Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Истинные мицеллы

    Маслорастворимые нефтяные и синтетические сульфонаты образуют в нефтепродуктах истинные мицеллы с числом агрегации 10—90 (часто 40—60), причем на одну молекулу сульфоната приходится до 10 молекул связанной (гидратной, солюбилизированной) воды. Чем меньше молекулярная масса сульфоната, выше его относительная степень ионности и полярность, меньше энергия связи со средой, тем иже значение ККМ в маслах, лучше защитные (поверхностные) и несколько хуже — моющие свойства (см. табл. 18). Истинные мицеллы маслорастворимых ПАВ выполняют в нефтепродуктах следующие функции  [c.91]


    Эти особенности истинных мицелл сульфонатных и менее полярных алкилфенольных присадок объясняют их высокие солюбилизирующие, диспергирующие и стабилизирующие свойства и низкое собственно моющее действие (см. табл. 18). Исследование коллоидной структуры маслорастворимых сульфонатов показало, [c.91]

    Растворы поверхностно-активных веществ представляют собой динамические системы, в которых находятся в равновесии мицеллы и истинно растворенный эмульгатор. [c.145]

    Поверхностно-активные вещества имеют две особенности поверхностную активность и способность образовывать мицеллы. В наибольшей степени образованию мицеллярных растворов способствуют ПАВ-стабилиза-торы эмульсий и пен. Эти ПАВ называют часто мицеллообразующими или коллоидными. В результате увеличения концентрации ПАВ в растворителе (воде или углеводородах) достигается предел истинной, т. е. молекулярной, растворимости. Если обычные вещества после достижения предельной концентрации выделяются в виде отдельной макрофазы (жидкости или [c.185]

    Мицеллы алюмосиликатного геля состоят из более или менее однородной смеси гидроокисей алюминия и кремния. Образование связи —51—О—А1— происходит на стадии существования системы в виде истинного раствора. Характер распределения Л1 и 51 внутри и между мицеллами определяется соотношением компонентов в растворе, скоростью перемешивания исходных растворов и образования золя [46]. Диаметр формовочной колонны составляет [c.112]

    Вопрос об истинных значениях массы молекул асфальтенов, или об их молекулярном весе, имеет принципиальное научное значение для понимания важнейших физических свойств самых сложных по химическому составу и наиболее высокомолекуляр-ных по размерам молекул неуглеводородных составляющих нефти. Не менее важное значение имеет и знание истинных величин их молекулярных весов для решения вопроса о химической структуре и физическом строении этих твердых аморфных компонентов нефти. Неудивительно поэтому, что разработкой методов определения молекулярных весов асфальтенов и установлением связи между размерами их молекул и рядом фундаментальных физических их свойств, прежде всего реологическими свойствами и растворимостью, с образованием как истинных, так и коллоидных растворов, занимались многие исследователи на протяжении более 50 лет. Накоплен большой экспериментальный материал по изучению молекулярных весов смол и асфальтенов, выделенных из сырых нефтей, из тяжелых остатков продуктов переработки, из природных асфальтов. Если для нефтяных смол нет существенного расхождения в значениях молекулярных весов, полученных разными исследователями (обычно значения молекулярных весов лежат в пределах 400—1200), то для асфальтенов уже можно наблюдать большие расхождения. Данные, полученные различными методами, лежат в весьма широких пределах от 2000—3000 до 240 000—300000. Совершенно ясно, что самые низкие значения должны быть отнесены к собственно молекулам асфальтенов, т. е. истинным молекулярным их величинам. Значения же молекулярных весов в пределах от 10000 до 300 ООО соответствуют надмолекулярным частицам асфальтенов, т. е. ассоциатам молекул асфальтенов различной степени сложности. Значения молекулярных весов этих ассоциатов, или мицелл, зависят от многих факторов, но прежде всего от растворяющей способности и избирательности применяемых растворителей и концентрации асфальтенов в растворах. Весьма существенно на значениях найденных молекулярных весов частиц сказываются чистота и степень разделения по размерам молекул [c.69]


