Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Циклические соединения полимеризация. Полимеризация

    Следовательно, способность циклического соединения к полимеризации определяется напряженностью цикла и изменением энтропии при переходе от цикла к полимеру. [c.189]

    Способность циклических соединений к полимеризации [c.25]

    При полимеризации исходят из ненасыщенных или из циклических соединений. Формально сна происходит при разрыве двойной связи или раскрытии кольца и соединении получающихся осколков. Сюда же относится полимеризация, нри которой исходят из насыщенных соединений, например п-ксилола. В этом случае соединения способны к полимеризации в определенных условиях [41, 42].  [c.15]


    Сравнение рассчитанных и экспериментальных теплот полимеризации показывает хорошее совпадение данных для виниловых мономеров. Исключениями являются 1) полимеризация дизамещенных этиленов, когда оба заместителя связаны с одним С-атомом (изобутен, винилиденхлорид) 2) полимеризация, приводящая к образованию полимеров с очень полярными или объемными заместителями (метилметакрилат) 3) полимеризация циклических соединений с гетероатомами (малеи-новый ангидрид). Вместе с тем видно, что для большинства виниловых мономеров теплота полимеризации находится в пределах от —75 до —96 кДж/моль. [c.262]

    Нафтено-ароматические углеводороды активно реагируют с кислородом, Например, тетралин при неглубоком окислении образует в основном гидроперекись, которая, распадаясь, переходит в тетралон, а затем из последнего образуются соединения окислительной полимеризации — смолы. Те же углеводороды при более жестких условиях окисления образуют значительное количество кислых продуктов, очевидно, вследствие распада циклической структуры полиметиленовой части молекулы, причем окисление сопровождается частично дегидрогенизацией. [c.267]

    Макромолекулярные цепи с гетероатомами образуются при полимеризации некоторых карбонильных соединений, а также гетероциклических веществ. При полимеризации мономерного формальдегида (безводного) или ацетальдегида образуются не только низкомолекулярные циклические соединения и макромолекулы [при низких температурах в присутствии (СНз)зМ], напрнмер  [c.942]

    В катионную полимеризацию вовлекаются ненасыщенные соединения с двойными или тройными связями (олефины, диены, альдегиды, кетоны, нитрилы, изоцианаты) и циклические соединения (циклопропаны, лактоны, лактамы, циклические эфиры и др.). [c.231]

    Двойная связь С = С в ациклических или циклических соединениях— это то место, по которому протекают различные реакции, чаще всего —присоединение, как электрофильное, так и радикальное. В качестве примера рассмотрим присоединение бромоводорода и водорода. Большое практическое значение имеют также окисление и полимеризация алкенов. [c.121]

    Полимеризацией циклов в твердой фазе получены также некоторые сополимеры, причем показано, что иногда сополимеризация протекает с более высокой скоростью, чем гомополимеризация тех же циклических соединений. [c.111]

    До СИХ пор МЫ рассматривали только органические мономеры. Имеется ряд элементорганических и неорганических циклических соединении, способных к полимеризации. [c.311]


    Полимеризация циклических соединений [c.16]

    Выше уже было указано (сгр. 59—60), что в присутствии перекисей диены с сопряженной системой связей и некоторые алкены образуют сополимеры с акрилонитрилом, а в присутствии ингибиторов полимеризации диеновые углеводороды могут образовывать циклические соединения ряда циклогексена. В присутствии щелочей некоторые углеводороды, метиленовая группа которых активирована соседними двойными связями, могут вступать в реакцию цианэтилирования. Наиболее ясно это свойство выражено у флуорена, который в присутствии щелочных агентов присоединяет две молекулы акрилонитрила [c.85]

    И другие алкины, а также циклоалкины, могут претерпевать каталитическую циклизацию с образованием четырех-, пяти-, шести-, семи-или восьмичленных циклических соединений. Наряду с этим известна также каталитическая полимеризация ацетиленовых производных. [c.255]

    Однако, прямую гидратацию цитронеллаля провести не удается вследствие того, что в кислой среде этот альдегид претерпевает ряд превращений, характерных для терпеновых соединений с открытой цепью. При этом образуются различные полимерные и циклические соединения. Даже в разбавленных кислых растворах скорость реакций полимеризации и циклизации значительно больше скорости присоединения воды по двойной связи. Поэтому гидратацию осуществляют, обрабатывая кислотой не сам цитронеллаль, а его бисульфитное соединение. [c.269]

