Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соединение химическое и тепло

    Объектом исследования химической кинетики является химический процесс превращения реагентов в продукты. Можно возразить, что химическая реакция является предметом исследования и ряда других химических дисциплин, таких как синтетическая и аналитическая химия, химическая термодинамика и технология. Следует отметить, что каждая из этих дисциплин изучает химическую реакцию в своем определенном ракурсе. В синтетической химии реакция рассматривается как способ получения разнообразных химических соединений. Аналитическая химия использует реакции для идентификации химических соединений. Химическая термодинамика изучает химическое равновесие как источник работы и тепла и т. д. Свой специфический подход к химической реакции имеет и кинетика. Она изучает химическое превращение как процесс, протекающий во времени по определенному механизму с характерными для него закономерностями. Это определение нуждается в расшифровке. Что именно в химическом процессе изучает кинетика Во-первых, реакцию как процесс, протекающий во времени, ее скорость, изменение скорости по мере развития процесса, взаимосвязь скорости реакции с концентрациями реагентов - все это характеризуется кинетическими параметрами. Во-вторых, влияние на скорость и другие кинетические параметры реакции условий ее проведения, таких как температура, фазовое состояние реагентов, давление, среда (растворитель), присутствие нейтральных ионов и т. д. Конечный результат таких исследований - количественные эмпирические соотношения между кинетическими характеристиками и условиями проведения реакции. В-третьих, в кинетике изучают способы управления химическим процессом с помощью катализаторов, инициаторов, промоторов, ингибиторов. В-четвертых, кинетика стремится раскрыть механизм хи- [c.15]


    Ввиду того, что большинство соединений под действием тепла претерпевают хара терные для данного соединения химические и физические превращения, сопровождающиеся выделением или поглощением тепла, а в ряде случаев при этом изменяется и вес образца, области применения дериватографа неограничены и дают возможность  [c.6]

    Простые тела или элементы обладают запасом химической энергии, как особым видом энергии потенциальной. Часть этого запаса при химической реакции выделяется в виде тепла (например, при образовании воды из водо-рода и кислорода), и в полученном соединении этой химической энергии становится меньше, чем в исходных элементах. Следовательно, при соединении химических элементов часть химической энергии утратилась, превратившись в тепло. [c.24]

    Первая глава руководства дает превосходную характеристику общих свойств органических соединений и читается с неослабевающим интересом. Этот раздел написан химиком-органиком, подчеркивающим значение физико-химических вопросов. Достаточно привести для доказательства этого положения несколько подзаголовков из этой главы О плотности паров. Удельный вес и удельные объемы. Удельные объемы при обыкновенной температуре. Температуры плавления и кипения. Общий закон последних. Теплоемкость, скрытое тепло и сцепление органических соединений. Количество тепла, отделяющееся при горении. Кристаллическая форма. Показатель преломления и действие на плоскость поляризации . [c.135]

    Структурная и химическая неоднородности, а также неоднородность упругопластического состояния, неизбежно присутствующие в сварном соединении, изменяют тепло- и электропроводность и т. э. д. с. различных зон сварного соединения. [c.45]

    В этих соединениях п не превышает 10. По-видимому, бор не способен образовывать длинные цепи кроме того, связь В—В чувствительна к окислению и другим химическим воздействиям. Однако несомненно, что эта связь придает соединениям высокую тепло- и термостойкость, поэтому исследования, направленные на развитие этой области полимерной химии бора, являются интересными. [c.98]

    Процесс газификации близок к процессу горения топлива, но если собственно горение происходит при достаточном количества окислителя — кислорода (а > I), то газификация по существу есть частичное окисление топлива при недостатке кислорода (а < 1). Таким образом, оба процесса имеют единую основу — химическое соединение восстановителя (углерода и водорода топлива) с окислителем — кислородом. Однако между этими процессами есть и различия, главное из которых — направление использования потенциального химического тепла топлива. При окислении потенциальное тепло топлива (теплота сгорания Q ) распределяется между физическим и химическим теплом продуктов окисления (горения) [c.122]


    Котел-утилизатор предназначен для получения водяного пара. Источником подогрева является тепло конвертированного газа. Котел-утилизатор низкого давления состоит из двух вертикальных и одного горизонтального кожухотрубчатых барабанов, соединенных между собой кипятильными трубами. В трубное пространство поступает химически очищенная вода, а в межтрубном проходит газ. Снаружи котел-утилизатор имеет теплоизоляцию. [c.42]

