболее интенсивной линии в спектре считают равной ста и относят частоты всех других ионов к этой линии (относительный спектр). Различные функциональные группы соединений обусловливают, как правило, различные масс-спектры, которые можно предсказать заранее. Относительный спектр при обычных условиях большей частью хорошо воспроизводится и характеризует данное вещество. Часто масс-спектры изомеров различаются между собой по относительной интенсивности линий, и это обстоятельство достаточно для однозначной идентификации изомеров даже в тех случаях, когда они имеют одинаковые массовые числа, как это большей частью бывает. [c.265]

    Отработка методики проводилась на масс-спектрометре МИ-1201. Исследуемое вещество прямым вводом помещалось рядом с ионизационной камерой. Проникнув в область нагрева (400-430"С, в вакууме), проба испарялась и в газообразном состоянии попадала через диафрагму в ионный источник, где под воздействием электронного удара ионизировалась. Энергия электронов составляла 70 эВ. Образовавшиеся положительно заряженные ионы вытягивались из зоны ионизации и ускорялись в электронной оптической системе. При входе в магнитное поле происходило разделение по массам, и ионы приобретали энергию порядка 200 эВ. На шлейфовом осциллографе осуществлялось сканирование магнитного или электрического напряжения, и последовательно регистрировались ионы различных масс. [c.149]

    Ионы образуются в результате процесса, называемого ионизацией электронным ударом (ЭУ). Пары аналита подвергают бомбардировке ускоренными электронами. Источником электронов служит электрически нагретая вольфрамовая или рениевая нить. Большинство электронов при столкновениях претерпевают упругое рассеяние, но часть столкновений приводит к электронному возбуждению молекул аналита. Несколько актов возбуждения могут привести к полному отрыву электрона от молекулы. В результате образуется катион-радикал М" "  [c.260]

    Химическую ионизацию (ХИ) осуществляют в ионных источниках при относительно высоком давлении (0,1-100 Па). Высокое давление приводит к более частым межмолекулярным и ион-молекулярным столкновениям в источнике, в результате чего между ионами реагентного газа и молекулами аналита происходят химические реакции. Ионы реагентного газа образуются в результате электронного удара и последующих ион-молекулярных реакций. Например, в случае аммиака, используемого в качестве реагентного газа, образуются ионы КН и (NHз)NH4 при тп/г = 18 и 35. Эти ионы содержат четное число электронов и могут рассматриваться как протонированные молекулы. Они могут вступать с молекулами изучаемого вещества М в ион-молекулярные реакции  [c.267]

    Химическая ионизация. При химической ионизации (ХИ) вещество ионизируется при газофазной ион-молекулярной реакции. Для этого в источник ионов при относительно высоком давлении (0,01-2 мм рт.ст.) вводится газ-реагент (обычно метан, изобутан, аммиак или вода), из которого в результате ионизации под действием электронного удара генерируются ионы. Определяемые молекулы ионизируются непосредственно за счет ряда реакций с газом-реагентом, при которых во время столкновений на молекулы аналита переносится небольшая порция энергии с достаточно узким распределением. Это объясняет, почему ХИ часто называют мягким методом ионизации. Мягкая ионизация приводит к меньшей фрагментации и поэтому к большей интенсивности пиков молекулярных ионов по сравнению с ЭУ. Низкий [c.601]


    Ионизация под действием электронного удара (ЭУ) наиболее часто применяется в современных масс-спектрометрах. В настоящей главе рассматриваются устройство ионного источника и основные параметры, определяющие характер масс-спектра. [c.18]

    Молекулы газа, поступающие в область ионизации, взаимодействуют с электронами. В результате некоторые из этих молекул теряют собственный электрон, превращаясь в положительно заряженный ион, который впоследствии распадается на ионы тем или иным образом, причем ионизируется только одна из 10000 молекул, находящихся в ионном источнике. Полный ионный ток и вид фрагментации зависят от энергии электронов. Большинство существующих библиотек масс-спектров электронного удара основано на спектрах, полученных при энергиях электронов около 70 эВ. [c.130]

