Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризация активность катализаторов

    Представляет интерес тот факт, что одна и та же примесь, введенная в полимеризационную систему не с катализатором, а с мономером, может оказать совершенно иное действие на ход полимеризации изопрена. Так, показано [51], что введение сероуглерода непосредственно в шихту позволяет значительно расширить диапазон отношений Al/Ti, при которых получается активный катализатор. Наряду с этим повышается стереоспецифическое действие катализатора, так как подавляются процессы, приводящие к образованию олигомерных продуктов. В то же время незначительные количества сероуглерода в катализаторе уменьшают активность и приводят к снижению молекулярной массы полимеров [48]. [c.214]


    В процессе в качестве катализатора применяют 96—98 %-ную, считая на моногидрат, серную кислоту. Расход катализатора на 1 т алкилата зависит от содержания олефинов в сырье для пропиленового сырья — 190 кг, для бутиленового сырья — от 80 до 100 кг, для амиленового сырья — 120 кг. Объемное соотношение кислота углеводороды поддерживается в реакционной зоне от 1 1 до 2 1. Поскольку кислотные свойства серной кислоты в растворе углеводородов значительно выше, чем в воде, снижение активности катализатора при алкилировании будет зависеть от разбавления ее водой. Поэтому нужна тщательная осушка сырья перед подачей в зону реакции. Концентрация кислоты понижается также за счет накопления в ней высокомолекулярных соединений. Применение более концентрированной кислоты приводит к окислению углеводородов, осмолению продуктов, выделению диоксида серы и снижению выхода алкилата. При меньшей концентрации идет реакция полимеризации олефинов с образованием разбавленной серной кислоты, корродирующей аппаратуру. В серной кислоте должны отсутствовать примеси, такие, как соединения железа, например сульфат трехвалентного железа, снижающие эффективность процесса. [c.60]

    Некоторые исследователи полагают, что поверхность треххлористого титана полностью покрыта металлорганическим соединением и что мономер вступает в реакцию из раствора [27, 29]. Опыты Натта позволяют заключить, что в процессе полимеризации активность катализатора со временем существенных изменений не претерпевает, скорость полимеризации прямо пропорциональна количеству Т С1а, давлению мономера и не зависит от концентрации триэтилалюминия. Нами найдено, что зависимость суммарной скорости полимеризации от концентрации алкилалюминия проходит через максимум. Высота максимума и его положение ио отношению к оси концентрации зависят от типа твердой фазы и металлорганического соединения [30]. [c.41]

    Истинные кривые перегонки полимеров, полученных при полимеризации пропилена при 150 и 205° в присутствии фосфорной кислоты на кварце, а также фосфорной кислоты па кизельгуре как катализаторе, показали, что при более активном катализаторе или при более высокой температуре реакции образуются полимеры более низкого молекулярного веса. Однородность этих двух полимеров также различна. Полимер, приготовленный при 150 , содержал преимущественно истинный полимер, хотя имелись также и значительные количества гетерополимера полимер же, полученный при 205°, состоял главным образом из гетерополимера с незначительным содержанием истинного полимера. [c.197]


    Полимеризация. В условиях, неблагоприятных для быстрого течения реакции взаимодействия олефина с изопарафином, полимеризация олефина может стать преобладающей реакцией. К таким неблагоприятным условиям относятся высокое отношение олефин изопарафин, высокое отношение углеводород катализатор, низкая активность катализатора, недостаточное перемешивание реагентов и катализатора. [c.319]

    Влияние природы металла и лигандов в я-аллильных комплексах на стереоселективность и активность катализатора при полимеризации изопрена [c.104]

    ММР сополимеров зависит от природы каталитической системы, растворителя, температуры полимеризации, концентрации катализатора, регулятора молекулярной массы и др. Сополимеры со сравнительно узким ММР можно получить на гомогенных катализаторах. На катализаторах, содержащих два или несколько активных центров с разной продолжительностью жизни или разной активностью, образуются сополимеры с более широким или [c.304]

