Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лантаниды сульфаты

    Для работы требуется-. Штатив с пробирками.— Тигель фарфоровый.— Термометр Ассмана. — Коническая колба емк. 50 мл. — Капельница с водой. — Коллекционный набор солей всех лантанидов. — Нитрат неодима, кристаллический. — Двуокись церия. — Двуокись свинца. — Сульфат калия, кристаллический. — Катионит КУ-2 или СБС в Н-форме. — Азотная кислота 1 2 и 2 и. раствор. — Соляная кислота, 2 и. раствор. — Лимонная кислота, 5% раствор. — Щавелевая кислота, 2 н. раствор. — Едкое кали, 2 н. раствор. — Карбонат натрия, 2 н. раствор.—Сульфат церия (П1), 5% раствор.—Иодат калия, 5% раствор. — Фторид калия, 5% раствор. — Перманганат калия, 0,5 и. раствор. — Сульфат аммония, 40% раствор. — Перекись водорода, 3% и 10% растворы. — Церий металлический (или мишметалл) порошком. [c.336]


    Одно из главных преимуществ ИХ — быстрое одновременное определение многокомпонентных смесей катионов или анионов (до 10 и более) в течение 2-15 мин. Основные анионы (фторид, хлорид, нитрат, сульфат, фосфат) можно разделить на хороших ионообменниках за 2-5 мин., за 15-20 мин. можно разделить все катионы группы лантанидов. ИХ способна разделить и определить катионы в разных валентных состояниях, например, Ге " чего не может сделать атомно-адсорбционная спектрометрия. [c.327]

    Распределение некоторых лантанидов с оксалат-, сульфат-, хлорид- и роданид-ионами при 25°. [c.541]

    На рис. 29 приведены кривые зависимости растворимости различных кристаллогидратов сульфата церия от температуры. Этой зависимостью пользуются для переведения в раствор сульфатных продуктов при разложении руд, содержащих церий, торий и лантаниды. [c.256]

    Иттрий и лантаниды образуют хорошо растворимые нитраты, сульфаты и хлориды и мало растворимые фто- [c.77]

    Европий(И) в растворе проявляет свойства мягкого восстановителя в остальном по химическим свойствам он подобен барию. Гидроокись европия (И) растворима в воде, поэтому все другие лантаниды можно отделить от Ей" осаждением их гидроокисей аммиаком, не содержащим карбонатов другая возможность отделения— осаждение и удаление сульфата европия (II). [c.520]

    После отделения сульфата бария (радия) из кислого раствора, при переработке урановых руд, актиний остается в растворе и может быть выделен из него. Для этого кислый раствор, вслед за осаждением полония в виде сульфида, кипятят, чтобы удалить сероводород, и обрабатывают аммиаком. Выделяющийся осадок состоит, главным образом, из гидроокисей лантана и сопутствующих ему лантанидов.Обрабатывая гидроокиси плавиковой кислотой, получают смесь фторидов, содержащих большую часть актиния. Фтористые соли переводят в хлористые, после чего смесь катионов осаждают щавелевой кислотой и затем переводят в нитраты. Дальнейшие операции сводятся к получению двойных нитратов и к их дробной кристаллизации актиний при этом концентрируется в маточных растворах. [c.280]

    Рис, 2, Растворимость сульфатов нек-рых лантанидов в зависимости от темп-ры. [c.461]

    ОТ других лантанидов способностью образовывать растворимую гидроокись и нерастворимые фосфаты и сульфаты. В природе он также иногда встречается с минералами группы II. [c.331]

    Отделение актиния и лантанидов от остальных сопутствующих элементов осуществляют путем соосаждения с гидроокисью или фторидом лантана (в отсутствие тория, циркония, радия) или с иодатом циркония и сульфатом бария или свинца (когда актинию сопутствуют малые количества лантанидов). [c.60]


    Редкоземельные металлы (лантаниды) составляют ряд из 15 весьма близких по химическим свойствам элементов, которые в природе обычно встречаются вместе и которые исключительно трудно отделить друг от друга. Однако они могут быть грубо разделены на три группы, как показано в таблице, методом, основанным на различии в растворимости их двойных натриевых сульфатов в холодном на.сы-щенном растворе сернокислого натрия.  [c.133]