    Наиболее распространенный метод ионизации - это ионизация электронным ударом (ЭУ), заключающаяся в воздействии ва изучаемое вещество (обычно 1фи давлении около 10 мм рт. ст.) пучка электронов. Источником электронов служит нагретая катодная нить (чаще всего вольфрамовая). Электроны ускоряются в электрическом поле, создающемся в ионном источнике между катодом и анодом, разность потенциалов между которыми обычно составляет от О до 100 В. [c.177]

    В последние годы достигнут прогресс в создании небольших настольных МСД для газовых хроматографов. В настоящее время этот высокочувствительный детектор — самый совершенный прибор для идентификации неизвестных веществ. Имеется библиотека масс для более 250 тыс. соединений. МСД обычно включает вакуумный насос, ионный источник и систему обработки. Для газовых хроматографов используются в основном два вида ионизации электронный удар и химическая ионизация. [c.263]

Рис. 7.4. Комбинированный источник ионов с химической ионизацией и ионизацией электронным ударом Рис. 7.4. <a href="/info/774167">Комбинированный источник ионов</a> с <a href="/info/141302">химической ионизацией</a> и <a href="/info/281920">ионизацией электронным</a> ударом
    Ионизация образца два сменных ионных источника. 1. ИЭ-20 с ионизацией электронным ударом энергия электронов 8-10 >- — б-Ю - Д.чс 5—100 эВ) ступенчатое переключение температура 50—400 С. 2. ИЭП-23 (комбинированный) с ионизацией электронным ударом или электрическим полем на платиновой игле ионизирующее напряжение до 8 кВ. [c.266]

    Ионизация образца источник ионов ИЭ-24 с ионизацией электронным ударом энергия электронов 8-10 1 —16-Дж (5—100 эВ) плавная регулировка, температура 100—400 С. [c.267]

    Ионизация образца в модификации 1 ионный источник ИТ-04 с поверхностной ионизацией яа рениевой ленте (/ < 3000 С) в модификациях П и III — ИЭ-20 с ионизацией электронным ударом энергия электронов 8-10 1 —16-10" Дж (5-100 эВ). [c.269]

    Ионизация образца ионный источник с ионизацией электронным ударом энергия электронов [c.270]

    Ионизация образца два ионных источника — с фотоионизацией под действием монохроматических фотонов далекой (200—85 нм) УФ-области и с электронным ударом. [c.272]

    Арсено и др. [62] приводят описание масс-спектрометра, оборудованного двумя ионными источниками (электронного удара и химической ионизации), который позволяет одновременно или попеременно измерять масс-спектры обоих видов. Известны также иные конструктивные варианты комбиниро- [c.286]

    Абсолютная чувствительность метода МС характеризуется минимальным количеством вещества, которое может быть зарегистрировано в виде сигнала, п1)евышающего шум регистрирующей системы. Максимальная чувствительность может достигать значения 10- моля, т. е. 5-10 молекул [8, 9]. Относительная чувствительность характеризует возможность измерения соотношения количеств изучаемых компонентов в смеси. Рекордные значения относительной чувствительности в ряде случаев достигают 10 % [8, 9]. Следует, однако, подчеркнуть, что фактическая чувствительность масс-спектрометра сильно зависит от эффективности способа введения образца в источник ионов прибора. Чувствительность масс-спектрометров связана и со способом ионизации летучих продуктов деструкции. Наиболее распространенным способом ионизации является электронный удар с энергией электронов 70 эВ. Для указанных энергий электронов составлены каталоги масс-спектров отдельных веществ. Эtи каталоги [10, И] используются для расшифровки масс-спектров индивидуальных химических соединений. [c.171]

    Эксперименты со скрещенными пучками дают наиб, полную информацию о взаимод. между частицами, в т. ч. о хнм. р-циях, позволяя проследить траектории рассеянных частнц нли продуктов р-ции. Этого достигают тем, что сначала определяют скорости, углы взаимод. и др. исходные состояния пучков реагентов, а затем измеряют распределение рассеянных частиц, в т. ч. продуктов, по скоростям, внутр. степеням свободы, углам рассеяния. Установка со схрещен-ньп (и пучками состоит из неск. вакуумных камер с дифференц. откачкой, источников мол. пучков (однн из к-рых, как правило, газодинамический), мех. модуляторов пучков, детектора, разл. селекторов для выделения частнц с энергиями в заданном интервале значений, систем управления экспериментом, сбора и обработки данных. Распределения рассеянных частиц по скоростям обычно определяют времяпролет-ным методо.м. при к-ром измеряют времена прохождения частицами известного расстояния. Применяют разл. детекторы масс-спектрометры с ионизацией электронным ударом или лазерным излучением с поверхностной ионизацией манометрич. микровесы полупроводниковые лазерные (основанные на лазерно-индуцир. флуоресценции). [c.123]

