Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жирные кислоты физические свойства

    Карбоновые кислоты. Строение карбоксильной группы. Одноосновные предельные кислоты. Изомерия и номенклатура. Физические и химические свойства. Индуктивный эффект. Функциональные пройзводные карбоновых кислот галогенангидриды, ангидриды, эфиры, амиды, гидропероксиды и пероксиды. Высшие жирные кислоты (ВЖК). Мыла. Одноосновные непредельные кислоты и их свойства. Двухосновные предельные и непредельные кислоты. Отдельные представители карбоновых кислот. УФ и ИК спектры карбоновых кислот. [c.170]


    Жиры и жировые вещества — сложные соединения из многоатомных спиртов-и органических жирных кислот. Состав последних влияет на физические и химические свойства жира — температуру плавления и затвердевания, консистенцию,, [c.312]

    Высшие жирные спирты (ВЖС) — техническое название смесей одноатомных насыщенных спиртов алифатического ряда с числом углеродных атомов в молекуле от 6 до 20. ВЖС получают методами органического синтеза, почему называются также синтетическими жирными спиртами (СЖС). В дальнейшем, как и в случае кислот, под термином ВЖС понимаются СЖС. Физические свойства ВЖС зависят от их молярной массы, ВЖС с числом атомов углерода в цепи от 6 до 11 представляют жидкости с температурами кипения 157—286°С, с большим числом углеродных атомов — твердые легкоплавкие вещества светло-желтого цвета с температурами плавления от -5 до 65°С. Все ВЖС легче воды (плотность 0,6—0,7 т/м ). Растворимы в этаноле и диэтиловом эфире. Растворимость в воде падает с увеличением молярной массы и спирты, начиная с g в воде практически нерастворимы. ВЖС огнеопасны. Взрывоопасность паров ВЖС в смеси с воздухом увеличивается с уменьшением молярной массы. ПДК для ВЖС равна 10 мг/м . [c.283]

    Установленная на отдельных примерах зависимость между физическими свойствами и химически доказанной конфигурацией может быть использована в качестве разумной, хотя и не всегда непогрешимой, основы для решения вопроса о конфигурации других пар изомеров. Так, например, ненасыщенным жирным кислотам, известным под названием олеиновой и элаидиновой, приписывают соответственно цис- и транс-конфигурацию, [c.115]

    Физические и химические свойства жиров определяются составом и распределением остатков жирных кислот в молекуле и зависят от их длины и степени насыщенности. При комнатной температуре жиры могут быть твердыми (в них преобладают остатки насыщенных кислот) или жидкими (преобладают остатки ненасыщенных кислот) в последнем случае их часто называют растительными маслами. Жиры легко гидролизуются. В растениях этот процесс контролируется ферментами липазами. При хранении свежесрубленной древесины изменение химического состава экстрактивных веществ может происходить и из-за ферментативного гидролиза жиров. Наличие двойных связей повышает их нестабильность. [c.518]

    Физические свойства. Низшие жирные кислоты представляют собой легкоподвижные жидкости, средние члены — масла, высшие — твердые кристаллические вещества. Первые члены обладают резким запахом, средние — неприятным прогорклым, высшие члены вследствие слишком незначительной летучести лишены запаха. С водой смешиваются во всех отношениях только муравьиная, уксусная и пропионовая кислоты у более высоких членов ряда растворимость быстро уменьшается н, наконец, становится равной нулю. [c.242]


    По физическим свойствам нефтяные кислоты представляют собой либо жидкости, либо кристаллические вещества, напоминающие по запаху жирные кислоты. Плотность их близка к единице. По химическим свойствам они вполне сходны с жирными карбоновыми кислотами. Так, со щелочами образуются соли  [c.34]

    Физические свойства некоторых высших жирных кислот (ВЖК) [c.155]

    Число метиленовых групп в молекуле жирной кислоты может колебаться от О до 30. Их количество оказывает решающее влияние на физические и химические свойства жирных кислот. [c.8]