    Почти все лантаниды восстанавливаются на ртутном капельном катоде, образуя одну волну только Ей, УЬ и 5т дают две волны восстановления, из которых первая соответствует восстановлению до двухвалентной формы, а вторая—последующему восстановлению до металла. Однако вследствие гидролиза солей лантанидов на полярограммах получается до волны восстановления их еще волна, соответствующая восстановлению иона водорода. Это явилось причиной неправильного вывода о ступенчатом характере восстановления всех редкоземельных элементов, сначала от трехвалентного состояния до двухвалентного, а затем до металла. Ошибочность такого вывода подтверждается данными В. А. Заринского , показавшего, что только при подкислении растворов сульфатов неодима, празеодима и самария полярограммы их приобретают ступенчатый характер это связано с появлением волны Н+. Однако сам В. А. Заринский пришел к заключению, что восстановление самария, неодима и празеодима в 0,1 и. растворе хлорида лития происходит с образованием волны по реакции [c.273]

    Из кислых растворов Се(0Н)4 начинает осаждаться уже около рН=2. Для ее произведения растворимости даются значения порядка 10 . На слабости основных свойств Се (ОН) 4 основаны некоторые методы отделения Се от других лантанидов. Например, при разбавлении водой раствора смеси сульфатов e(S04)a подвергается сильному гидролизу. В результате большая часть церия оказывается в осадке, а остальные лантаниды (и часть Се) — в растворе. [c.244]

    К нерастворимым солям относятся карбонаты, фосфаты, фториды, оксалаты, феррицианиды и др. С сульфатами и нитратами щелочных металлов, аммония и магния соответствующие лантаниды образуют двойные соли состава Ме(НОз)з 2МН4Ы0з-4Н20, 2Ме(М0з)з-ЗМ (М0з)2-24Н20 и Этими [c.334]

    Нормальные (средние) сульфаты большей частью хорошо растворимы в воде, но нерастворимы в спирте и других органических растворителях. Малая растворимость в воде характерна главным образом для производных наиболее объемистых двухзарядных катионов 8г +, КЬ +, Ва + и Ка +. Труднорастворимы также суль-фатыСа " , HgГ, ТЬ ", Ьа " некоторых лантанидов. Характерным для многих сернокислых солей является уменьшение их растворимости при нагревании. [c.487]

    Сульфаты. Сульфаты скандия, иттрия, лантанидов и тория могут быть получены растворением окисей, гидроокисей или карбонатов в серной кислоте. Эти соли хорошо изучены. Для сульфатов всех рассматриваемых элементов характерна способность кристаллизоваться с различным количеством воды — до 20 молекул. Кристаллогидраты отдают воду при прокаливании, нреврашаясь в безводные сульфаты. Так, например, Л. А. Алексеенко, А. Ф. Леменкова и [c.255]

    Подобно сульфатам, нитраты РЗЭ также легко образуют двойные соли. Особенно важны двойные нитраты, образованные лантанидами с нитратами магния и марганца, общей формулы 2Ьп(МОз)з ЗМе(№Оз)г 24Н2О. Марганцевые двойные нитраты значительно более растворимы, чем магниевые, причем растворимость их в воде медленно возрастает с увеличением температуры. Растворимость в азотной кислоте незначительна, и это позволяет проводить дробные кристаллизации лантанидов, пользуясь 50%-ной азотной кислотой, так как с увеличением порядкового номера лантанида увеличивается растворимость его двойного нитрата в азотной кислоте. Например, если принять растворимость двойного нитрата лантана при 20° С за единицу, то относительная растворимость других солей выразится следующим образом  [c.259]

    Можно кристаллизовать и различные другие соли — броматы, диметилфосфаты для получения чистых солей эрбия был применен ([815] метод дробной кристаллизации оксалата из солянокислых растворов, а Марш [816] показал, что для дробной кристаллизации можно воспользоваться большой разницей в растворимости двойных солей ЭДТА с отдельными лантанидами, К методам фракционного о с а ж д е н и я относится в первую очередь осаждение двойных сульфатов, широко применяемое на практике и частично уже описанное выше. Это старый метод, примененный еще Берцелиусом, тоже классический метод разделения РЗЭ на цериевую и иттриевую группы. За последние годы этот метод был подробно изучен и усовершенствован [817] сокращено число переосаждений, разработаны приемы, позволяющие разделять РЗЭ не только на две, но и на три [c.315]