    Исследования, связанные с использованием цеолитов для осушки, очистки и разделения углеводородов, показали, что они оказывают каталитическое действие на ряд процессов, например на полимеризацию олефинов и др. Состав продуктов полимеризации, получаемых на цеолитах, сходен с составом продуктов, получаемых при использовании в качестве катализатора фосфорной кислоты на кизельгуре. Хотя цеолиты в целом имеют щелочную реакцию, но, очевидно, они обладают и некоторыми кислотными участками, так как их действие в нроцессе полимеризации олефинов подобно действию других кислотных катализаторов полимеризации. В соответствии с этим наиболее активными катализаторами для полимеризации олефинов являются более кислые цеолиты формы X. Вероятно, у цеолитов этой формы кислотные участки находятся как во вторичной (в порах между кристаллами), так и первичной структуре (в порах кристаллов), а у цеолитов формы А — только во вторичной структуре. [c.99]

    Оптимальной температурой полимеризации бутиленов является 170—180° С совместная полимеризация углеводородов j —С, осуществляется при несколько более высоком температурном режиме и, наконец для переработки пропан-пропиленовой фракции требуется температура 220—230° С. Указанные температуры могут несколько колебаться, в зависимости от принятого в системе давления, активности катализатора и заданной глубины превраи ения. Повышение температуры утяжеляет фракционный состав полимербензина. [c.324]

    Активность катализатора определяется соотношением алкилов алюминия и четыреххлористого титана. Изменяя это соотношение, можно регулировать процесс полимеризации и получать полимеры с заданными свойствами. При увеличении содержания четыреххлористого титана в сфере реакции возрастает скорость полимеризации этилена, значительно повышается выход полиэтилена, но уменьшается его молекулярный вес. Активность катализатора можно значительно повысить введением, третьего компонента. В промышленности обычно применяют диэтилалюминийхлорид, в присутствии которого легче регулировать процесс полимеризации и получать полиэтилен с необходимым молекулярным весом. Кроме того, диэтилалюминийхлорид является менее пожаро- и взрывоопасным, чем три-этилалюминий. [c.7]

    На скорость полимеризации, выход и свойства полиэтилена оказывают влияние активность катализатора, температура и давление процесса. [c.9]

    С повышением активности катализатора увели чивается скорость процесса полимеризации, но снижается молекулярный вес полиэтилена. [c.9]

    Скорость полимеризации зависит от активности катализатора, концентрации этилена в реакционной зоне, температуры реакции и времени полимеризации (старения катализатора). Если температура полимеризации низка, а катализатор не был предварительно обработан СО при повышенной температуре, то наблюдается индукционный период, когда в течение нескольких минут катализатор активируется для быстрой полимеризации. Активация включает стадии окисления и восстановления, обсуждаемые ниже в разд. VI. [c.166]

    Катионообменные смолы (катиониты)—гетерополикислоты, состоящие из высокомолекулярной матрицы и катионогенных групп (чаще всего 50зН, СООН, РО3Н2, АзОзНг) и обладающие каталитическими свойствами [17]. Основой в большинстве случаев является полистирольная матрица, которую получают суспензионной полимеризацией с последующим сульфированием серной кислотой (в случае присутствия сульфокислотной группы). В зависимости от условий образуются гелеобразные либо макропористые полимеры, а при использовании полистирола с полипропиленом — формующиеся катализаторы. Наряду с поли-стирольной основой применяют и другие, например, силоксано-вые и фторопластовые. Активность катализатора определяется как свойствами полимерной основы, степенью сульфирования, так и размерами зерна катализатора, степенью его пористости, термической стабильностью и кислотностью.  [c.26]