    Разряды низкого давления используют в качестве ионных источников в МС для проводящих твердых проб благодаря их простоте и эффективной ионизации. Их широко применяли до внедрения искрового источника. Вслед за использованием тлеющего разряда в атомно-эмиссионной спектрометрии, где наблюдали интенсивное испускание ионов, в начале 1970-х вновь возник интерес к применению этого источника в МС [8.5-9-8.5-13]. Масс-спектрометрия с тлеющим разрядом (ТРМС) имеет ряд уникальных характеристик, что можно видеть и в атомно-эмиссионной спектрометрии (разд. 8.1). Пробоподготовка сведена к минимуму, ТР работает при пониженном давлении (0,1-10 мм рт. ст.), атомизация происходит за счет распыления поверхности, а ионизация — главным образом за счет электронного удара и пеннинговской ионизации из метастабильных уровней инертного газа —сосредоточена в области свечения (рис. 8.5-2). Разрядный газ — это обычно аргон высокой чистоты, но аргон можно заменить другим инертным газом, например Ne. Интерфейс с МС располагают очень близко к области свечения, чтобы избежать захвата молекулярных ионов. Подобно ИСП-МС используют двухступенчатую дифференциальную систему откачки. Требуется также ионная оптика, особенно для уменьшения разброса энергии ионов. Настройка ионной оптики имеет решающее значение для экстракции и прохождения ионов. Параметры ТР, используемые для оптимизации ионизации, включают природу и давление газа, напряжение и ток разряда. В некоторых последних модификациях ячейку охлаждают жидким [c.137]

    Ионизация электронным ударом. В ионизации электронным ударом (ЭУ) молекулы пробы, попадающие в источник ионов из газохроматографической колонки, ионизируются потоком тепловых электронов, эммитируемых из вольфрамовой или рениевой нити накала (катод) и ускоряемых в сторону анода. Столкновение электронов с молекулами пробы, во время которых часть кинетической энергии электронов передается молекулам, приводит к их возбуждению, фрагментации и ионизации. Поскольку распределение внутренней энергии непосредственно влияет на вид масс-спектра и сильно зависит от энергии электронного пучка Е и последняя обычно устанавливается на стандартном уровне е1 = 70 эВ. [c.601]

Рис. 14.2-2. Демонстрадия селективности, достигаемой химической ионизацией (отрицательно заряженные ионы) по сравнению с ионизацией электронным ударом (положительно заряженные ионы) для анализа экстракта почвы на бифенилы, а — общий ионный ток (ОИТ) в режиме электронного удара, при котором очевидно серьезное мешающее влияние комплексной матрицы б — ОИТ того же экстракта при детектировании отрицательно заряженных ионов в режиме химической ионизации с метаном. Хроматографические условия температура инжектора 250° С, объем пробы 1 мкл (без деления потока), колонка DB 5ms, 15 мх0,25 ммх 0,25 мкм, газ-носитель — гелий (0,3 бар), температура термостата 60°С (1 мин) —> 20°С/мин —> 280°С (10 мин), температура источника 250°С (электронный удар), 140°С (химическая ионизация) [14.2-2]. Рис. 14.2-2. Демонстрадия селективности, достигаемой <a href="/info/141302">химической ионизацией</a> (отрицательно <a href="/info/1038927">заряженные ионы</a>) по сравнению с <a href="/info/141594">ионизацией электронным ударом</a> (положительно <a href="/info/1038927">заряженные ионы</a>) для <a href="/info/1661090">анализа экстракта</a> почвы на бифенилы, а — <a href="/info/133026">общий ионный</a> ток (ОИТ) в режиме <a href="/info/18290">электронного удара</a>, при котором очевидно серьезное мешающее <a href="/info/1185677">влияние комплексной</a> матрицы б — ОИТ того же экстракта при детектировании отрицательно <a href="/info/1038927">заряженных ионов</a> в режиме <a href="/info/141302">химической ионизации</a> с метаном. <a href="/info/40771">Хроматографические условия</a> <a href="/info/1610206">температура инжектора</a> 250° С, <a href="/info/426654">объем пробы</a> 1 мкл (без <a href="/info/393253">деления потока</a>), колонка DB 5ms, 15 мх0,25 ммх 0,25 мкм, газ-носитель — гелий (0,3 бар), <a href="/info/1020959">температура термостата</a> 60°С (1 мин) —> 20°С/мин —> 280°С (10 мин), <a href="/info/139335">температура источника</a> 250°С (<a href="/info/18290">электронный удар</a>), 140°С (химическая ионизация) [14.2-2].
    Химическая ионизация. Современный ионный источник с ионизацией электронным ударом (ЭУ) обычно позволяет работать и в режиме химической ионизации (ХИ). Переключение с режима ЭУ на режим ХИ и наоборот осуществляется настолько быстро, что при масс-спектрометриче-ском анализе элюата газо-жидкостного хроматографа автоматическое переключение на второй режим возможно уже через [c.185]