    Известны соли, образуемые лантанидами с большинством кислородсодержащих кислот,— сульфаты, нитраты, перхлораты, броматы и т. д. Они, как правило, хорошо растворимы в воде и кристаллизуются в виде гидратов. Карбонаты, фосфаты и оксалаты нерастворимы осаждение оксалатов из растворов разбавленной азотной кислоты является количественным и достаточно специфичным методом отделения лантанидов. После прокаливания оксалатов до окисей лантаниды можно определить весовым методом. Порядок выпадения оксалатов определяется условиями осаждения [4]. В азотнокислых растворах оксалаты существуют главным образом в виде кислого оксалат-аниона Нох . Ион аммония образует с ним двойные соли ЫН4Мох2-г/Н20 ( =1 или 3). В нейтральных растворах оксалат аммония образует простые оксалаты с легкими лантанидами, но смешанные с тяжелыми. Промывание двойных солей 0,1 н. азотной кислотой приводит к образованию простых оксалатов. [c.510]


    SNa SO -I2H2O. По растворимости двойные сульфаты последнего типа можно подразделить примерно на два класса на группу церия (La—Eu) и группу иттрия (Gd—Lu и Y), Сульфаты группы церия лишь умеренно растворимы в сульфате натрия, тогда как сульфаты группы иттрия растворимы в нем очень хорошо. Таким образом, все элементы группы лантанидов можно довольно быстро разделить на два основных класса. Для дальнейшего разделения в прошлом использовали различные двойные нитраты, применяя метод фракционированной кристаллизации, [c.511]

    До появлегшя ионообменной техники разделение редких зе.мель было чрезвычайно трудоемким даже в малых количествах. В течение многих лет для разделения использовали лишь фракционированную кристаллизацию, проводимую обычно в виде выделения двойных сульфатов, фракционированного осаждения или фракционированного разложения позднее к ним добавили процедуру удаления церия в виде Се , а европия, самария и иттербия — в двухвалентном состоянии. Все эти методики (за исключением особых случаев, например удаления европия) сейчас совершенно вытеснены разделением при помощи ионообменных смол. Хотя химические свойства всех лантанидов в состоянии окисления III почти одинаковы, имеются все же небольшие количественные различия, которые носят систематический характер при переходе от La к Lu (Y занимает место приблизительно между Dy и Но). Ионообменное разделение основано на том, что постепенное уменьшение радиуса иона и следующее отсюда понижение основности приводит к постепенному упрочению связи с лигандами (по мере возрастания атомного номера). Первым следствием этого является то, что радиусы гидратированных ионов лантанидов М + увеличиваются с возрастанием атомного номера. Поскольку в основе прочности связывания катионов с анионными группами обменных с. юл лежит, по-видимому, электростатическое притяжение гидратированного катиона к отрицательной группе, то оказывается, что чем больше радиус гидратированного иона, тем менее прочно он будет связываться. Таким образом, уже один этот эффект люжет быть причиной разделения ионов лантанидов М . Если. медленно пропускать раствор, содержащий некоторые из этих ионов, через колонну с катионооб.менной слюлой, то самые тяжелые ионы будут проходить через нее первыми. Этот процесс можно описать равновесием типа [c.513]

    Следовательно, в ряду актинидов в некотором интервале атомных номеров (в основном от и до Ат) энергии 5/-, М-, 75- и 7р-орбиталей примерно одинаковы. Если учесть, что эти орбитали к тому же перекрываются в пространстве, то вполне возможно, что каждая из них или все они югyт принимать участие в образовании связей. Это положение отражается и на химических свойствах актинидов, которые гораздо более склонны к образованию комплексов, чем лантаниды, где связи носят почти исключительно ионный характер. Действительно, помимо обычных комплексов с галогеки-дами, сульфатом и другими ионами, актиниды могут образовывать комплексы даже с я-лигандами, например с алкилфосфинами, тио-эфирами и л-циклопентадиенилом. Отличие от химии лантанидов обычно объясняется вкладом ковалентных структур, образующихся за счет гибридных орбит с участием 5/-электронов. [c.529]

