Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидролиз кислотный катализ кислотой

    N, способен аналогично карбонильной группе реагировать с нуклеофильными реагентами. В частности, в условиях щелочного или кислотного катализа он может гидролизоваться до амида и далее — до кислоты  [c.103]

    Таким образом, это пример реакции типа А. Выше была приведена обобщенная схема [40]. В отдельных случаях возможны вариации в последовательности стадий в зависимости от того, проводится ли реакция при катализе кислотами или основаниями, а также и от других условий [41]. Какая стадия является лимитирующей, также зависит от кислотности и от природы группы и других групп, соединенных с карбонилом [42]. Можно ожидать, что гидролиз иминиевых ионов 2 [43] будет проходить довольно легко, так как одна из резонансных форм несет положительный заряд на атоме углерода  [c.328]


    В представленной выше схеме не отмечена роль катионной части реагента — протона. Между тем очевидно, что она существенна реакция идет лишь при действии галогеноводородных кислот, но не их солей. Причиной может быть то, что в реакции с участием галогеноводородных кислот образуется малодиссоциирован-ная молекула воды, содействующая сдвигу равновесия вправо при реакции же с солями должна была бы получиться щелочь, под действием которой происходит гидролиз галогенопроизводных, т. е. равновесие сдвигается влево. Однако это не единственная причина. Кроме этого, реакции замещения гидроксила на галоген содействует кислотный катализ — активация реагирующего вещества за счет присоединения протона. Это общее явление во многих реакциях нуклеофильного типа. Каталитическое действие протона заключается в том, что он присоединяется к свободной электронной паре кислорода, увеличивая тем самым положительный заряд на соседнем атоме углерода. При этом возникает промежуточная частица А либо даже отщепляется вода с образованием катионной частицы Б  [c.155]

    И, следовательно, Н3О+. Поскольку НзО+-катализируемая реакция аниона сложного эфира кинетически неотличима от реакции его кислоты, можно предположить, что механизм катализа гидролиза этой формы (13) включает общий кислотный катализ распада тетраэдрического интермедиата (14) ионом НзО . [c.470]

    В активных центрах ферментов содержится обычно две или более каталитических групп. Они могут воздействовать на субстратную группу двумя совершенно различными путями. Один из них заключается в том, что нуклеофильный, или общий основной катализ протекает одновременно с общим кислотным, в одном и том же переходном состоянии. Механизм этого типа, приложимый к гидролизу сложных эфиров, представлен в (15). Этот механизм часто постулировался в качестве вероятной модели катализа более чем одной функциональной группой, однако при исследовании модельных систем не было получено серьезных свидетельств в его поддержку [32]. Для реакций, подверженных нуклеофильному или общему основному катализу, общий кислотный катализ не характерен (и наоборот). Другой способ предусматривает действие двух каталитических групп по отдельности на различных стадиях сложной реакции. Если одна из групп специфично действует на скоростьопределяющей стадии такой реакции, в результате чего скоростьопределяющей становится уже следующая стадия, то именно на последней необходимо действие второй каталитической группы (примером такого процесса является описанный в предыдущем разделе гидролиз сложных эфиров диметилмалеиновой кислоты). [c.471]


    Омыление сложных эфиров карбоновых кислот в щелочной среде протекает быстрее, чем гидролиз в условиях кислотного катализа, так как нуклеофильность гидроксил-аниона выше нуклеофильности молекулы воды. [c.413]

    Так, например, гидролиз органических амидов, катализируемый кислотами, может происходить как реакция специфического кислотного катализа, так как значения кислот, сопряженных амидам, составляют около -1, а протонирование может протекать за счет НаО (рЛГ =-1,74) по схеме  [c.425]

    ДНК и РНК различаются поведением в условиях щелочного и кислотного катализа. ДНК устойчивы к гидролизу в щелочной среде. РНК легко гидролизуются в мягких условиях в щелочной среде до нуклеотидов, которые в свою очередь способны в щелочной среде отщеплять остаток фосфорной кислоты с образованием нуклеозидов. Нуклеозиды в кислой среде гидролизуются до гетероциклических оснований и углеводов. [c.442]