    Через интерфейс квадрупольный детектор сопрягается с газовым хроматографом путем соединения конца капиллярной колонки с источником ионов (программно задаваемая энергия ионизации электронным ударом или. химическая ионизация как положительными, так и отрицательными ионами, прямой ввод пробы). Система фильтрдв практически исключает возможность загрязнения детекто[ пробой. [c.462]

    Одним из первых и наиболее распространенным вплоть до настоящего времени способов ионизации является ионизация электронным ударом (ЭУ) [37]. Источник ионов с ЭУ обычно имеет камеру ионизации, в которую вводят поток паров анализируемого вещества (рис. 7.2,). Перпендикулярно этому потоку камеру пересекает пучок ускоренных до заданной энергии электронов, эмитируемых нагретым рениевым или вольфрамовым катодом. Этот пучок электронов бомбардирует молекулы анализируемого вещества. Если энергия электронов больше потенциала ионизации молекулы, то с определенной вероятностью неупрутие соударения приводят к образованию ионов в результате выбивания из молекулы одного из электронов М + е -> М + 2е. Ионизация ЭУ имеет много достоинств это, прежде всего, простота устройства источника ионов, хорошая воспроизводимость масс-спектров и высокая чувствительность. Абсолютная эффективность ионизации составляет 0,01-1% количества молекул, введенных в источник, а тепловой разброс ионов по энергиям находится в пределах 3-5 эВ, что позволяет достичь высокого разрешения (8000 и более) без применения масс-анализаторов с двойной фокусировкой. Вероятность ионизации ЭУ зависит от потенциала ионизации атомов и молекул (табл. 7.2 7.3) и сечения ионизации (табл. 7.4). [c.842]

    Ионизованные молекулы и атомы по их массам разделяют в масс-спектрометре, схема основных узлов которого приведена на рис. 12.1. Он состоит из устройства для ввода пробы 1, в которое газы вводят непосредственно, а жидкости испаряют заранее или в приборе. Задача системы напуска заключается во вводе такого количества газообразной пробы, чтобы обеспечить давление 10" —10" мм рт. ст. в ионном источнике 2, где молекулы иониз1фуются. При ионизации электронным ударом электроны испускаются раскаленньпй катодом, соударяются по пути к аноду с молекулами введенного вещества и часть этих молекул электроны ионизуют. Образующиеся ионы выводятся из зоны ионизации, ускоряются электрическим полем и одновременно фокусируются в пучок (узел ускорения и фокусировки ионов 3). Нейтральные молекулы удаляются вакуумным насосом. Все узлы прибора находятся под высоким вакуумом (вакуумная система 4), который обеспечивает необходимую длину свободного пробега ионов. Поток ускоренных ионов попадает в масс-анализатор 5, где ионы разделяются по массе. Разделенные пучки ионов затем попадают в детектор б, где ионный ток преобразуется в электрический сигнал, который усиливается усилителем 7 и обрабатывается ЭВМ 8. [c.365]