    С термодинамической точки зрения эмульсия есть двухфазная система с дисперсной фазой, содержащей микроскопические капли диаметром 0,1—100 мкм. Такие дисперсии никогда не являются полностью устойчивыми из-за того, что поверхность раздела между фазами обладает свободной энергией при соединении двух капель происходит уменьшение межфазной поверхности. Следовательно, коалесценция капель — это самопроизвольный процесс, в то время как эмульгирование требует затраты работы. Самопроизвольное эмульгирование наблюдается только в определенных системах, где две фазы предварительно взаимно ненасыщенны. Работа, необходимая для увеличения межфазной поверхности, черпается из свободной энергии смешения за счет массопереноса (см. гл. I). Истинно стабильные растворы, содержащие коллоидные мицеллы, не должны классифицироваться как эмульсии, так как они не имеют термодинамической фазы, которая может существовать отдельно. [c.75]

    Многие органические сульфонаты растворяются в обыкновенных растворителях, применяемых для химической чистки, образуя при этом коллоидные растворы. Необходимо подчеркнуть, что эти последние являются истинными растворами в полном смысле этого понятия. Они отличаются от молекулярных растворов только тем, что самая большая частица представляет собою скорее мицеллу, чем молекулу. [c.174]

    Благодаря работам советских и зарубежных ученых было установлено, что коллоидные системы, известные ранее под названием лиофильных золей, на самом деле являются не золями, а истинными растворами высокомолекулярных соединений (ВМС), т. е. гомогенными системами молекулярно- или ионно-дисперсными. В растворах этих соединений взвешенными частицами являются не мицеллы (как в случае лиофобных коллоидов), а гигантских размеров макромолекулы, молекулярный вес которых превосходит 10 ООО, а в отдельных случаях превосходит даже несколько миллионов (опыт 86). [c.175]

    Мыла и мылоподобные ПАВ образуют истинные растворы лишь при очень малых концентрациях (обычно порядка 10 —10 3 моль/л). Более концентрированные растворы приобретают коллоидный характер вследствие образования в объеме раствора коллоидных агрегатов — мицелл. Это явление составляет важнейшую характерную особенность коллоидных ПАВ, с которой связаны многие практически важные свойства их растворов. [c.36]

    Оболочка из полярных групп на поверхности мицелл сообщает им гидрофильные свойства, обеспечивает малую поверхностную энергию и создает сродство мицелл к дисперсионной среде. Указанные особенности состояния растворов МПАВ при концентрациях выше ККМ позволяют отнести их к классу лиофильных коллоидов они являют собой пример термодинамически равновесных и обратимых ультра-микрогетерогенных систем. В таких системах коллоидно растворенное (мицеллярное) ПАВ находится в термодинамическом равновесии с истинно (молекулярно) растворенной частью, т. е. существует равновесие мицеллы молекулы (ионы), которое может смещаться в ту или иную сторону при изменении условий. Сами же мицеллы — термодинамически стабильные обратимые образования, которые возникают в области ККМ и распадаются при разбавлении раствора. [c.39]

    Низкомолекулярные добавки (метанол, ацетон, диоксан и др.) повышают ККМ и снижают мицеллярную массу коллоидных ПАВ. Благодаря хорошей растворимости в иоде при равновесном межфазном распределении содержание их в мицеллах слишком мало, чтобы существенно изменить электрическую энергию и энтропию мицеллообразования. В то же время введение таких добавок снижает диэлектрическую проницаемость растворителя, а это приводит к возраст гию истинной растворимости ПАВ, что проявляется в повышении ККМ. [c.66]

    Как уже отмечалось, повышенная растворимость олеофильных веществ в водных растворах ПАВ обусловлена связыванием этих веществ мицеллами. При этом истинная растворимость в водной (межмицеллярной) фазе практически не изменяется по сравнению с таковой в чистой воде. Для понимания механизма процессов, протекающих в системах раствор ПАВ — солюбилизат (эмульсионная полимеризация, мицеллярный катализ и др.), важно знать, где располагаются и как ориентируются солюбилизированные молекулы в мицеллах. Для выяснения этого вопроса привлекались данные рентгенографии, УФ- и ЯМР-спектроскопии, электронного парамагнитного резонанса и других физических методов исследования. [c.70]