    По схеме диенового синтеза протекает димеризация алифатических диеновых углеводородов, подробно изученная С. В. Лебедевым еще в 1907—1913 гг., который установил, что при нагревании диенов в отсутствие перекисей или кислорода воздуха (инициирующих полимеризацию, протекающую по радикальному механизму) продуктами реакции являются циклические соединения димерного состава. С. В. Лебедев не только установил строение этих димеров, но, что особенно интересно, дал общую схему их образования, которая соответствует современным представлениям о 44-2- 6-цикло-присоединении одна молекула диенового углеводорода реагирует по 1-му и 4-му углеродному атому сопряженной системы, а вторая присоединяется к ней по одной из сопряженных связей, т. е. реагирует по Г-му и 2 -му углеродному атому  [c.56]

    Для синтеза оптически активных полимеров можно пользоваться другими видами полимеризации (полимеризация циклических соединений, миграционная полимеризация), поликонденсацией, химическими превращениями полимеров (реакция недеятельных полимеров с алкалоидами, углеводами, аминокислотами и т. д.). [c.197]

    Независимо от механизма инициирования ионная полимеризация циклических соединений представляет собой обратимый процесс, причем положение равновесия определяется напряженностью цикла и выбранными условиями реакции. Скорость полимеризации прямо пропорциональна концентрации катализатора, но не зависит от концентрации мономера в растворе. На поверхности [c.220]

    Подавляющее большинство полимеров, применяемых в производстве химических волокон, резиновых изделий, пленок, пластических масс, лаков, получают, как указывалось, синтетическим путем из низкомолекулярных соединений (мономеров). Соединение молекул низкомолекулярных веществ между собой с образованием макромолекул полимера может происходить в результате различных реакций, в зависимости от строения исходных мономеров. Если в молекулах мономеров имеются функциональные группы, вступающие в реакцию между собой, и процесс присоединения молекул друг к другу сопровождается выделением побочных низкомолекулярных продуктов, то процесс синтеза полимера носит название реакции поликонденсаЦии. В случае, когда синтез полимера является следствием перегруппировок внутри функциональных групп без изменения элементарного состава, такой процесс называют ступенчатой полимеризацией. Если же молекулы мономера содержат кратные связи или представляют собой циклические соединения и образование макромолекул происходит в результате раскрытия двойных связей или разрушения циклов и не сопровождается выделением побочных продуктов, то процесс получения полимера называется реакцией цепной полимеризации. Поликонденсация и цепная полимеризация являются наиболее распространенными способами получения полимеров. [c.384]

    Как и следовало ожидать, тер.мическая полимеризация этилена заметно ускоряется применением давления. Было найдено что при 70 ат в стальном автоклаве и при температурах выше 325° этилен легко уплотняется в жидкие углеводороды. Так как эти- продукты состоят не только из высших олефино в, но также парафинов и циклопарафинов, то очевидно простая полимеризация сопровождается здесь расщеплением и образованием циклических соединений. Температура полимеризации этилена под давлением значительно снижается в присутствии таких катал.изаторов, как хлористый цинк С хлористым алюминием полимеризация этилена под давлением происходит даже при 0° и дает смесь углеводородов, большинство которых имеет сложньлй состав и высокий молекулярный вес 2. При аналогично проводимой полимеризации ко.мприми рованного этилена в присутствии фтористого бора получаются масла с высоким и молекулярными весами . Действие хлористого- алюминия и фтористого бора на олефины интересно в связи с воэможностью притотовле ния синтетических смазочных масел. [c.652]


    Роговин, Кнунянц, Хаит и Рымашевская ", исследуя впервые реакцию превращения циклического соединения—капролактама в полиамид с открытой цепью, пришли к выводу, что эта реакция является типичной реакцией полимеризации неустойчивых циклов , причем вода и другие гидроксилсодержащие соединения, а также амины являются катализаторами этой реакции. Но наряду с этой точкой зрения, изложенной в большом числе работ (см. ), имеется также и другая,, по которой превращение лактама в линейный полиамид является обычной реакцией поликонденсации. Вода и другие содержащие гидроксил соединения лишь превращают лактам в аминокапроновую кислоту или ее производные, после чего аминокапроновая кислота реагирует дальше по схеме поликонденсации. Этой точки зрения придерживается Маттес , который, исследуя кинетику реакции превращения лактама в линейные полиамиды, получил данные, подтверждающие поликон-денсационный характер этой реакции, В то же время А, А, Стрепихеев, С, М, Скуратов и сотрудники , также на основании кинетических данных и измерений теплот реакций, пришли к противоположному выводу о механизме реакции и подтвердили полимеризационный характер этой реакции, Вилот , а также Вергоц , Колонь и Гийо и другие исследователи на основании тех же кинетических данных пришли к выводу, что реакция превращения лактама в линейный полиамид протекает в две стадии, а само превращение в линейный полимер происходит по схеме поликонденсации и описывается уравнением бимолекулярной реакции. А. С. Шпитальный и его сотрудники предполагают, что одновременно, но с разной скоростью происходят оба процесса полимеризация и поликонденсация. [c.421]