    Гидролиз. Механизм кислотного и основного гидролиза как алифатических, так и ароматических гидроксамовых кислот аналогичен механизму гидролиза амидов, н в случае кислотного катализа может быть представлен следующей схемой [ 35]  [c.99]

    Реакции сложных эфиров и ангидридов с водой обладают рядом характерных свойств. Энтропии и объемы активации имеют необычайно большие отрицательные значения в пределах от —20 до —50 энтр. ед. (от —84 до —210 Днпереходном состоянии большое число молекул растворителя иммобилизовано и подвергнуто электрострикции, что связано с сольватацией образующихся зарядов и переносом протонов (который может происходить, поскольку на это указывает наблюдающийся общеосновной катализ). Дейтериевый изотопный эффект растворителя обычно находится в пределах 2,0...4,0 [63, 65, 66[. Такие реакции, а также гидролиз ацетиламидазолиевого катиона сильно тормозятся в концентрированных растворах определенных солей и (если отсутствует кислотный катализ) кислот [63, 67, 68]. Поразительным примером служит 500-кратное уменьшение скорости гидролиза ацетилимидазолия в присутствии 8 моль/л перхлората натрия [67]. Это ингибирование нельзя полностью объяснить уменыпением активности воды в концентрированных растворах солей, и, вероятно, в нем проявляется взаимодействие солей с полярными карбонильными соединениями, обладающее особой чувствительностью к природе аниона соли. [c.382]

    Если стадия протонирования субстрата является лимитирующей стадией всего процесса, имеет место общий кислотный катализ. В этом случае источниками протонов являются не только ионы гидроксония, но и все другие находящиеся в растворе протонодо-норные кислоты — кислоты Бренстеда (СН3СООН, NH , Н2РО и др.). Поэтому в случае общего кислотного катализа скорость реакции зависит как от pH раствора, так и от концентрации в нем слабых кислот. Общий кислотный катализ наблюдается, например, при гидролизе этилвинилового эфира. [c.238]

    НОЙ стадии происходит протопирование субстрата), отметим следующие 1) с помощью метки 0 было показано, что в RO H = СНг расщепляется связь между винильным атомом углерода и атомом кислорода, а не связь R—О (409] 2) в реакции действует общий кислотный катализ [410] 3) при использовании D2O наблюдается изотопный эффект растворителя [410]. По аналогичному механизму под действием кислот гидролизуются енамины (т. 3, реакция 16-2). Фураны представляют собой разновидность виниловых эфиров, которые расщепляются кислотами, давая 1,4-дионы  [c.107]

    Случай кислотного катализа менее ясен. Реакция обычно имеет второй порядок кроме того, известно, что амиды протонируются главным образом по кислороду (гл. 8, [16]). На основании этих фактов, как правило, считают, что большинство катализируемых кислотами реакций гидролиза амидов протекают по механизму Алс2. [c.117]

    В условиях кислотного катализа низшие альдегиды присоединяются друг к другу, давая циклические ацетали, чаще всего тримеры [575]. Циклический тример формальдегида называется триоксан, а ацетальдегида—паральдегид. В определенных условиях удается получить тетрамеры [576] или димеры. Полимеризация альдегидов может давать и линейные молекулы, по при этом необходимо присутствие небольших количеств воды для образования полуацетальных групп на концах цепи. Линейный полимер, полученный из формальдегида, называется пара-формальдегидом. Так как тримеры и полимеры альдегидов представляют собой ацетали, они устойчивы к щелочам, но гидролизуются под действием кислот. Поскольку формальдегид и ацетальдегид имеют низкие температуры кипения, часто удобно использовать их в виде тримеров и полимеров. [c.418]

    Группы К могут быть алкилом, арилом или водородом, но в случае миграции атома водорода образуется неустойчивый КзС НН. Механизм этой реакции в принципе тот же, что и при перегруппировке Курциуса. Однако имеются доказательства того, что при пиролизе третичных алкилазидов в качестве интермедиатов образуются алкилнитрены [222]. Реакция протекает также при кислотном катализе при этом температуру можно снизить, хотя кислота способна гидролизовать имин (т. 3, реакция 16-2). Циклоалкилазиды дают продукты с расширением цикла [223]  [c.158]