    Хорошие лосьоны для загара предохраняют кожу и от опасности ожогов и других повреждений. Активным компонентом многих из них является пара-аминобензойная кистота (РАВА). Основная роль в защите от УФ-излучения принадлежит бензольному кольцу этого соединения. Это кольцо поглощает УФ-излучение и распределяет его энергию по шести химическим связям в кольце, переводя ее в безопасное тепло. Таким образом кожа защищается от вредного действия излучения. [c.471]

    Тепловой эффект реакции вычисляется по закону Гесса, сформулированному еще в 1840 г. Этот закон гласит, что тепло, выделяемое или поглощаемое в химическом процессе, постоянно и не зависит от того, является ли процесс одно- или многостадийным. Таким образом, теплоту образования какого-нибудь соединения молено найти, используя данные по другим реакциям. Стандартную теплоту реакции АЯ можно вычислить по теплотам образования всех соединений, принимающих участие в реакции. Она равна разности алгебраической суммы стандартных теплот образования продуктов реакции АЯ" и алгебраической суммы стандартных теплот образования исходных веществ ДЯ  [c.28]

    Количество тепла, необходимое для образования химического соединения из элементов, тождественно количеству тепла, выделяющегося при разложении этого соединения на те же элементы. Это положение действительно для всех химических реакций. [c.66]

    Горение и взрыв. Горением называют химические реакции окисления, сопровождающиеся свечением и значительным выделением тепла к ним относятся, например, реакции соединения углерода с кислородом, водорода с кислородом или хлором и т. д. [c.12]

    Процессы разложения химических соединений обычно протекают с поглощением тепла, а процессы синтеза — с выделением. Поэтому, например, равновесие реакции [c.73]

    Сегрегация и ее воздействие на химические превращения и процессы переноса особенно проявляются в системах с повышенной вязкостью, а также там, где реакции протекают с высокими скоростями. Образование молекулярных агрегатов характерно для многих процессов получения высокомолекулярных соединений. Так, сложной совокупностью физико-химических явлений отличается гетерофазная полимеризация, при которой образующийся полимер выделяется из первоначально гомогенной системы в виде новой конденсированной фазы с соответствующими морфологическими особенностями и возможным протеканием элементарных реакций в нескольких фазах [12, 13]. Примером может служить полимеризация винилхлорида, которая протекает в три стадии вначале процесс идет в гомогенной мономерной фазе на второй (наиболее продолжительной) стадии полимеризация протекает в двух фазах — мономерной и полимер-мономерной, а на третьей стадии — вновь в одной фазе (полимер-мономерной). При этом процесс сопровождается потоками массы и тепла в глобулярных образованиях (полимерных частицах), размеры которых увеличиваются в ходе реакции за счет поступления реагентов из сплошной мономерной фазы. [c.26]

    Сама химическая реакция протекает практически мгновенно н при взаимодействии с газообразным серным ангидридом лимитируется его диффузией, завершаясь в пограничной пленке жидкой фазы. Это ввиду высокой экзотермичности реакции способствует местным перегревам и образованию побочных продуктов (олефины, карбонильные соединения, смолы), которые вызывают потемнение и ухудшение качества ПАВ. Поэтому важное значение имеет способ проведения реакции, обеспечивающий отвод тепла и устранение местных перегревов с надежным регулированием температурного режима (разбавление 50з инертным газом, интенсивное перемешивание, проведение реакцни в пленке). [c.320]

    Химические поглотители позволяют получить более высокую степень очистки, чем физические, но требуют затраты тепла на разрушение образовавшегося соединения. Большую глубину очистки с меньшими затратами тепла можно получить, комбинируя два типа поглотителей легко регенерируемого для грубой предварительной очистки и более трудно регенерируемого для достижения требуемой глубины очистки. [c.114]

    Класс тепловых флегматизаторов следует в свою очередь разделить на две группы инертных компонентов, которыми обычно являются СО2, Н2О и N2, и сложных горючих, добавки которых флегматизируют горение богатых смесей и эндотермических соединений. Инертные добавки флегматизируют горение разбавляемых ими взрывчатых систем только вследствие увеличения при горении их запаса физического тепла. Действие горючих флегматизаторов имеет более сложную природу. Как и инертные добавки, они не оказывают специфического химического влияния на реакцию в пламени и только понижают температуру горения. Однако такие флегматизаторы гораздо активнее тормозят горение, что обусловлено не столько их большой теплоемкостью, сколько способностью к эндотермическим реакциям при высоких температурах. [c.63]