    Определение физических и химических показателей жира. Качество жира и его происхождение определяют, исследуя его химические свойства. Так, при хранении жира происходит расщепление глицеридов, сопровождающееся накоплением свободных жирных кислот, т. е. возрастанием кислотности. Повышенная кислотность жира указывает на снижение его качества. Ненасыщенные жирные кислоты окисляются по двойным связям, в результате чего в жире увеличивается количество перекисей, альдегидов и других продуктов распада. Они сообщают жиру прогорклый вкус. Уменьшение йодного числа и повышение числа омыления в процессе хранения масла являются показателями его порчи. [c.182]

    Оксиэтилированные жирные кислоты (ОЖК). Для синтеза ОЖК используется кубовый остаток синтетических жирных кислот (СЖК) с числом углеродных атомов более 20 (С >20) или 25 (С >25). Деэмульгирующая активность и физические свойства (температура застывания, вязкость, плотность и др.) образцов ОЖК зависят от числа групп [c.182]

    Примеси непредельных карбонильных соединений, ароматических и жирных кислот, влаги, углеводородов оказывают такое же действие на физические и физико-химические свойства пластификаторов, как и в случае их содержания в спиртах. [c.118]

    Янг и Томас [2122] провели большое исследование по разработке методов очистки эфиров жирных кислот с низким молекулярным весом. Были испольэованы препараты эфиров фирмы Кальбаум , а также синтезированные из кислоты (или ангидрида) и спирта. Все эти препараты тщательно очищали, после чего проводили сравнение их физических свойств. Предполагалось, что в качестве примесей они содержат спирты, кислоты, воду и гомологи эфиров. Кислоты удаляли многократным встряхиванием с концентрированными водными растворами поташа было показано, что твердый поташ для этой цели мало эффективен. После встряхивания эфир несколько раз промывали водой, за исключением тех случаев, когда соответствующие соединения заметно растворялись в воде. Низшие спирты удалялись главным образом при промывке водой. Перед фракционированием эфир необходимо подвергать сушке. Поташ использовался только для осветления мутных от суспендированной воды эфиров. Окончательное осушение проводили над пятиокисью фосфора, которая связывает воду и остаточные спирты. В тех случаях, когда в эфире содержались значительные количества воды и спирта, пятиокись фосфора шипела и быстро разжижалась. Эфир несколько раз декантировали и добавляли к нему дополнительные количества пятиокиси фосфора, до тех пор пока окись не принимала вида пасты, после чего эфир подвергали фракционированной перегонке. К дистиллату добавляли пятиокись фосфора, и на следующий день эфир приобретал вид студня это явление обычно наблюдается в тех случаях, когда окись фосфора оставляют стоять с сухим, не содержащим спирта эфиром. В заключение эфир вновь перегоняли в сухой атмосфере. [c.373]

    Анализируется природа лиофобных и лиофильных коллоидов и связанная с пей физическая природа их устойчивости. Рассматриваются экспериментальные исследования структурночувствительных свойств граничных слоев жидкостей вблизи лиофильных подложек. Обосновывается представление о граничных фазах образуемых некоторых жидкостей. Обнаружено необратимое изменение свойств таких жидкостей, как вода, спирты, жирные кислоты в процессе конденсации их паров иа поверхности твердых теп. Причина этого изменения, как показано для воды, лежит в образовании полимерных ассоциатов. [c.363]

    Для количественного исследования процессов тепло- и массопереноса в пленке жидкости представляет интерес проследить влияние существенных параметров на примере конкретного процесса, например процесса отгонки жирных кислот из таллового масла. Для выявления влияния физических свойств рассматривались кипящие при сравнительно низких температурах кислоты с шестью углеродными атомами в молекуле, а также высококипящие кислоты С. д. Использовалось уравнение (VII.100) с четырьмя членами. Расчеты показали, что полином третьей степени дает удовлетворительную точность при О х 100 см. Характер из- [c.248]

    По физическим свойствам нафтеновые кислоты представляют собой либо жидкие, либо кристаллические вещества напоминающие по запаху жирные кислоты и имеющие высокий удельный вес, близкий к единице. [c.39]