    Полимеры синтезируют из низкомолекулярных веществ (мономеров) путем многократно повторяющихся однотипных реакций. Образование макромолекул полимера может быть следствием разрыва двойных связей (полимеризация олефинов), раскрытия циклов в циклических соединениях (полимеризация циклов), перегруппировок в функциональных группах полифунк-диональных веществ (ступенчатая полимеризация), реакций функциональных групп полифункциональных веществ с выделением побочных продуктов (поликонденсация). [c.73]

    Опыты П. Сабатье и его сотрудника Сандэрана возбуждают заслуженное внимание и представляют наиболее интересный пример неорганического синтеза нефти. Смесь непредельного углеводорода, с водородом подвергается (в присутствии катализатора — никеля) нагреванию нри температуре не свыше 180°. Происходит процесс гидрогенизации ненасыщенных углеводородов. В результате получается светло-желтая жидкость удельного веса 0,790, состоящая из предельных углеводородов и напоминающая по своим свойствам пенсильванскую нефть. При несколько измененных условиях опыта получаются и другие результаты так, если пропускать ацетилен без водорода над никелем при температуре 200°С, получается вещество, богатое ароматическими углеводородами. При вторичном пропускании этого последнего над никелем получается смесь нафтенов, т. е. нефть типа бакинской. Здесь, очевидно, мы имеем процесс полимеризации и образования под влиянием катализаторов циклических соединений. Вертело доказал, что полимеризация ацетилена (С2Н2) дает бензол (СаНе) при температуре размягчения стекла. Далее в литературе встречаются указания, что углеводороды могут получаться и при других реакциях. Например, еще в 1863 г. была известна возможность непосредственного получения ацетилена при пропускании водорода между угольными концами вольтовой дуги, но тогда на это не обратили должного внимания. Еще Вертело указал, что щелочные металлы, реагируя с СО2, образуют карбиды, или ацетиды и кислород, который потом уходит из сферы реа- [c.302]

    Интересную реакцию лннеиной полимеризации изопрена в присутствии активного водорода, получаемого действием металлического калия на этиловый спирт, осуществили Мид-глей и Хенне [129]. Они показали, что при этом также получаются не циклические соединения, а смесь 2,6 2,7 и 3,6-диметил- [c.279]

    Наиболее активные в реакциях катионной полимеризации мономеры содержат электроположительные (электронодонорные) заместители при одном из углеродных атомов, соединенных двойной связью. По катионному механизму поликеризуются многие винильные соединения, в том числе изобутилен, простые виниловые эфиры, ие иолимеризующиеся по радикальному механизму. Под влиянием катализаторов катионного типа могут полимеризоЕзаться также циклические соединения. [c.135]

    Процессы полимеризации неустойчивых кислородсо ержащих циклических соединений привлекают все большее внимание исследователей. Примерами таких неустойчивых циклов могут служить окись этилена [c.404]

    В присутствии катализаторов Фриделя — Крафтса ацилгалогениды присоединяются ко многим олефинам. В реакцию вводились олефины с прямой цепью, а также разветвленные и циклические олефины, но лишь небольшое число субстратов, содержащих функциональные группы иные, чем галоген [539]. Механизм этой реакции аналогичен механизму реакции 15-34, и здесь тоже конкурирует реакция замещения (т. 2, реакция 12-14). Повышение температуры способствует увеличению доли продукта замещения [540], а хорошие выходы продуктов присоединения достигаются лишь тогда, когда температура поддерживается ниже 0°С. Сопряженные диены в эту реакцию обычно не вступают из-за доминирующей полимеризации. Реакцию можно провести и с ацетиленовыми соединениями, в результате чего получаются продукты состава R O—С = С— I [541]. Формиль- [c.222]

    В противоположность MOHO- и 1,1-Дизамещенным олефинам, способным к полимеризации по свободно-радикальному механизму, имеется лишь очень немного 1,2-дизамещенных олефинов, образующих полимеры. Интересно отметить, что большинство легко полимери-зуемых 1,2-дизамещенных олефннов (включая те, которые полимернзуются по другим механизмам, см. аце-нафтнлен) являются пятичленными циклическими соединениями. [c.231]