    А. I. г.5. Другие комплексообразующие реагенты. Для сорбции металлов на анионитах можно использовать не только хлориды, фториды, сульфаты и нитраты, но и любые другие анионы, которые образуют с металлами отрицательно заряженные комплексы. Лучшим из них является, по-видимому, тиоцианат-ион. С ним образуют комплексы хром [60], молибден [61], кобальт [60] и железо(1П). Ионы этих металлов сорбируются анионитом, в то время как ионы других металлов проскакивают в фильтрат. Сорбция увеличивается, как и в предыдущих случаях, в неводных растворителях, что позволяет провести хроматографическое разделение таких смесей, как торий и лантаниды [62]. Такие комплексообразующие реагенты, как EDTA [63], оксалаты [64, 124], и другие комплексообразующие анионы используются в хроматографическом анализе более редко из-за трудности удаления их из фильтратов. [c.214]

    Трудности учета влияния многих факторов на интенсивность флуоресценции кристаллофосфоров, активированных лантанидами, затрудняют их количественные определения указанными методами. В литературе имеется пока мало работ по определению лантанидов путем приготовления кристаллофосфоров (стр. 138). Иллюстрацией больших возможностей этого метода могут быть работы " по определению гадолиния, самария и европия в бериллии и тории. Как уже указывалось (см. стр. 137), в качестве основы применена окись бериллия с добавкой двуокиси тория. При изготовлении фосфора в качестве плавня добавляют хлорид лития и для уменьшения спекания кристаллофосфора с тиглем— сульфат натрия. Следует применять лишь очень чистый препарат тория, чтобы последний не загрязнял фосфор гадолинием. Содержание гадолиния в ТЬОа не должно превышать 10 %. Авторы метода применяли нитрат тория, приготовленный из ацетилаце-тоната тория, очищенного от лантанидов трехкратной перегонкой в вакууме. [c.313]

    Описан метод определения самария в двуокиси церия на основе кристаллофосфора из сульфата свинца . Кристаллофосфор, приготовленный из сульфата свинца, активированного самарием, флуоресцирует красным цветом. Церий является соакти-ватором и увеличивает интенсивность флуоресценции кристаллофосфора. Оптимальная концентрация двуокиси церия 2%, температура прокаливания—850 °С в течение 30 мин. В качестве плавня применяют фторид лития. Максимум спектра флуоресценции кристаллофосфора лежит при 575 ммк. Чувствительность определения равна 0,05 мкг самария на 100 мг кристаллофосфора. Большинство лантанидов уменьшают интенсивность флуоресценции кристаллофосфора, поэтому определение самария в анализируемых объектах следует выполнять методом добавок. [c.318]

    Лантаниды цериевой подгруппы образуют сравнительно малорастворимые двойные сульфаты с сульфатами щелочных металлов. Хлориды и нитраты растворимы в воде. [c.83]

    Протактиний является первым членом актинидного ряда элементов, названных так потому, что они напоминают актиний. Актиниды, подобно лантанидам, существуют вследствие постепенного заполнения f-орбиталей (в данном случае 5/), которые во всех членах этого ряда (кроме первых) играют незначительную роль в образовании связи. Заполнение /-уровня заканчивается в No и Lr. Протактиний имеет электронную конфигурацию [Rn]5P6d 7s или [Rn]5f 6d 7s2, и, поскольку энергии электронов 5/-, 6d-, 7s-, 7/ -орбиталей в этом атоме отличаются незначительно, может осуществляться ковалентная гибридная связь с участием 5/-электронов, что приводит к состояниям окисления IV и V. Pa(V) напоминает Nb(V) и Ta(V), но он более склонен к гидролизу. Анионные комплексы образуются с фторидами, хлоридами, нитратами, сульфатами, роданидамн и цитратами Pa(V) не образует простого катиона. При восстановлении сульфатом трехвалентного титана или амальгамой цинка образуется Ра (IV),. который легко окисляется кислородом воздуха .  [c.348]