    Физические свойства нефтяных масел, такие как способность растворять воскообразный налет на поверхности листьев и телах насекомых, создают возможность для использования масел в качестве базовых компонентов более активных инсектофунгисидов [159]. Присадками могут служить многие вещества — от жирных кислот и мыл, облегчающих расныливание масла, до физиологически весьма активных соединений, таких как пиретрум, никотин, ротенон, ДДТ, тиоцианаты, метоксихлор, хлордан, линдан и т. д. [c.568]

    Физические свойства. Низшие члены ряда жирных кислот представляют собой при обыкновенной температуре подвижные жидкости с острым кислотным запахом, способные кристаллизоваться при охлаждении с водой они смешиваются во всех от- [c.286]

    Физические свойства. Сложные эфиры жирных кислот и предельных спиртов — жидкости, обладающие приятным фруктовым запахом. Лишь простейшие из них несколько растворимы в воде. Метиловые и этиловые сложные эфиры кипят при более низких температурах, чем соответствующие кислоты. [c.309]

    Химические и физические свойства жиров определяются составом жирных кислот, образующих эфирную связь с глицерином. Жиры, содержащие много двойных связей, при комнатной температуре имеют жидкую консистенцию и называются маслами . Остатки жирных кислот, входящие в состав как жиров, так и масел, почти все имеют неразветвленную цепь с четным числом углеродных атомов от Сг до Сгг- [c.286]

    Эти данные подтверждают, что высокие смазывающие свойства реактивных топлив достаточно надежно можно обеспечить введением в них незначительных количеств (тысячных долей процента) поверхностно-активных веществ, таких как соединения типа сополимера эфиров метакриловой кислоты и спиртов С —С12 с метилвинилпиридином, соединения с гидроксильной (типа фенолов) или карбоксильной (типа жирных кислот) группой, т. е. носителями смазочной способности реактивных топлив являются небольшие количества поверхностно-активных веществ (естественных или искусственных), взаимодействующих с металлической поверхностью. Эти ПАВ накапливаются на поверхности металлов, образуя ориентированные граничные слои [4], связанные с поверхностными атомами металла силами физической или хемосорбционной природы, что и обеспечивает эффективную рраиичпую 1смаз1ку при трении. [c.80]

    Степень цикличности нефтяных кислот и наличие кис ют с бензольным кольцом в молекуле могут сильно маскироваться, если в выделенных нефтяных кислотах присутствуют значительные примеси жирных кислот. В отдельных сообщениях указывается, что примеси жирных кислот в ряде случаев могут составлять 10—15%. Вследствие большой близости состава, а также физических и химических свойств высокомолекулярных жирных кислот разветвленного строения и моноциклонарафиновых кислот разделение их становится крайне трудной задачей. [c.320]

    По своим физическим свойствам композиции искусственных восков близки к природным. Эти продукты имеют твердую воскообразную консистенцию, цвет от кремового до светло-желтого, слабый специфический запах йодное число не более И —12, содержание влаги не более 1,5% температура каплепадения 62— 70° С (для композиции С-32) и 64—72° С (для композиции СП-32). Используются в качестве структурообразующих компонентов, а также для частичной или полной замены пчелиного воска. Эмульсионные кремы с искусственными восками термостабильны, имеют однородную блестящую поверхность, хорошую консистенцию. Применяют в кремах до 5%, а также в изделиях декоративной косметики. КИТАЛАН — композиция, заменяющая спермацет в косметических кремах. Твердый однородный воскообразный продукт от кремового до светло-желтого цвета, со слабым характерным для жиров запахом температура каплепадения 50—65° С содержание воды не более 1,0% (масс.) йодное число не более 12. СТЕАРИЛСТЕАРАТ (стеарол) — смесь эфиров стеариновой и пальмитиновой кислот и высокомолекулярных спиртов фракции i7— 18, получаемой при разгонке синтетических первичных спиртов i6—С21, или синтетических первичных высших жирных спиртов фракции Сш— [c.132]