    Процес солюбилизации обычно рассматривают как самопроизвольное распределение олеофильного вещества между двумя фазами Одной из них является истинный водный раствор ПАВ (макрофаза), а другая представляет собой коллоидную микрофазу — мицеллы. Состояние равновесия [c.76]

    Механизм мицеллярного катализа сложен, зависит от специфики реагентов и ПАВ и выяснен далеко не в полной мере. Влияние мицелл на химические реакции определяется двумя основными факторами — изменением реакционной способности веществ при переходе их из воды в мицеллярную фазу и эффектом концентрирования реагентов в мицеллах, причем второй фактор во многих случаях является единственным источником мицеллярного катализа. Изменение реакционной способности вещества в мицеллах обусловлено совокупностью электростатических и гидрофобных взаимодействий между молекулами реагента и мицеллами, что приводит к изменению энергий основного и переходного состояний реагентов На роль электростатических взаимодействий указывает, в частности, тот факт, что обычно реакции нуклеофильных анионов с нейтральными молекулами ускоряются катионными мицеллами, замедляются анионными, а мицеллы НПАВ практически не оказывают на них влияния. Во многих случаях мицеллы влияют не только на кинетику, но и на равновесие реакций, что не свойственно истинным катализаторам. [c.86]


    Для того чтобы произошел переход из одного состояния в другое, необходимо лишь изменить концентрацию раствора, температуру, pH или ввести в систему электролит. Изменяя условия существования системы, можно получать либо истинные (гомогенные) растворы с молекулярной степенью дисперсности, либо гетерогенные системы, частицы которых представляют собой агрегаты, состоящие из множества молекул. Такие частицы, подобно электронейтральным частицам в лиофобных коллоидных системах, называют мицеллами. Однако в отличие от мицелл коллоидных систем они термодинамически стабильны и не изменяются до тех пор, пока под действием внешних факторов не сместится равновесие, в котором находилась система. Устойчивость мицелл характеризуется скоростью диссоциации, т. е. средним временем пребывания молекулы в мицелле. [c.399]

    Коллоидные поверхностно-активные вещества характеризуются, подобно всем поверхностно-активным веществам, малой истинной растворимостью и способностью снижать поверхностное и межфазное натяжение в разбавленных растворах вследствие адсорбции и ориентации молекул на поверхности раздела. Однако наряду с этим при некоторой концентрации — критической концентрации мицеллообразования (ККМ)—в растворе начинают образовываться агрегаты молекул — мицеллы, вследствие чего общая растворимость ПАВ, обусловленная образованием наряду с истинным также и коллоидного раствора, резко увеличивается, тогда как молекулярная растворимость остается неизменной и равной ККМ. [c.400]

    Физико-химические свойства растворов высокомолекулярных соединений определяются размерами и формой макромолекул в растворе, интенсивностью взаимодействия макромолекул между собой и сродством данного соединения к растворителю. По этому признаку растворители могут быть разделены на так. называемые хорошие (высокое сродство) и плохие (низкое сродство). В хороших растворителях полимеры способны образовывать истинные растворы. В таких растворителях высокомолекулярные соединения находятся не в виде мицелл или пачек, а в виде отдельных макромолекул. Истинные растворы ВМС подчиняются правилу фаз Гиббса. В частности, это означает, что при ограниченной растворимости концентрация насыщенного раствора зависит только от температуры и не зависит от пути образования раствора (при нагревании или при охлаждении). [c.436]

    Многие ПАВ — мыла, моющие агенты (детергенты), танниды, некоторые красители, алкалоиды,— являясь истинно растворимыми соединениями, способны также к образованию мицеллярных коллоидных растворов. При большом разбавлении ПАВ находятся в растворе в виде отдельных молекул или ионов и их растворы являются истинными. С увеличением концентрации ПАВ их дифильные молекулы или ионы ассоциируют друг с другом и образуют агрегаты, называемые мицеллами. [c.442]