    Передача тепла осуществляется за счет контакта нагреваемой системы через стенку аппарата с теплоносителем, обладающим высоким теплосодержанием или при непосредственном контакте с нагреваемым материалом. Теплоносителем называется вещество или система веществ, используемое в качестве среды для нагревания. В качестве теплоносителей для средне-и низкотемпературных процессов в химической промышленности применяются горячий воздух, горячая вода, насыщенный и перегретый водяной пар, топочные газы, высококипящие органические соединения, твердые зернистые материалы (обычно зерна катализатора), [c.57]

    Для объяснения термического разложения органических соединений существуют два возможных механизма. Распад молекулы под воздействием тепла, согласно одному из механизмов, может происходить в одну стадию, путем внутримолекулярной перегруппировки химических связей. При этом устойчивые продукты распада образуются в один этап, например, распад пропана происходит в соответствии с уравнениями реакций  [c.13]

    Во-первых, прежде всего из числа веществ, выбираемых в качестве катализатора для данной реакции, нужно исключить твердые ве[цества, которые не могут образовывать поверхностные химические соединения с реагирующими веществами. При этом нужно учесть, что поверхностные соединения могут по своему составу отличаться от объемных фазовых соединений. Так, например, окись меди может на своей поверхности хемосорбировать кислород с образованием поверхностных соединений типа растворов кислорода в окиси меди с выделением значительного количества" тепла. [c.461]

    Термический анализ. Одним из методов физико-химического анализа высококипящих и особенно высокомолекулярных соединений нефти является термический анализ, служащий инструментом для исследования процессов, происходящих в веществе при непрерывном нагревании или охлаждении. В зависимости от измеряемой характеристики и аппаратурного оформления термическим анализом можно получить информацию различного характера. Термографией измеряется температура образца, термогравиметрией — его масса, дилатометрией — размер, калориметрией— количество выделившегося тепла [331]. [c.159]

    Однако это уравнение весьма приближенное, так как очень трудно осуществить полное горение при стехиометрическом соотношении топливо —окислитель (кислород или воздух). Для достижения полного сжигания всегда требуется некоторый избыток окислителя. Если это условие не соблюдается, то некоторое количество топлива не будет сгорать до СОг и будут образовываться продукты неполного сгорания, в которых присутствуют окись углерода, водород, ненасыщенные углеводороды, формальдегид (иногда элементарный углерод). Если процесс горения остановить на промежуточной стадии, то количество высвобождаемого тепла будет значительно ниже. Для того чтобы быть уверенным в полном завершении процесса образования продуктов неполного горения, необходимо подвести дополнительное тепло, количество которого превышает количество тепла, выделяемого при реакции их образования. Процесс сжигания осложняется также цепным характером протекания реакций горения через образование промежуточных соединений перед появлением конечного продукта. Промежуточные соединения представляют собой химически недолговечные образования и радикалы, которые способствуют протеканию процесса горения и поддерживают его постоянным. Рассмотрим цепную реакцию горения метана  [c.97]

    Реакции гидролиза, т. е. расщепления органических высокомолекулярных соединений действием воды, имеют большое биологическое и техническое значение. Путем гидролиза происходит распад белковых веществ, крахмала, гликогена, клетчатки, жиров, восков, глюкозидов и тому подобных веществ, причем образуются более простые низкомолекулярные соединения. Реакции гидролиза противоположны по направлению реакциям межмолекулярной дегидратации. В животных и растительных организмах между этими процессами существует биологическое равновесие. В организмах путем дегидратаций происходит образование полисахаридов, белков, жиров и других сложных соединений. Эти эндотермические по своему характеру процессы осуществляются при участии солнечной энергии, которая таким образом вовлекается в биосферу земли. Поэтому сложные химические вещества растений являются как бы аккумуляторами солнечного тепла. [c.534]

    Между процессами горения и газификации много общего. Единая основа этих процессов — химическое соединение углерода с кислородом, сопровождающееся протеканием одних и тех же вторичных химических реакций. Однако между этими процессами имеются и определенные различия. Основное различие заключается в направлении использования химического тепла топлива. Если при сжигании все химическое тепло тонлива стараются превратить в физическое тепло продуктов горения, то при газификации, наоборот, все химическое тепло топлива стараются превратить в химическое тепло горючих газов. [c.157]