    Первичное возбуждение может вызываться фотоэлектронами (и другими способами), так же как и электронным ударом, но во всяком случае энергия оже-электронов не зависит от энергии возбуладающего пучка. Хотя при сопоставимых энергиях сечение ионизации для фотонов приблизительно на четыре порядка больше, чем для электронов, влияние различных инструментальных факторов, в том числе интенсивности источника и коллимации пучка, приводит к тому, что при электронном возбуждении абсолютный ол<е-сигнал больше. Однако фотонное возбуждение обеспечивает меньший фон от возбуждения валентных электронов, поэтому отношение сигнал/шум для него лучше, чем для электронного возбуждения. Тем не менее простота и удобство электронного возбуждения привели к его широкому использованию, особенно в аппаратуре, предназначенной для иных целей (нанример, ДМЭ). [c.414]

    В последние годы все более широкое распространение приобретает масс-спектрометрте-ский метод определения термохимических величин. Описание этого метода можно найти, например, в монографиях Бернарда [90] и Коттрелла [255]. В результате масс-спектромет-рических исследований измеряются потенциалы появления и ионизации, а также интенсивности токов образующихся ионов. Если в результате электронного удара происходит разрыв связи в молекуле, то найденные экспериментально потенциалы появления и ионизации позволяют вычислить энергию диссоциации этой связи. При этом необходимо знать энергию электронного возбуждения и кинетическую энергию осколков молекулы. Во многих случаях, однако, отнесение измеренного потенциала появления иона к конкретному процессу вызывает затруднения. Для вычисления энергии диссоциации связи необходимо также знать температуру, при которой происходит диссоциативная ионизация. Как показали Тальрозе и Франкевич [407], в ионизационной камере масс-спектрометра с источником типа Нира между стенками камеры и газом достигается температурное равновесие. Учитывая это обстоятельство, при пересчете результатов масс-спектрометрических работ, в которых температура молекулярного пучка специально не оговорена, в Справочнике принималось, что процессы диссоциативной ионизации протекали при температуре ионного источника. Температура стенок ионного источника приближенно принималась равной 500° К- [c.157]

    Главные конструктивные особенности масс-спектрометров связаны, прежде всего, со способами ввода анализируемых, веществ в ионный источник, способами ионизации и регистрации образующихся ионов. Большинство приборов снабжено ионными источниками с электронным ударом, однако разработаны и выпускаются спектрометры с полевой, поверхностной и фотоионизацией различных соединений. Наряду с приборами со средней разрешающей способностью (400—2000), достаточной для решения большинства аналитических задач, выпускаются приборы высокого разрешения (40 ООО и более), позволяющие определять состав осколочных ионов, проводить с высокой точностью изотопный анализ при больших изотопныл отношениях и т. д. [c.265]

    Применение в органическом анализе масс-спектрометрии с химической ионизацией обусловлено ее высокой чувствительностью и селективным образованием квазимолекулярных ионов, обеспечивающих возможность определения молекулярной массы исследуемого соединения. Ионизация осуществляется в ионномолекулярных реакциях молекул анализируемого образца с так называемыми ионами-реагентами, образующимися при взаимодействии ионов, получающихся в результате ионизации реагентного газа электронным ударом, с молекулами того же газа при повышенном 10—100 Па) давлении в ионном источнике масс-спектрометра. Ионы, образующиеся в результате электронной бомбардировки молекул газа реагента, носят название первичных, а получающиеся в ионномолекулярных реакциях первичных ионов с нейтральными молекулами газа реагента называются вторичными ионами [1, 2]. [c.126]

    Одной из характерных особенностей масс-спектрометрии с химической ионизацией является возможность варьирования условий процесса (тип реагентного газа, температура и давление в ионном источнике), что обеспечивает селективную ионизацию определенных классов соединений. Это открывает перспек-вы для анализа смесей, компоненты которых образуют при электронном ударе трудноразличимые масс-снектры, а вследствие аналогии физических и химических характеристйк не могут быть подвергнуты предварительному препаративному разделению. [c.127]


Смотреть страницы где упоминается термин Ионизация источником электронного удара: [c.130]    [c.287]    [c.130]    [c.200]    [c.274]    [c.185]    [c.12]    [c.601]    [c.848]    [c.253]   
Высокоэффективная газовая хроматография (1993) -- [ c.177 , c.179 ]




ПОИСК







© 2024 chem21.info Реклама на сайте