    Реакции ацетализации интенсивно протекают уже при комнатной температуре в присутствии ионов водорода с концентрацией около 10 N. Процессы образования и гидролиза ацеталей хорошо известны, как пример кислотного катализа. Реакции ацетализации протекают в две последовательные стадии, как показано в уравнении 3. Первая стадия (образование полуацеталей) протекает значительно быстрее, чем вторая С1 адия (образование ацеталей). Эти реакции имеют место даже при незначительном содержании катионов водорода, которые образуются вследствие присутствия в метаноле-сырце органических кислот. Самопроизвольное образование ацетатей и полуацеталей характеризуется следующими условиями  [c.74]

    В предположении, что относительная величина представляет собой сумму вкладов различных независимых факторов а — индуктивная константа заместителя, р — мера чувствительности реакции к индуктивным эффектам, з —стерическая константа заместителя, 5 —мера чувствительности реакции к етеричееким эффектам. Так как пространственные эффекты в катализируемых кислотами и основаниями реакциях гидролиза эфиров, по-видимому, приблизительно одинаковы, а индуктивные эффекты при кислотном катализе, как правило, невелики [c.171]

    Фосфорная кислота является кислотой средней силы . В связи с этим, как указали Хадсон и Харпер [170], возникает вопрос, близки ли полные эфиры фосфорной кислоты по своим свойствам к эфирам сильных кислот (например, толуолсульфокислоты) или слабых кислот (например, карбоновых). На самом деле эти эфиры по свойствам напоминают оба указанных типа эфиров, так как проявляют заметного тенденцию к реакциям замещения у атома углерода но ча происходит нуклеофильное замещение у фосфора, в особенности гидроксильными и алкоксигруппами. Простейшие трифосфаты сравнительно устойчивы. Например, триметилфосфат 1 Й =СНз) гидролизуется в щелочной среде со скоростью реакции второго порядка при этом расщепляется связь Р — О и образуется диметилфосфат, анион которого очень устойчив к дальнейшему гидролизу. В слабокислой среде триметилфоа )ат медленно гидролизуется с разрывом связи С — О без кислотного катализа [49]. Как и ожидалось, фениловые эфиры гидролизуются в щелочной среде легче, чем алкиловые эфиры. Действительно, трифенилфосфат [c.80]

    Замещение протона в ШЬ-гидроксигруппе (2.758) на алкил приводит к уменьшению скорости независящего от pH разложения промежуточного продукта в 10 раз. Вода и буфер катализируют отрыв спирта от этого продукта по законам общего кислотного катализа (при обратной реакции — атаке ROH — имеет место общий основный катализ). Сильные кислоты ингибируют гидролиз катиона фталимидия [290]. [c.213]

    Нуклеофильный и общий основной катализ составляют два из трех механизмов, выявленных при работе в модельных системах. Третий механизм — это общий кислотный катализ. Этот механизм обычно не наблюдается в реакциях сложных эфиров, но имеет больщое значение при гидролизе ортоэфиров и некоторых ацеталей [22]. Так, гидролиз этилортоацетата (4) катализируется кислым компонентом нитрофенольных буферов [23] и, как принято считать, протекает по механизму общего кислотного катализа [22] схема (10) . Согласно этому механизму, обратному общему основному катализу превращение (4) в (5) и затем обратно (5) в (4) через одно и то же переходное состояние , катализатор посредством протонирования превращает плохую уходящую группу в хорощую. В отличие от специфического кислотного катализа, который зависит только от pH и не зависит от концентрации обобщенной кислоты (в данном случае фенола), здесь стадии переноса прогона и разрыва связи С—О согласованы. [c.464]

    Внутримолекулярный общий кислотный катализ удобно проиллюстрировать на примере гидролиза ацеталей (II), образованных из салициловой кислоты и альдегидов, в качестве которых могут выступать простые соединения типа формальдегида и бензальдегида или альдегидные формы углеводов. Реакции последних (12) представляют особый интерес в связи с изучением механизма действия ферментов, гидролизующих гликозиды [24, 32] (см. разд. 24.1.4.4). [c.468]