    Солюбилизованные системы, будучи термодинамически устойчивыми, тем не менее не являются истинными растворами, а относятся к коллоидным системам. Это связано с тем, что мицеллы по размерам соответствуют коллоидной дисперсности. [c.445]

    Однако, если ядро мицеллы находится при температуре ниже температуры стеклования, то хотя равновесная энергия может быть того же порядка что и энергия нормальной мицеллы, энергия активации, требующаяся для отцепления якорного компонента от жесткого ядра,можег быть очень велика но сравнению с равновесной энергией ассоциации. При этих обстоятельствах скорость установления равновесия становится исчезающе малой, образующиеся агрегаты стремятся обладать постоянной метастабильной идентичностью и должны, возможно, рассматриваться скорее как ультраколлоидные частицы, чем как истинные мицеллы, находящиеся в равновесии. [c.294]

    Предел истинной растворимости, или наименьшая концентрация ПАВ, при которой появляются мицеллы, называется критической концентрацией мицеллообразования (ККМ). Этот показатель, а также число агрегации молекул в мицелле тесно связаны с объемными функциональными свойствами поверхностно-активных веществ, такими как моюще-дисиергирующие, солюбилизирующие и др. [c.198]

    Смесь, содержащую мицеллы, можно охарактеризовать как микроэмульсию, т. е. она содержит диспергированные частицы субмикроскопи-ческого размера. Вместе с тем эта смесь обладает свойствами истинного раствора, в частности оптической проницаемостью и устойчивостью к осадкообразованию. Правильнее всего данную систему все же называть мицел-лярным раствором, обладающим собственными характерными свойствами. [c.186]

    По мнению большинства авторов, размягчение углей происходит в результате крекинга с образованием молекул с молекулярной массбй от 300 до 600, которые достаточно велики, чтобы не улетучиваться мгновенно, но все же малы и поэтому образуют при температуре около 400° С истинные растворы, способные, в частности, растворять и пластифицировать молекулы или мицеллы , которые надежно сохраняют свою массу. Эта теория хорошо учитывает влияние различных экспериментальных факторов на плавление и объясняет два явления, которые долгое время интересовали исследователей  [c.92]

    ПреДстайляют собой двухфазную колЛоиДнуЮ систему, состоящую из дисперсной фазы и дисперсионной среды, которые принципиально различаются по химической природе и структуре. Центральная часть мицеллы представляет собой гуминовое ядро, на поверхности которого расположены битумы (до 20% ядра), связанные с ним адсорбционными силами. Битумы, которые находятся в меж-мицеллярном пространстве, образуют непрерывную фазу, т. е. они являются дисперсионной средой, а гуминовые ядра играют роль дисперсной фазы. По данным Агде и Губертуса, неполярный бензол не может полностью разорвать связь между битумами и гуминовым ядром и поэтому выход битумов А сравнительно небольшой. Полярный пиридин разрывает эту связь и полностью извлекает битумы. Большой выход экстрактов при повышенных температурах (битумы В) объясняется образованием истинных и коллоидных растворов из-за пептизации гуминовых ядер. [c.213]

    Изотермы иоверхностного натяжения коллоидных ПАВ отличаются от изотермы истинно растворимых ПАВ резким понижени- ем а с увеличением концентрации н наличием излома на изотерме в области чрезвычайно малых концентраций, отвечающих истинной растворимости (лг 10 ч-10 моль/л), выше которых поверхностное натяжение остается практически постоянным. Концентрация а точке излома соответствует критической концентрации мицеллообразования (ККМ), выше которой в растворе самопроизвольно протекают процессы образования мицелл и истинный раствор переходит в ультрамикрогетерогенную систему (золь). [c.293]