    Хансен и Хоу предложили теорию теплопроводности аморфных полимеров, основанную на развитых ранее представлениях о теплопроводности ппзкомолекулярных жидкостей. В этой теории учитывается разная степень взаимодействия соседних звеньев соединенных химическими и межмолекулярными связями. Теория предполагает, что с повышением молекулярного веса теплопроводность должна возрастать пропорционально корню квадратному и молекулярного веса. Такая зависимость до.лжна наблюдаться доопределенного значения молекулярного веса, начиная с которого ожидается более медленное повышение теплопроводности. Экспериментальные данные для большого числа полиэтиленов различного молекулярного веса полностью согласуются с теоретическими предположениями до значения молекулярного веса порядка 100 тыс. Совпадение теории с экспериментом наблюдается для полистирола, теплопроводность которого измерялась авторами теории. Ими использовались также ранее опубликованные данные Для полистирола отклонение от пропорциональности выявляется более резко, чем для полиэтилена. Это объясняется относительно большим влиянием бензольного кольца на передачу тепла между соседними сегментами цепе1 1 полистирола. [c.197]

    Клей 2 00 представляет собой 10—20%-ный раствор хлорнаирита в смеси этилацетата с бензином в соотношении 2 1. Клей 200 имеет хорошую адгезию с металлом, клеевое соединение достаточно тепло-, влаго- и химически стойко. Однако применение клея 200 при гуммировании емкостной химической аппаратуры ограничено из-за высокой токсичности этилацетата, входящего в состав растворителя. [c.16]

    Оксиды лантаноидов Э.Рз характеризуются высокими энтальпиями и энергиями Гиббса образования (AG/ = —1600 кДж/моль) и тугоплавкостью (т. пл. порядка 2000°С). Оксиды—основные соединения. В воде они практически не растворяются, но взаимодействуют с ней, образуя гидроксиды и выделяя тепло. Оксиды Э2О3 хорошо растворяются в НС и HNO3, но, будучи прокалены, как и А1Рз, теряют химическую активность. Со щелочами не взаимодействуют. Окраска оксидов определяется электронной конфигурацией иона (см. выше). [c.645]

    СКОЛЬКО (от 3 ДО 6) последовательно соединенных отдельных адиабатических реакторов с промежуточным подводом тепла в реакционную зону, что позволяет значительно уменьшить перепад температур в каждом аппарате (10—70°С). Распределение загрузки катализатора между реакторами зависит от химического состава углеводородного сырья и активности катализатора. Обычно соотношение катализатора между реакторами составляет в трехреакторном блоке 1 (2-ьЗ) (4 6), в четырехреакторном блоке — 1 1 1,5 2 [2, 7]. [c.8]

    В химических соединениях запасается химическая энергая. Если происходит перегруппиропка атомов, приводящая к более устойчивой структуре, как в случае горения топлив, то некоторое количество заключенной энергии переходит в тепло и свет. В качестве примера можно рассмотреть образование и распад воды. Вод образуется из элементов согласно уравнению [c.199]

    Теплопроизводительной способностью называют то количество тепла, которое выделяет 1 г горючего при его сжигании. Поскольку-нефть представляет собою сложное химическое соединение, теплота, получаемая при ее сжигании, равна сумме теплот, получаемых при сгорании отдельно составляющих ее элементов, минус теплота образования данного соединения из этих же элементов .  [c.62]

    Символ Ли желтый мягкий драгоценный металл высокопластичен хороший проводник тепла и электричества устойчив по отношению к воздуху, воде и большинству химических реагениов взаимодействует с сильными окислителями, такими, как хлорная вода и царская водка, а также с комплексообразующими соединениями, например раствором цианида калия. [c.167]

    Молекулы топлива и окислителя смешиваются в процбссе диффузии, тепло из зоны горения передается несгоревшей частп газа, выделяется химическая энергия, и -молекулы, обладающие большой энергией, называемые также активными центрами и промежуточными химическими соединениями (в зависимости от применяемой терминологии), передают избыток энергии от молекул, вступивших в реакцию, свежим реагентам. [c.48]

    Карбид, или так называемый карборунд, 31С. Это соединение образуется прн восстановлении оксида кремния 510 углем ири температуре около 2000°С АН = —66,1, А0 = —63,7 кДж/моль). Чистый карбид кремния — бесцветные кристаллы (технический окрашен обычно примесями в темный цвет). Кристаллическая решетка карбида кремния напоминает кристаллические решетки алмаза и элементарного кремния структуру кристаллов карборунда можно представить, если в расширенной решетке алмаза каждый второй атом углерода заменить атомом кремния. Плотность карбида кремния 3,22 г/см , его теплое.мкость 26,86 и энтропия 16,61 Дж,/(моль-К). Характерным свойством карборунда являются чрезвычайно большая твердость (в этом отношении он лишь немногим уступает а./шазу) и химическая инертность. Лишь при 2830°С он плавится с разложением. На карбид кремния не действуют даже сильнейшие окислители и кислоты, за исключением смеси азотной и [1лавиковой кислот. Он разлагается также при сплавлении со щелочами в присутствии кислорода. [c.359]