    Катализатор довольно чувствителен к каталитическим ядам, которыми могут быть такие примеси в сырье, как вода, кислород и многие ковалентные соединения кислорода, азота, серы, а также галогенов. Большинство этих соединений полярно и отравляет катализатор, образуя прочные связи с центрами полимеризации и снижая тем самым адсорбцию олефинового мономера, или препятствует продолжению роста цепи, если яд вводится уже после начала полимеризации. Как правило, отравление обратимо, поскольку активность катализатора восстанавливается, если прекратить поступление яда в реактор. [c.166]

    На катализаторах с развитой поверхностью можно без снижения показателя стереорегулярности достичь повышения активности на 200—400% по сравнению с катализаторами, полученными вне реактора, и промотированными системами. Результаты полимеризации на типичных системах приведены в табл.14. Кроме повышенной эффективности в полимеризации эти катализаторы обладают и другими преимуществами. При осаждении таких катализаторов образуются сферические частицы с узким распределением по размерам 90% частиц типичного катализатора имеет диаметр от 25 до 35 мкм. Поскольку распределение частиц полимера отражает распределение частиц катализатора, обнаружено и узкое распределение по размерам частиц полимера. Полимер из однородных по размеру частиц, практически свободный от мелких и крупных фракций, гораздо проще перерабатывать. Теоретически можно исключить дорогостоящие стадии экструзии и формования таблеток, если получать сферы определенного размера. Однако, так как стабилизатор полпмера вводят в порошок перед экструдером, нужно разработать эффективный метод введения этих компопентов. Другой недостаток таких систем проявился на ранних стадиях разработки, когда обнаружилась их низкая стабильность при хранении. Хотя эти трудности, по-видимому, преодолены, применение катализаторов с развитой поверхностью остается ограниченным. Их используют там, где оборудование для приготовления катализатора находится рядом с аппаратами полимеризации. [c.214]

    Снижение активности катализатора ниже некоторого предела, обеспечивающего протекание реакции в тонкой пленке кислоты с такой скоростью, что концентрация олефинов в реакционной зоне много ниже концентрации насыщения, приводит к интенсивному протеканию полимеризации олефинов. Эти особенности процесса алкилирО(вания являются определяющими и позволяют, вместе с рассмотренными данными о механизме собственно реакции, достаточно полно проанализировать влияние различных факторов на результаты процеоса алкилирования. [c.179]

    Снижение активности катализатора за счет уменьшения концентрации кислоты способствует полимеризации. — Прим. ред. [c.39]

    Определение активности катализатора заключается в испытании образца на специальной установке в процессе полимеризации при этом условия должны быть такими же, как нри испытании эталонного образца. Результаты испытаний сравнивают между собой, и активность катализатора выражают в процентах от активности эталонного образца. [c.801]

    Реакция изомеризации, как уже отмечалось, протекает в среде водорода, роль которого сводится к подавлению реакций полимеризации и крекинга, ведущих к дезактивации катализатора. Хотя повышение температуры снижает термодинамически возможную глубину изомеризации, процесс проводят при относительно высоких температурах для обеспечения приемлемой скорости. Температура процесса определяется в основном активностью катализатора и изменяется в очень широких пределах — от комнатной до 450 °С. Катализатор — платина на галогенированной окиси алюминия (1—2% С1 или Р)—наименее активен палладий на цеолите позволяет проводить процесс при 330—380 °С платиновый или палладиевый катализатор на сильно галогенированной окиси алюминия (7—10% галогена) с высокой кислотностью и особенно с добавлением других металлов (1г, Ое, РЗЭ и др.) обладает очень высокой активностью, позволяющей вести процесс при 100—150 °С. [c.316]

    По кислотно-основному механизму идут каталитические реакции гидролиза, гидратации и дегидратации, полимеризации, поликонденсации, крекинга, алкилирования, изомеризации и др. Типичные катализаторы для кислотно-основного взаимодействия — кислоты и основания. Активными катализаторами являются соединения бора, фтора, алюминия, кремния, фосфора, серы и других. элементов, обладающих кислотными свойсгвами, или соединения элементов 1 и 2 групп периодической системы, обладающих основными свойствами. [c.27]