    Опытами на машине трения, проведенными в последние годы Ф. Боуденом и его сотрудниками, показано [И, 12], что различные соединения на разных металлах дают или физически адсорбированную пленку или пленку, являющуюся результатом хемосорб-ционного процесса. Например, на инертных металлах (платина, серебро, никель, хром) и на стекле смазочные свойства жирных кислот ниже, чем парафиновых углеводородов. Наоборот, на активных поверхностях (медь, кадмий, цинк, магний, железо, алюминий) жирные кислоты дают значительно меньшее трение. Таким образом, металлы, наиболее подверженные химическому воздействию в присутствии жирных кислот, смазываются наиболее эффективно. [c.150]

    Дальнейшее развитие представлений о взаимосвязи состава и свойств твердых углеводородов, найденных Н. И. Черножуковым и продолженных его последователями, дало возможность расширить область применения твердых углеводородов нефти, распространив ее на ряд отраслей народного хозяйства. Это физические антиозонанты в шинной промышленности, восковые композиции в радиоэлектронной, пищевой промышленности и других отраслях. Следует отметить, что результаты исследования твердых углеводородов имели большое значение при выборе фракций парафина для получения методом окисления синтетических жирных кислот, моющих средств и других ПАВ. Рациональное использование твердых углеводородов, являющихся побочными продуктами производства нефтяных масел, явилось решением крупной химмотологиче-ской задачи и одновременно решением экологических вопросов, связанных с созданием малоотходных технологий. [c.10]

    Воск. Воск состоит, главным образом, из сложных эфиров, одноатомных спиртов с больщим молекулярным весом и высокомолекулярных жирных кислот. Так, в состав пчелиного воска входят, главным образом, сложные эфиры мирицилового спирта Сз ,Н ,ОН, например пальмити-новомирициловый эфир С,5Н СООСзоН и др. По своим физическим и химическим свойствам воск сходен с жирами. Он содержится в цветах, в налете, покрывающем листья и кору ветвей, в небольшом количестве выделяется кожей животных. [c.145]

    Первым примером такой группы органических соединений явились предельные одноатомные спирты. В 1842 г. малоизвестный химик Я. Шиль опубликовал работу, в которой отметил закономерное повышение температур кипения спиртов на 18 °С при переходе от одного члена ряда к следующему. Год спустя Ж. Дюма показал, что жирные кислоты тоже образуют ряд, в котором каждый представитель отличается от последующего на группу СН2, а в физических свойствах жирных кислот также отмечаются определенные закономерные изменения. [c.43]

    Жиры депо создают один из метаболических энергетических резервов живых систем. Это преимущественно триацилпроиз-водные глицерина (разд. 5.2). В целом триглицериды животного происхождения отличаются от триглицеридов многих растительных масел высоким содержанием насыщенных ацильных групп. Существует четкая корреляция между степенью ненасы-щенности и температурой плавления триглицеридов. Высоконенасыщенные растительные масла имеют очень низкую температуру плавления, тогда как животные жиры при обычной температуре обычно твердые вещества. В результате промышленной гидрогенизации растительных жиров образуется маргарин — продукт, обладающий физическими свойствами, сходными со свойствами типичного животного жира. Различие в физических свойствах обусловлено различием строения молекул насыщенных и ненасыщенных жирных кислот, которое особенно наглядно проявляется при рассмотрении формы молекулы с растянутой конформацией углеродных цепей  [c.332]

    Физические свойства. НизиЬе представители предельных одноосновных кислот (до пропионовой включительно) представляют собой при обычных условиях весьма подвижные жидкости с резким запахом, смешивающиеся с водой в любых соотношениях. Легко перегоняются сами и с водяным паром. Следующие представители (начиная с масляной)—маслянистые жидкости с неприятным запахом, ограниченно растворимые и воде. Высшие кислоты — твердые вещества, нерастворимы в воде. Все кислоты жирного ряда растворимы в спирте и эфире. Некоторые физические свойства предельных карбоновых кислот приведены в табл. 5. [c.141]