    Экспериментальные определения и расчеты стандартных термодинамических функций мицеллообразования по полученным соотношениям позволяют оценить энергетику взаимодействия ПАВ с растворителем (растворения) и непосредственно мицеллообразования. Вклад стадий растворения является превалирующим, вследствие чего суммарная движущая сила процесса определяется в осиовиом ростом энтропии. Например, для бромида -додецилт1)иметиламмония в воде ДС° = — 17,8 кДж/моль, = —1,38 кДж/моль, —7Д5 = —16,5 кДж/моль для м-но-децилсульфата натрия соответственно —21,1 кДж/моль, +0,38 кДж/моль и —21,5 кДж/моль. В то же время стадия непосредственно мицеллообразования сопровождается ростом упорядочения, т. е. уменьшением энтропии системы. Однако нельзя не учитывать некоторого роста конформационной энтропии с увеличением размеров ассоциатов (образование мицелл), подобно тому, как это наблюдается для макромолекул в растворах полимеров. Можно заключить, что экспериментально определяемые значения стандартных термодинамических функций отвечают не столько мпцеллообразованию (из истинного раствора), сколько самопроизвольному диспергированию ПАВ. [c.296]

    На процесс м1щеллообразования в водных растворах существенно влияет структура воды, которая способствует выталкиванию углеводородных радикалов из раствора одновременно частично разрущается структура воды. Благодаря дифильному строению молекул ПАВ углеводородные радикалы, взаимодействующие между собой в мицеллах, экранируются полярными гидрофильными группами. Поэтому происходит самопроизвольное мицеллообразование с минимальным поверхностным натяжением на границе раздела мицелла—вода, сопровождающееся умень-и]ением энергии Гиббса системы. Эффектом экранирования объясняется уменьщение энтальпии в процессе мицеллообразования. Взаимодействие отдельных частей молекулы ПАВ в молекулярном растворе с растворителем характеризуется различным изменением энтальпии лиофильная часть взаимодействует с выделением теплоты, лиофобная — с поглощением теплоты. Именно поэтому энтальпия растворения ПАВ имеет небольшие положительные илн отрицательные значения (чаще всего для водных растворов она положительна). В мицеллярном растворе экранирование лнофоб-ных групп приводит к уменьшению поглощения теплоты, т. е. н снижению энтальпии системы по отношению к энтальпии образования истинного раствора. Так как мицеллообразование является процессом возникновения новой фазы, то его можно сравнить с расслоением системы, т. е. с процессом ее упорядочения. Для таких процессов характерно уменьшение энтропии. Таким образом, самопроизвольное мицеллообразование по сравнению с образованием молекулярного раствора обусловлено уменьшением энтальпии [см. уравнение (УГ25)]. [c.297]

    Способность ПАВ к образованию мицелл в существенной степени зависит от длины углеводородного радикала. ПАВ с небольшими углеводородными радикалами, например низшие спирты, кислоты и их соли, находятся в растворе в молекулярно-дисперсном состоянии при любых концентрациях. Такие ПАВ называют истинно растворимь(ми. Их применяют в качестве смачивателей, дисиергаторов, вспеннвате.пей. ПАВ, способные к мпцеллообразованию в жидких средах, называются коллоидными. Они имеют бол ,шие углеводородные радикалы, от их размеров зависит значение концентрации, выше которого образуются [c.130]

    Определение с помощью ультрацентрифуги дает для различных белков сильно отличающиеся величины молекулярного веса 70 000 для сывороточного альбумина, 38 000—41 000 для лактальбумина, 41800 ДЛЯ лактоглобулина, 44 ООО для яичного альбумина, 167 ООО для глобулина сыворотки крови, 208 000 для легумина, 75 000—375 000 для казеина, 2 000 000 для гемоцианина из O topus vulgaris, 6 650 000 для гемоцианина улитки. Насколько эти данные соответствуют истинному молекулярному весу, а не весу мицеллы, судить трудно. [c.396]