    Актуальность работы. В настоящее время активно изучаются вещества, способные менять свое строение и физико-химические свойства в зависимости от изменения внешних условий (давление, температура, pH среды, лазерное освещение и другие). В связи с этим особый интерес вызывают фта-лиды, для которых возможно существование в циклической и линейной формах. Они представляют собой индивидуальные соединения, переход которых из одной формы в другую происходит при изменении внешних факторов. Еще большее значение имеет изучение свойств полимерных материалов, содержащих функциональные группы меняющегося строения. Так, фталидсодержащие полимеры обладают уникальными электрофизическими и оптическими свойствами. Но последние сочетаются с высокими температурами стеклования и текучести, а также с плохой растворимостью в большинстве растворителей. Этих недостатков лишены многие виниловые полимеры, в частности полиакрилаты, синтезируемые чаще всего методами радикальной полимеризации. Поэтому важным представляется введение ненасыщенных фталидов в акриловые полимеры, прежде всего, на стадии синтеза последних. Однако о получении, строении, поведении ненасыщенных фталидов в радикальной (со)полимеризации известно очень мало. [c.3]

    Карозерса относительно механизма роста молекулярных цепей в процессе полимеризации [4]. Он полагал, что синтез громадных молекул может осуществляться только с помощью реакции конденсации с соединением по типу голова к хвосту небольших молекул, каждая из которых бифункциональна, т. е. имеет по одной реакционноспособной группе с каждого конца. Под функциональностью мономера Карозерс понимал такое расположение групп (например, ОН, ЫНа, СООН и т. д.), которое может приводить к постадий-ному прохождению реакции. По числу таких групп в мономере (одна, две, три или больше) он может являться монофункциональным, бифункциональным и т. д. Карозерс обнаружил, что при использовании бифункциональных соединений вследствие внутримолекулярных взаимодействий могут образовываться пяти- или шестичленные циклические соединения, причем такая форма взаимодействия является преобладающей. Однако если при внутримолекулярном взаимодействии возможно образование колец, содержащих более шести членов, то преимущественно происходит образование линейных молекул. [c.15]

    Возможна полимеризация ацетилена с образованием циклических соединений (бензола, циклооктатетраена и др.)  [c.267]

    Так как 51(К)2—О-группы склонны к образованию циклических соединений, то кроме линейных силоксанов продуктами гидролиза дихлорсиланов являются также циклические олигосилоксаны, со-держаи ие в кольце от 3 до 9 51—0-групп. В соответствующих условиях реакции получаются только циклические соединения (см. раздел 4-17). Циклические силоксаны могут превращаться в высокомолекулярные линейные продукты либо при полимеризации с раскрытием цикла, либо при катионной (в присутствии кислот Льюиса), либо при анионной (в присутствии щелочей) полимеризации  [c.218]

    Синтетические душистые вещества встречаются в очень многих классах органических соединений. Строение их весьма разнообразно это соединения с открытой цепью насыщенного и ненасыщенного характера, ароматические соединения, циклические соединения с различным числом углеродных атомов в цикле. Среди углеводородов вещества с парфюмерными свойствами встречаются довольно редко. Большинство душистых веществ содержат в. молекуле одну нли несколько функциональных групп. Сложные и простые эфиры, спирты, альдегиды, кетоиы, лактоны, иитропродукты — вот далеко не полный перечень классов химических соединений, среди которых разбросаны вещества с ценными парфюмерными свойствами. Для получения душистых веществ применяется самое разнообразное сырье, переработка которого основана на использовании большого числа химических процессов органического синтеза. Некоторые химические превращения приводят к введению заместителей в органические соединения нитрование, алкилирование, галоидирова-ние. К другой группе химических процессов относятся превращения, связанные с изменением функциональной группы веществ окисление, восстановление, этерификация, омыление. Третьи химические процессы приводят к изменению углеродного скелета химических веществ пиролиз, конденсация, изомеризация, циклизация, полимеризация. Ниже рассмотрены химические процессы, наиболее часто используемые в синтезе душистых веществ. [c.232]


Смотреть страницы где упоминается термин Циклические соединения полимеризация. Полимеризация: [c.365]    [c.44]    [c.116]    [c.366]    [c.98]    [c.190]    [c.180]    [c.60]    [c.123]    [c.156]    [c.150]    [c.76]    [c.76]    [c.396]   
Методы высокомолекулярной органической химии Т 1 Общие методы синтеза высокомолекулярных соединений (1953) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Инициирование полимеризации циклических соединений

Лебедев, А. А. Евстропов, Е. Г. Кипарисова. Термодинамика полимеризации ряда кислородсодержащих циклических соединений по калориметрическим данным в области

Особенности полимеризации некоторых циклических соединений

Полимеризация циклических соединений

Циклические соединения циклических соединений



© 2025 chem21.info Реклама на сайте