    Каучуки, вулканизованные только в смеси с вулканизующими агентами, не обладают необходимыми для различных целей жесткостью, сопротивлением растяжению, истиранию и надрыву. Эти свойства можно придать каучуку, добавляя в резиновую смесь так называемые наполнители. Они обычно бывают двух типов инертные наполнители (глина, мел и др.), которые почти не оказывают влияния на физические свойства резины, но облегчают переработку резиновой смеси, цусиливающие наполнители (обычно сажа), которые улучшают перечисленные выше свойства вулканизованного каучука. С целью предупреждения старения каучука, т. е. потери каучуком эластичности и других ценных свойств, в резиновую смесь вводят различные стабилизаторы — антиокислители (например, фенил-(5-нафтил-амин). Чтобы ускорить процесс вулканизации, в резиновую смесь вводят небольшие количества органических соединений, которые называют ускорителями (меркап-тобензтиазол, дифеинлгуанидин и др.). Оказалось, что для наиболее эффективного использования ускорителей вулканизации необходимо присутствие некоторых других химических веществ (обычно окисей металлов), называемых активаторами. В свою очередь действие активаторов наиболее эффективно в присутствии растворимых в каучуке мыл (солей жирных кислот), которые могут образовываться в процессе вулканизации. [c.422]

    Диэфиры. Многие эфиры (продукты реакции спиртов и жирных кислот) представляют собой маслообразные жидкости и обладают свойствами, сходными со смазочными маслами. Двойные эфиры алифатических спиртов изостроедия и двухосновных кислот нормального строения обладают, как было установлено, наиболее удачным сочетанием свойств, необходимых смазочному маслу [14], хотя число эфиров и диэфиров, которые могут быть получены, очень велико, только немногие производятся в промышленных количествах и получили применение. В табл. 65 содержатся данные о физических свойствах трех диэфиров, используемых в качестве синтетических масел. [c.240]

    Помимо простоты, электролитический метод имеет то преимущество, что в этом случае обычно получаются жирные кислоты высокой степени чистоты. Смесь углеводорода, кислого эфира и полного эфира, образующихся в результате симметричной и перекрестной конденсации, часто можно разделить перегонкой. Кроме того, смбсь можно гидролизовать и кислотную часть разделить на двухосновную и нужную одно основную кислоты перегонкой, кристаллизацией, экстракцией растворителем или методом распределения. При соответствующем подборе исходных кислот получаются вещества, которые не загрязнены кислотами с близкими физическими свойствами и поэтому могут быть легко очящены. Однако при очистке продуктов реакции иногда встречаются затруднения при работе с малыми количествами исходных кислот, [c.22]

    Натуральный жир или масло является смесью триацилглицери-ИОВ, в которых остатки жирных кислот распределены определенным образом (см. разд. 25.2.2.4). Под действием основного катализатора (гидроксид или метоксид натрия или сплав натрия и калия) при 80°С ацильные группы перераспределяются произвольным образом одновременно изменяются физические свойства смеси. Так, температура плавления соевого масла после такой обработки может повыситься от —7 до +6°С, а хлопкового масла — от 10 до 34 С. [c.66]

    Физические свойства. Низшие члены ряда алканкарбоновых кислот, так называемых жирных кислот, представляют из себя сильно ассоциированные жидкости с высокой температурой кипения (у НСООН = 101 С, у [c.482]

    При реакциях окиси этилена с алкилфенолами, жирными спиртами, жирными кислотами и меркаптанами получаются неионогенные детергенты, причем их физические и химические свойства можно изменять в нужных направлениях. Одним из основных преимуш,еств этих детергентов я чяется то, что содержаш,ие их сточные воды легко поддаются биологической очистке. Особенно эффективно применение неионогенных поверхностно-активных веш,еств в нефтедобываюш,ей и нефтеперерабатываюш,ей промышленности, так как при их использовании увеличивается количество извлекаемой нефти, облегчается процесс разрушения нефтяных эмульсий, а получаемая нефть содержит минимальное количество солей и влаги, что облегчает ее дальнейшую переработку. [c.6]

    Физические свойства мне лоты часто могут дать ключ к установ,пению ее характера. Низшие кислоты жирного ряда летучи и обладают характерным аапахом для высших алифатических кислот характерен их внешний вид, плохая растворимость в воде и легкость гидролиза их солей с щелочными металлами в водном растворе (мыла). Почти все ароматические кислоты представляют собой кристалличеокие твгрдые вещества с сравнительно высокой температурой плавления (обычно выше 100°) и трудно растворимы в холодной воде. [c.522]