    Максимальная активность катализатора достигается при отно-шенгш А1 Aie = 1 2. В качестве растворителя алифатические углеводороды пригодны болыпе. чем ароматические. Температуры полимеризации лежат в области от О до —30 °С, катализатор получают также преи-мущественно при этих температурах. Если хотят ввести растворимые в углеводородах катализаторы при температурах выше О °С, то добавляют комилексообразующие агенты, например простые эфиры, тиоэфиры, третичные а.мины пли фосфины, содержащие по крайней мере один разветвленный алкильный остаток или ароматическое кольцо. [c.312]

    Продолжительность полимеризации не влияет на состав соноли. меров. Однако через некоторое время катализатор, особенно растворимый, теряет активность. Для восстановления активности катализатора можно добавлять гексахлорциклопентадиен [75]. Таким образом удается в несколько раз увеличить срок действия катализатора. Реактивацию можно осуществить и нагреванием каталйзатор-пой системы [76]. [c.313]

    Активность катализатора при Al/Ti < 1 также заметно повышается в результате удаления растворимых продуктов (рис. 10), в состав которых входит изобутилалюминийдихлорид. Ингибирующее влияние изобутилалюминийдихлорида на полимеризацию изопрена подтверждено при введении его в каталитическую систему (рис. 11). [c.216]

    Полимеризация кислотные катализаторы вызывают полимеризацию олефинов, поэтому неблагоприятный для алкилирования режим — малая концентрация пзопарафина, недостаточная активность катализатора, повышенная температура реакции — вызывают образование полимеров в составе продуктов алкилирования. [c.81]

    Избирательность. Широкое применение каталитических процессов требует подбора катализаторов, избирательно ускоряющих процесс превращения сырья в желательном направлении. Например, крекинг углеводородов сопровождается реакциями дегидрогенизации, изомеризации, полимеризации, циклизации и др. Подбором катализатора и технологических параметров осуществляют процесс в нужном направлении с преимущественным выходом желаемых продуктов. Принцип избирательности используют при выборе алюмосиликатных катализаторов различного строения и структуры, учитывая при этом относительное значение выходов и качеств целевых продуктов. Например, для превращения низкокипящего термически стабильного сырья прил1еняют высокоактивные синтетические катализаторы раз- чожение же тяжелых смолистых дистиллятов осуществляют на менее активных катализаторах. Некоторые природные катализаторы [c.15]

    Под влиянием кислорода воздуха и влаги ката-лизаторный комплекс легко разрушается. Поэтому полимеризацию очищенного от примесей этилена проводят в атмосфере чистого азота и в среде обезвоженного растворителя. Скорость полимеризации этилена и свойства получаемого полиэтилена зависят от концентрации и активности катализатора, температуры и давления процесса. [c.7]

    На скорость полимеризации и стереорегулярность полипропилена влияет соотношение компонентов в каталитической системе. При мольном соотношении А1 (С2Н.5)2С1 Т1С1з, равном 2 1, проявляется наибольшая активность катализатора, а при соотношении, превышающем 3 1,—наибольшая стереорегулярность. Размер частиц Т1С1з также оказывает влияние на скорость процесса. Чем больше степень дисперсности Т1С1з, тем выше скорость полимеризации. [c.11]

    Однако большая часть результатов подтверл<дает точку зрения, что водород не блокирует активный центр, а служит агентом для передачи цепи. При полимеризации на катализаторах Циглера — Натта получаются полипропиленовые цепи с широким молекулярно-массовым распределением. Это может быть обусловлено либо различными скоростями полимеризации на активных центрах разных типов, либо затрудненностью диффузии пропилена к активным центрам вследствие обволакивания катализатора полимером. [c.198]

    Деструктивное алкилирование проиоходит в результате р-рас-пада промежуточных карбкатионов и приводит к образованию углеводородов С5—С . Роль этого процесса возрастает с температурой. Полимеризация алкенов дает продукты большей молекулярной массы, чем Са. Процессы полимеризации подавляются избытком изобутана. Взаимодействие алкенов с катализатором снижает концентрацию и активность катализатора. [c.263]