    Скандий образует соли и комплексы только в трехвалентном состоянии. Ион S + имеет электронную конфигурацию аргона, а его радиус лишь немногим меньше радиусов последних членов группы лантанидов, которых он весьма напоминает по своим химическим свойствам. Этот элемент обладает более основными свойствами, чем алюминий, но менее основными, чем лантаниды, в связи с чем он образует гидратированную окись 5с20з(Н20)ж, а также S O(OH), но не S (ОН) д. Гидрат окиси скандия при помощи аммиака можно соосадить с гидроокисью кобальта. Используя большую склонность скандия к образованию комплексов, в том числе S (N S)s (экстрагирующего эфиром), его можно отделить от лантанидов. Аналогичное отделение можно произвести экстракцией скандия в виде хлоридных комплексов трибутилфосфатом из сильно солянокислых растворов. Скандий отличается от трехвалентных лантанидов способностью образовывать в растворе сульфата калия нерастворимый двойной сульфат. Трифто-рид скандия S Fs нерастворим в воде, но растворяется в присутствии избытка фторид-иона с образованием S F . Скандий [c.356]

    Ионы актинидов, как правило, могут быть удалены со смолы путем вымывания такими ионами, как хлорид, нитрат, сульфат и особенно цитрат, лактат, а-гидрокси-бутират, этилендиаминтетрацетат. Порядок вымывания сорбированных ионов зависит от равновесия между степенью адсорбции на смоле и прочностью комплексных ионов, образуемых с вымывающим агентом. При вымывании с колонки для ионов актинидов и лантанидов часто наблюдается порядок, обратный их порядковым номерам. [c.74]

    Способность ионоп актинидов к комплексообразованию и гидролизу определяется главным образом размером ионов и их зарядом. Несмотря на некоторые изменения, наблюдаемые для каждого типа ионов, порядок комплексообразующей способности различных анионов с актинидами для однозарядных анионов следующий фторид>нитрат>хлорид>перхлорат и для двухзарядных анионов — карбонат>оксалат>сульфат. Ионы актинидов образуют несколько более прочные комплексные ионы, чем соответствующие ионы лантанидов. [c.130]

    При проведении реакций осаждения трехвалентные положительные ионы актинидов сходны с трехвалентными положительными ионами лантанидов. Четырехвалентные положительные ионы актинидов при осаждении подобны Се +. Таким образом, фториды и оксалаты нерастворимы в кислых растворах, а нитраты, сульфаты, перхлораты и сульфиды растворимы в воде. Че-тырехвалрнтиые ионы актинидов образуют иодаты, нерастворимые в воде. Ионы актниидов типа МО могут осаждаться, подобно калиевой соли, из концентрированных карбонатных растворов. [c.132]

    Все имеющиеся в настоящее время данные о химическом поведении берклия получены на индикаторных количествах. Трех-зарядность берклия (П1) подтверждается поведением трехвалентного берклия при ионном обмене. Как уже упоминалось, наблюдается заметная аналогия в поведении при вымывании берклия и его гомолога—тербия (см. рис. 10.3). В обоих случаях наблюдается скачок в величинах ионных радиусов в точке заполнения наполовину оболочки 5/ (кюрий в ряду актинидов) и 4/ (гадолиний в ряду лантанидов). Эта прерывность изменения ионных радиусов обусловливает скачкообразное изменение силы комплексообразования, что, в свою очередь, приводит к разрыву на кривых вымывания между берклием и кюрием с одной стороны, тербием и гадолинием—с другой. Поведение берклия в опытах с носителями свидетельствует о том, что в своем обычном состоянии окисления он существует в форме положительного трехзарядного иона Вк захватывается LaFg или La(OH)g, тогда как нитрат, хлорид, сульфат, перхлорат и сульфид берклия, по-видимому, растворимы в воде, как это следует из опытов с носителями. [c.439]