    Для улучшения смачиваемости и снижения активности поверхности медных капилляров Эверилл [7] рекомендовал добавлять к неподвижной фазе поверхностно-активные вещества, например атпет 80 или спан 80. Соединения этого типа связываются с активными центрами поверхности капилляра своими сильнополярными концами, а их длинные неполярные цепи образуют промежуточный слой, который легко смачивается неподвижной фазой, особенно неполярной. Если на подготавливаемой колонке предполагается анализировать высокополярные соединения, то в качестве добавок рекомендуется использовать такие поверхностно-активные вещества, которые по своим физическим свойствам подобны анализируемым соединениям. Например, при разделении свободных жирных кислот к неподвижной фазе добавляют сильнокислое поверхностно-активное соединение [232]. [c.90]

    Различное распределение кислот в глицеридах объясня некоторые различия в физических свойствах жиров. Так, ма Г ло какао и овечий жир содержат в качестве главных кисл пальмитиновую, стеариновую и олеиновую примерно в равн количествах, и все же они обладают разными свойствами. Ма ло какао плавится при низкой температуре (34 °С), и оно ра сыпчато, в то время как овечий жир, плавящийся при бол высокой температуре (44—49 С), жирный на ощупь и густо Первое ведет себя как индивидуальное вещество, а второй как сложная смесь. [c.396]

    Триэтаноламин, Nf H HsOH).,, 277° при 150 мм Все три этаноламина слабО отличаются друг от друга физическими и химическими свойствами. Они могут смешиваться во всех отношениях с водой, этиловым и другими обыкновенными спиртами, ацетоно м, глицерино М и этиленхлор-гидрином, но не растворяются в диэтиловом эфире и некоторых альдегидах. Эта-ноламиновые соли высших жирных кислот представляют со бой мыла и эмульгирующие средства. [c.598]

    Глицериды природных жиров весьма специфичны по своему составу. Так, ненасыщенные кислоты растительных масел содержат двойные связи почти исключительно в г ис-конфигурации, а остатки различных жирных кислот занимают специфические положения в молекулах триглицеридов. Для масел растительного происхождения типично присутствие остатка ненасыщенной кислоты в положении 2 например, в масле бобов какао содержится 40% 1-пальмитоил-2-олеоил-3-стеароилглицерина и практически нет его изомеров. Физические свойства масел и жиров определяются не только природой жирных кислот, входящих в их состав, но и распределением изомерных триглицеридов, которое характерно для каждого конкретного масла или жира. [c.601]

    На примере полистирола Енкель и Уберрейтер показали влияние различных длин цепочек на физические свойства. Низкомолекулярные стекла обычно хрупки высокомолекулярные, напротив, упруги и жестки. При термохимических исследованиях эта разница также выражается отчетливо, например в различных значениях теплот сгорания, измеренных Лушинским . Кинетика реакций при образовании цепочек полистирола в процессе его полимеризации подробно рассмотрена Марком . По существу, здесь следует различать три состояния состояние образования зародышей, роста цепочки и окончательного ее разрыва , К другому весьма важному фактору строения органических синтетических пластмасс, подтверждающему их аналогию с силикатными стеклами в отношении протекающих в них процессов, относится размягчающее действие добавок, как это недавно показал Енкель . Эфиры жирных кислот, которые представляют собой высокоактивные умягчители органических пластмасс при сохранении своей летучести, вполне аналогичны по своим действиям щелочам в силикатных скелетах. Последние также относятся к хорошим умягчителям и также легко выносятся или улетучиваются из структуры силиката. [c.213]


Смотреть страницы где упоминается термин Жирные кислоты физические свойства: [c.180]    [c.28]    [c.92]    [c.316]    [c.329]    [c.134]    [c.17]   
Химия биологически активных природных соединений (1976) -- [ c.200 ]




ПОИСК





Смотрите так же термины и статьи:

Жирные кислоты свойства

Кислоты свойства



© 2024 chem21.info Реклама на сайте