Рис. XXXI. 2. Схема установки полимеризации для испытания активности катализатора нирофосфорная кислота на кизельгуре, Рис. XXXI. 2. <a href="/info/1882254">Схема установки полимеризации</a> для <a href="/info/1233938">испытания активности катализатора</a> нирофосфорная кислота на кизельгуре,
    Содержащиеся в сырье (сыром бензоле или фракции БТК) термически нестойкие непредельные соединения по-возможности не должны попадать на катализатор, поскольку они вызывают быстрое закоксовывание и потерю активности катализатора. На первых установках [50] сырье подвергали термической полимеризации, а образовавщиеся полимеры отделяли при испарении перед подачей парогазовой смеси в реактор. Процесс термической полимеризации был мало эффективен, поэтому в настоящее время применяется прсдварптслькая гидростабилизация сырья [58, 59]. Ее проводят па том же алюмокобальтмолибденовом катализаторе, но в более мягких условиях, чем основной процесс 230—25(ЙС -и-объемной скорости подачи сырья 1,25—1,75 ч . В присутствии водорода в реакторе гидростабилизации (форконтактирования) гидрируются непредельные соединения, тем самым предотвращается попадание их в основной реактор гидрирования. Периодически катализатор в форконтактном аппарате регенерируют выжиганием отложившихся в нем полимеров. [c.227]

    Скорость полимеризации и свойства получаемого ПЭНД зависит от температуры, давления и активности катализатора, которая определяется мольным соотношением диалкилалюми-ния и тетрахлорида титана. При повышении содержания последнего в контактной массе возрастает скорость процесса и выход ПЭ, но снижается его молекулярная масса. Для регулирования молекулярной массы полимера в этилен вводится водород, который играет роль передатчика цепи. Катализаторный комплекс легко разрушается под воздействием кислорода воздуха и влаги. Поэтому процесс полимеризации проводится в атмосфере азота и в среде обезвоженного бензина. Метод приготовления катализаторного комплекса и механизм его действия рассматривается в главе XX. К недостаткам метода ионной полимеризации относятся огнеопасность, невозможность регенерации катализатора и сложность процессов его отмывки и очистки бензина. [c.391]

    Алкилирование уксусной, щавелевой, бензойной и трихлоруксусной кислот пзобутилепом в присутствии эфирата фтористого бора изучалось первым методом [55]. Как показали исследования, эфират фтористого бора является весьма активным катализатором полимеризации изобутилена, поэтому при температуре выше 50° С не удалось обнаружить эфирообразования. [c.38]


Смотреть страницы где упоминается термин Полимеризация активность катализаторов: [c.174]    [c.132]    [c.144]    [c.202]    [c.311]    [c.341]    [c.216]    [c.39]    [c.195]    [c.180]    [c.138]    [c.417]    [c.332]   
Методы высокомолекулярной органической химии Т 1 Общие методы синтеза высокомолекулярных соединений (1953) -- [ c.161 ]




ПОИСК





Смотрите так же термины и статьи:

Гуревич, М. А. Далин, К. М. Арутюнова, И. А. Лагерная. О влиянии пористой структуры окисно-хромового катализатора на активность его в реакции полимеризации этилена

Катализатора активность

Катализаторы активные

Катализаторы крекинга активност полимеризации

Катализаторы полимеризации

Катионная полимеризации активность катализаторов

Полимеризация ацетилена активность катализатора

Полимеризация на оптически активных катализаторах

Тарама, С. Иосида, Я. Дои (Япония). Изучение активных центров нанесенных окиснохромовых катализаторов полимеризации этилена методом ЭПР

Циглера Натта катализаторы полимеризации модель активного центра

Циглера Натта катализаторы полимеризации определение активности



© 2025 chem21.info Реклама на сайте