    Все рассмотренные до сих пор внутримолекулярные реакции протекали с участием активированных субстратных групп и представляли собой просто внутримолекулярные аналоги реакций, рассмотренных в предыдущем разделе. Перейдем теперь к реакциям с неактивированными субстратными группами. Из рассмотренных в табл. 24.1.2 примеров систем сложный эфир-карбоксил наибольшей реакционной способностью в системе обладает моноэфир фталевой кислоты. Рассмотрим теперь гидролиз не монофенилового, а монометилового эфира этого соединения. Мы вновь обнаружим катализ, хотя реакция протекает гораздо медленнее. Период полупревращения в случае гидролиза монофенилфталат-аниона составляет примерно 30 мин при 30°С, в то время как монометилфталат совершенно стабилен даже при 100°С. В этом случае, однако, гидролизуется кислотная форма с периодом полупревращения около [c.469]

    В случае гидролиза сложных эфиров, катализируемого карбоксильной группой, наиболее реакционноспособными из известных соединений являются производные диметилмалеиновой кислоты. Монометиловый эфир диметилмалеиновой кислоты (13) гидролизуется с периодом полупревращения всего 30 с при 37°С [34], по-видимому по тому же механизму, что и монометиловый эфир фталевой кислоты продуктом является диметилмалеиновый ангидрид схема (14) . В этом случае, однако, система настолько реакционноспособна, что наблюдается также реакция аниона. Эфир (13) при высоких pH гидролизуется с периодом полупревращения 2 ч при 37 °С схема (15) . Здесь мы впервые сталкиваемся с внутримолекулярным катализом неактивированного сложного эфира ионизованной карбоксильной группой. Механизм этого процесса оказывается весьма простым [34], а именно внутримолекулярный катализ карбоксилатной группой схема (15) через тетраэдрический интермедиат (14), для которого характерна наименьшая сопротивляемость к элиминированию алкоксид-иона из всех других рассмотренных нами ранее интермедиатов. Тем не менее нет сомнения, что элиминирование метоксида является скоростьопределяющей стадией реакции. Эта реакция (скоростьопределяющее отщепление плохой уходящей группы из полуортоэфира), как мы и полагали, показывает признаки общего кислотного катализа (см. с. 464). Гидролиз монометилдиметилмалеат-аниона действительно подчиняется механизму общего кислотного катализа (например, катализ уксусной кислотой ) [16]. [c.470]

    Для образующегося вначале тетраздрического интерхмедиата (48) возможен только распад на исходные соединения. Однако после переноса протона (48)-)-(49) может проходить элиминирование RNH2. Этот перенос протона не может идти непосредственно (участвующие группы чрезмерно сближены), и требуется общий кислотный катализ [76). В случае фермента, естественно, можно полагать, что в качестве требуемого общего кислотного катализатора будет выступать одна из находящихся в активном центре карбоксильных групп. Введение карбоксильной группы возможно и в модельное соединение. Для гидролиза (51), полученного в результате такого введения, уже не требуется межмолекулярного катализа. Очень быстрый гидролиз (51) катализируется его собственными двумя карбоксильными группами, действующими на отдельных стадиях реакции. Одна из них должна находиться в форме кислоты вторая, катализирующая, по-еидимо-му, стадию переноса протона [соответствующую (48)- -(49) на схеме (39)1, действует в форме группы СОг , предположительно в качестве общего основного катализатора. В результате гидролиз (51) показывает колоколообразный профиль зависимости от pH [77), качественно близкий наблюдаемому при гидролизе пепсином. [c.501]

    Функциональные мицеллы не относятся к числу наиболее известных примеров мицеллярного катализа, главным образом потому, что заряженные концевые группы обычных детергер1тов представляют собой сопряженные основания сильных кислот нли тетраалкнламмониевые катионы, в силу чего их реакционная способность ниже, чем у нуклеофилов или общих оснований. Анионная мицелла (см. рис. 24.1.15) может катализировать реакции специфического кислотного катализа, такие как гидролиз ацеталей ил и ортоэфиров с гидрофобными группами, путем связывания субстрата таким образом, что полярная функциональная группа [c.507]