    В химической технологии при разделении смесей на несколько продуктов чаще всего используются простые двухсекционные ректификационные колонны. При заданных условиях разделения суммарная величина энергозатрат на подвод и отвод тепла зависит от схемы соединения колонн, к выбор оптИдМаль-ной схемы позволяет вести разделение смесей с меньшнми энергозатратами. Другим, более эффективным, приёмом уменьшения энергозатрат является переход от использования простых. двухсекционных колонн к сложным. К ним относятся колонны с отпарными или укрепляюпцми секциями и различные колонны со связанными тепловыми потоками. [c.176]

    Громадное значение в народном хозяйстве имеют природные и синтетические высокомолекулярные органические соединения целлюлоза, химические волокна, пластмассы, каучуки, резина, лаки, клеи, искусственная кожа и мех, пленки и др., обладающие совокупностью замечательных свойств. Они могут быть эластичными или жесткими, твердыми или мягкими, прозрачными или непрозрачными для света и даже сочетать самые неожиданные свойства прочность стали при малой плотности, эластичность с тепло- и звукоизоляцией, химическую стойкость с твердостью и т. п. Подобная универсальность свойств наряду с легкой обрабатываемостью позволяет изготовлять детали и разнообразные конструкции любой формы, величины и окраски. Без синтетических материалов сейчас немыслим дальнейший технический прогресс в самолето-, машиио- и судостроении, радио- и электротехнике, реактивной и атомной промышленности и других областях науки и техники. Из пластмасс можно изготовлять корпуса судов, автомобилей, тракторов, части станков, изоляцию. Применение пластмасс в станкостроении позволяет по-новому решать ряд конструктивных задач. Высокомолекулярные соединения надежно защищают металл, дерево и бетон от коррозии. Использование новых синтетических материалов в дополнение к сельскохозяйственному сырью позволяет значительно увеличить производство тканей, одежды, обуви, меха и различных предметов домашнего и хозяйственного обихода. [c.185]

    При дальнейшем повышении температуры начинают устанавливаться химические связи, и наступает момент, когда энергия тепло -вого движения становится соизмеримой с энергией взаимодействия высокомолекулярных соединений. В этом случае, несмотря иа наличие межмолекулярного взаимодействия, возможно изменение взаимного расположения отдельных частей (сегментов) сложных молекул. Такое состояние именуется высокоэластичным . При дальнейшем повышении температуры энергия взаимодействия молекул и их частей становится настолько большой, что она начинает значительно превышать энергию теплового движения, длительность установления равновесной конфигурации молекул возрастает, начиная с некоторой температуры структура фиксируется, осуи1еств-ляется переход от равновесной к неравновесной структуре амор( )-ного вещества, т. е. происходит стеклование. Наиболее отчетливо этот процесс прослеживается по изменению концентрации асфальтенов в системе, 1к которых формируются надмолекулярные структуры. В зависимости от растворяющей способности среды концентрация асфальтенов в системе сначала повышается, проходит через максимум и затем падает. [c.166]

    В присутствии избытка влаги могут образоваться и другие промежуточные соединения, в том числе моногидрат соды NaXO, Н,0. Наряду с химическими реакциями в процессе кальцинации происходит обезвоживание влажного бикарбоната натрия, что требует также большого расхода тепла. [c.6]

    Для любого процесса в живом организме необходима энергия, которая получается при протекании химических реакций внутри клетки. Основу биохимических процессов составляют химические превращения, в частности реакции окисления и восстановления. Биологическое окисление служит, таким образом, основным источником энергии для ряда внутренних биологических изменений. Многие из протекающих при таком окислении реакции заключаются в сжигании компонентов пищи, например сахаров или липидов, что дает энергию, используемую затем для осуществления таких важных процессов л<изнедеятельности, как рост, размножение, поддержание гомеостаза, мускульная работа и выделение тепла. Эти превращения включают также связывание кислорода дыхание — это биохимический процесс, в результате которого молекулярный кислород восстанавливается до воды. При метаболизме энергия сохраняется аденозинтрифосфатом (АТР), богатым энергией соединением, которое, как известно, служит универсальным переносчиком энергии. [c.14]


Смотреть страницы где упоминается термин Соединение химическое и тепло: [c.274]    [c.274]    [c.478]    [c.397]    [c.482]    [c.184]    [c.232]    [c.74]    [c.294]    [c.109]    [c.214]   
Сочинения Введение к полному изучению органической химии Том 2 (1953) -- [ c.482 ]




ПОИСК





Смотрите так же термины и статьи:

Химическое соединение



© 2025 chem21.info Реклама на сайте