    Из методов разделения лантанидов, основанных на небольших различиях в свойствах ионов с зарядом 3+, до второй мировой войны чаще всего применяли метод дробной кристаллизации малорастворимых солей. В общем растворимость понижается с уменьшением размеров ионов лантанидов. Это позволяет производить хотя бы частичное разделение при использовании двойных сульфатов, двойных карбонатов, оксалатов, гексацианкобальтатов, этилсульфатов, хроматов и т. д. Однако повышенный интерес к этим элементам во время войны, вызванный тем, что они являются продуктами деления, и их сходством с актинидами, привел к разработке гораздо более эффективных методов разделения на ионообменных смолах. [c.235]

    Ионные радиусы лантанидов известны с достаточной степенью точности. В связи с этим энергию решетки окислов, хлоридов, сульфатов, нитратов и вообш,е всех солех лантанидов с незначительной долей ковалентной связи можно вычислить при помош и уравнения Капустинского. Наличие термохимических данных для перечисленных соединений позволяет вычислить теплоту образования газообразных ионов лантанидов [c.46]

    Б. Предложен также следующий ход открытия скандия в минералах [46]. Остаток сульфатов из 10 мг пробы, полученной после разложения сплавлением или обработкой кислотами и удаления летучих хлоридов, растворяют в 3 н соляной кислоте и осаждают небольшим избытком 5 М едкого натра с добавлением перекиси натрия если осадок гидроокисей незначителен, перед осаждением добавляют 1—2 мл раствора железа (1 мг1мл) и осаждают из небольшого объема кипячение.м с едки.м натром при рН С8- Если осадок велик или присутствует кобальт, переосаждают. Полученные гидроокиси Se, Fe, Y, Zr, Th и лантанидов кипятят с 3 н соляной кислотой, отделяют нерастворимый остаток центрифугированием, прибавляют пяти-шестикратный объем роданида аммония, доводят содержание соляной кислоты в растворе до [c.89]

    Ю". Кристаллогидраты обычно отвечают типу Эг(304)з 8Н2О. Вполне обезвоживаются они лишь при сравнительно высоких температурах. При 500 °С безводные сульфаты лантанидов еще устойчивы, но дальнейшее нагревание ведет к образованию основных солей и около 900 °С состав их отвечает формуле ЭгОз-ЗОз. Выше 1000 С основные соли нацело переходят в окиси. С сернокислыми солями К, Ка и ЫН4 сульфаты лантанидов образуют двойные соли, главным образом типа М[Э(504) 2] дгНзО. [c.240]

    Почти нерастворимые в воде (а потому и более устойчивые) сульфаты двухвалентных Sm, Eu и Yb могут быть получены катодным восстановлением соответствующих сульфатов Эа(504)з. Это дает возможность сравнительно легко отделять рассматриваемые элементы от других лантанидов. Бесцветный EUSO4 (растворимость 7 10" моль л при 20 °С) почти нерастворим и в разбавленных кислотах (не являющихся одновременно окислителями). Жедто-зеленый YbS04 и оранжевый SmS04 растворяются в разбавленных кислотах с выделением водорода. [c.246]

    При нагревании растворимость, как правило, уменьшается (рис. Х1-51). Ионы ЭЗО довольно устойчивы —их константы диссоциации лежат в пределах от 2-10 до 4-10-4. Кристаллогидраты обычно отвечают типу Эг(304)з 8Н2О. Вполне обезвоживаются они лишь при сравнительно высоких температурах. При 500 °С безводные сульфаты лантанидов еще устойчивы, но дальнейшее нагревание ведет к образованию основных солей и около 900 °С состав их отвечает формуле З2О3 ЗОз. Выше 1000 °С основные соли переходят в окиси. С сернокислыми солями К, N3 и КН4 сульфаты лантанидов образуют двойные соли, главным образом типа М [3(304)2] хНгО. [c.84]


Смотреть страницы где упоминается термин Лантаниды сульфаты: [c.234]    [c.282]    [c.370]    [c.370]    [c.370]    [c.169]    [c.239]    [c.399]    [c.169]    [c.261]   
Краткая химическая энциклопедия Том 2 (1963) -- [ c.0 ]

Основы общей химии Том 2 (1967) -- [ c.240 ]

Основы общей химии Том 2 Издание 3 (1973) -- [ c.84 , c.90 , c.517 ]




ПОИСК





Смотрите так же термины и статьи:

Лантаниды



© 2024 chem21.info Реклама на сайте