    Поверхностно-активные вещества, которые при малых концентрациях (10 —10 моль/л) образуют истинные растворы, а при увеличении концентрации самопроизвольно переходят в коллоидное состояние в результате агрегации молекул в мицеллы, называют мицеллообразующими. Молекулы и ионы самопроизвольно агрегируются таким образом, что их углеводородные радикалы слипаются за счет ван-дер-ваальсовых сил, образуя ядро мицеллы, а полярные группы располагаются с внешней стороны мицеллы и обращаются в водную среду. Раствор приобретает ряд свойств коллоидных систем. [c.180]

    Подтверждением фазовой природы мицеллообразования служит наличие резких изломов на кривых зависимости физико-химических свойств от концентрации ПАВ в области ККМ. Вместе с тем образование мицелл не может считаться истинным фазовым разделением. Размер мицелл слишком мал по сравнению с обычными макроскопическими фазами (числа агрегации лежат обычно в пределах 20—2000). К столь малым частицам не может быть в полной мере приложимо термодинамическое понятие фазы, которое предполагает совокупность достаточно больших по объему гомогенных частей системы. Поэтому мицеллы рассматривают лишь как зародыши новой фазы ( псевдофазу ), а мицеллообразова- [c.46]

    У Влияние добавок электролитов. Введение электролитов в растворы ионогенных ПАВ вызывает два эффекта, одинаково проявляющихся в снижении ККМ. Во-первых, электролит частично дегидратирует полярные группы шноа ПАВ, так как он связывает—в ду-.аа хчет гидратации своих ионов. Уменьшение гидратации ионов ПАВ повышает их склонность к ассоциации. Во-вторых, добавленный электролит уменьшает эффективную степень диссоциации поверхностно-активного электролита как в истинном растворе, так и в мицеллярном состоянии. Возрастает доля противоионов, связанных с поверхностью мицелл заряд последних уменьшается. Э о уменьшает эффективную электрическую работу против сил отталкивания, необходимую- для введения мицеллообразующего иона в одноименно заряжённую мицеллу, что облегчает мицеллообразование. [c.62]

    Другой подход к этому явлению основан на предположении, что мицеллообразование заключается в возникновении новой Фазы в системе вода — ПАВ. При этом мицеллы рассматривают как своеобразную фазу с предельной дисперсностью (псевдофазу), поскольку в отличие от истинного фазового разделения мицеллообразование не приводит к бесконечно большому числу молекул в агрегате (число молекул в агрегате сокращенно называют числом агрегации). Подтверждением фазовой теории мицеллообразования, которой придерживается большинство ученых, являются по крайней мере, два обстоятельства fво-первых, постоянство концентрации молекулярно растворенного ПАЙ выше ККМ и, во-вторых, наличие в области ККМ резкого излома на кривых зависимости физико-химическое свойство — концентрация. Термодинамическое рассмотрение показывает, что при больших числах агрегации (25 и больше) оба подхода равноценны. [c.405]

    Мицеллообразование можно рассматривать аналогично механизму адсорбции. Процесс протекает самопроизвольно. В таких растворах устанавливается термодинамическое равновесие между мицеллами и истинно растворенной частью мицеллыч молеку-лы ионы. [c.245]

    Образование мицелл можно рассматривать подобно появлению новой фазы. В отличие от истинной макроскопической фазы мицелла содержит всего от нескольких десятков до сотен исходных молекул поверхностно-активного вещества. Поэтому ее принимают за своеобразную псевдофазу . В этом случае равновесие молеку-ла мицелла относят к гетерогенным равновесиям, а молекулярный раствор, находящийся в равновесии с мицеллами,— к насыщенным растворам. Учитывая, что концентрация такого раствора равна ККМ, имеем [c.173]


Смотреть страницы где упоминается термин Истинные мицеллы: [c.585]    [c.91]    [c.75]    [c.77]    [c.298]    [c.157]    [c.327]    [c.46]    [c.84]    [c.407]   
Рабоче-консервационные смазочные материалы (1979) -- [ c.91 ]




ПОИСК





Смотрите так же термины и статьи:

Мицеллы



© 2024 chem21.info Реклама на сайте