    Для установления взаимосвязи между реакционными свойствами системы и типом наблюдаемого катализа могут быть использованы различные подходы. Если все остальные стадии реакции являются быстрыми, то в качестве медленной стадии должен выступать процесс переноса протона. В общем кислотном катализе этот эффект проявляется в виде медленного переноса протона на углеродный атом или от него. Если, однако, перенос протона осуществляется с участием не углеродного, а кислородного или азотного атома, то следует анализировать другие стороны кинетических процгссов. Например, гидролиз ацеталей обычно катализируется ионами гидроксония, тогда как в случае гидролиза ортоэфиров имеет место общий кислотный катализ. Это различие можно объяснить тем, что при гидролизе ацеталя протекание лимитирующей стадии требует больших энергетических затрат, чем при гидролиза ортоэфира, поскольку во втором случае образующийся карбониевый ион стабилизируется за счет резонанса в большей степени, че.м в первом. Таким образом, реакцию, катализир>емую общей кислотой, можно определить как процесс, в котором стадия [c.100]

    Поскольку между специфическим и общим кислотным катализом четкую границу провести невозможно, общий катализ будет наблюдаться каждый раз, когда концентрация общей кислоты достигнет достаточно высокого уровня по сравнению с концентрацией ионов гидроксония. Например, в реакции эпи-хлоргидрина с иодидом натрия, протекающей в присутствии уксусной кислоты и сопровождающейся раскрытием этиленок-сидного кольца, повышение концентрации кислоты приводит к переходу от специфического к общему кислотному катализу [13]. В реакции гидролиза этилортоформиата, протекающей в водном растворе уксусной кислоты, наблюдается специфический катализ ионами гидроксония, однако при замене реакционной среды на водно-диоксановый раствор уксусной кислоты последняя выступает уже в роли общего кислотного катализатора. Причина этого явления заключается в том, что в водно-диоксановой среде отношение [СН3СО2Н]/[Н3О+] примерно в 1000 раз выше, чем в воде, вследствие сдвига рКа уксусной кислоты [16]. [c.102]

    Упражнение 2.2.40. Обоснуйте различное поведение ацеталей, кеталей и ортоэфиров 110 отношению к основаниям и кислотам Предложите механизм гидролиза ортоэфира до сложного эфира в условиях кислотного катализа. [c.415]

    При основном и нуклеофильном катализе гидролиза (расщепления) сложных эфиров, галогенангидридов, органических амидов и этерификации карбоновых кислот, как и в случае кислотного катализа, замещение связи при ацильной и алкильной группах соответственно обозначаются символами Ас и Alk, а молекулярность — цифрами 2 и 1. [c.437]

    Изучение скорости гидролиза алифатических гидроксамовых кислот в условиях кислотного катализа указывает на применимость в этих условиях бимолекулярного механизма [ 86 ] Щелочной гидролиз интерпретируется как реакция сопряженного основания гидроксамовой киолоты с водой и гидроксид-анионом. Особенно легко гидролизуютсяами-ногидроксямоэые кислоты [43 ]г с 20 пиридином при температуре ЮО С гидролиз завершается эа час, а в случае кислот или щелочей для этого требуется еще меньше времени. [c.99]

    Тем не менее в сложных эфирах карбоновых кислот карбонильная группа сохраняет те же особенности, что и в альдегидах и кетонах углерод в ней обладает электрофильными свойствами (это подтверждается тем, что сложные эфиры способны выступать в качестве ацилирующих агентов в реакциях с аминами, гидразином и другими сильными нуклеофилами), а кислород — основными (кислотный катализ при гидролизе сложных эфиров и при пере-этерификации). Однако карбонильная группа в сложных эфирах реагирует с нуклеофилами не так, как в альдегидах и кетонах. Как уже отмечалось, для последних характерно присоединение по двойной углерод-кислородной саязи, сопровождающееся исчезновением карбонильной группы, например  [c.183]


Смотреть страницы где упоминается термин Гидролиз кислотный катализ кислотой: [c.151]    [c.246]    [c.113]    [c.142]    [c.182]    [c.69]    [c.294]    [c.311]    [c.313]    [c.446]    [c.31]    [c.120]    [c.281]    [c.253]    [c.254]    [c.431]    [c.20]    [c.20]    [c.377]    [c.377]   
Реакции координационных соединений переходных металлов (1970) -- [ c.19 , c.23 ]




ПОИСК





Смотрите так же термины и статьи:

Катализ кислотный



© 2025 chem21.info Реклама на сайте