Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серная кислота катализатор реагент

    Представляет интерес для определения воды использование жидкого реагента диметокси-2,2-пропана, который при гидролизе образует жидкие продукты — ацетон и метанол [2]. Для ускорения гидролиза его проводят при нагревании на водяной бане в присутствии метил-серной кислоты (катализатор). Продолжительность гидролиза 1 мин. Метод применен для определения воды в органических растворителях и в кристаллогидратах солей. [c.228]


    Алюминийсодержащие отходы, например, являющиеся одними из крупнотоннажных в химической, нефтехимической и нефтеперерабатывающей промышленности, можно успешно использовать для различных целей. Так, получаемые в процессе переработки алюминийсодержащих отходов гидроксохлориды алюминия могут заменить сульфат алюминия при очистке воды оборотных систем нефтеперерабатывающих и нефтехимических предприятий, в производстве огнеупоров, строительной керамики, фарфора, вяжущих веществ, бумаги и картона, очистке теплопередающего оборудования от карбонатных отложений. До недавнего времени практически все отходы, получаемые прн пспользовании безводного хлорида алюминия (производства этилбензола, изопропилбензола, синтетических спиртов, присадок и др., где в качестве катализатора реакций Фриделя — Крафтса — Густавсона используют хлорид алюминия) сбрасывали в отвал. На обработку алюминийсодержащих кислых и щелочных сточных вод потребляется значительное количество щелочей, серной кислоты и других дефицитных реагентов. [c.133]

    Под термином отравление катализатора обычно понимают значительную или внезапную потерю его активности, вызванную взаимодействием следовых количеств яда с катализатором. В этом смысле ванадиевые катализаторы для производства серной кислоты не подвергаются отравлению. Однако многие вещества все-таки реагируют с катализатором, или снижая его активность вследствие постепенных потерь ванадия, или уменьшая прочность таблеток. Даже основной реагент ЗОг вызывает некоторое понижение активности, если присутствует в больших концентрациях при низких температурах (ниже 430—450°С). Это снижение активности ограничено по величине и обратимо. Активность полностью восстанавливается в результате обработки катализатора газом с высоким содержанием кислорода (смесью ЗОз + Ог) или при повыщении его температуры. [c.267]

    Как и другие реакции этерификации, процесс сульфатирования спиртов, в котором серная кислота одновременно играет роль катализатора и реагента, является обратимым  [c.243]

    Ш. Укажите реагенты, с которыми может реагировать циклопропан. а. Бром б. Бромистый водород в. Водород (катализатор) г. Озон д. Серная кислота [c.62]

    Стадия конденсации катализируется ионом водорода, т. е. относится к реакциям специфического кислотного катализа, и ее скорость линейно зависит от функции кислотности Гаммета с другой стороны, протоны катализируют также и побочные реакции, поэтому выбирают всегда оптимальную концентрацию серной кислоты. Роль катализатора заключается в протонировании кислородного атома карбонильной группы с образованием карбкатиона, присоединяющегося затем к нуклеофильному реагенту—олефину  [c.202]


    Окисление карбоновых кислот пероксидом водорода в присутствии кислотного катализатора — наилучший обший метод синтеза перкислот [383]. Наиболее распространенным катализатором для субстратов с алифатическими группами К является концентрированная серная кислота. Реакция обратима, и равновесие можно сместить вправо, удаляя воду или применяя избыток реагента. Для субстратов с ароматическими группами К наилучшим катализатором является метансульфокислота, которая используется и как растворитель. [c.307]

    Гетерогенный катализ характеризуется тем, что катализатор находится в ином фазовом состоянии по сравнению с реагирующими веществами. Например, в контактном способе получения серной кислоты окисление SO 2 кислородом осуществляется в присутствии твердого катализатора. Механизм гетерогенного катализа гораздо сложнее, чем гомогенного. Одной из начальных стадий является процесс адсорбции реагирующих веществ на поверхности катализатора с последующим образованием промежуточных соединений между молекулами реагента и атомами (или ионами), расположенными в поверхностном слое катализатора. Далее промежуточные продукты, характеризующиеся гораздо меньшей энергией активации, легко реагируют друг с другом. Следовательно, основная суть катализа — снижение энергии активации реагирующих веществ. [c.83]

    В заранее взвешенную прямоугольную кварцевую ячейку длиной 1 см, находящуюся в сухом боксе, помещают 3 мл уксусной кислоты. Кювету закрывают, повторно взвешивают, после чего возвращают в сухой бокс. Затем добавляют точно 0,1 мл 2М раствора безводной серной кислоты (катализатор) в уксусной кислоте. Поглощение раствора относительно уксусной кислоты, находящейся в кювете сравнения, обычно измеряют в интервале длин волн 250—256 нм, например при 256 нм, с помощью двухлучевого спектрофотометра. Затем кювету опять помещают в сухой бокс и добавляют уксусный ангидрид из ультрамикробюретки на 0,1 или 0,01 мл. Снова определяют поглощение раствора и повторяют эту процедуру до тех пор, пока не будет получена последовательность точек для построения зависимости поглощения от объема непрореагировавшего (находящегося в избытке) уксусного ангидрида. Окончательный график зависимости поглощения раствора от объема добавленного уксусного ангидрида (в микролитрах) экстраполируют к нулевому значению поглощения, чтобы определить истинный объем израсходованного реагента. [c.368]

    При прямой гвдратации он направлен на полное использование исходного сырья (этилена), обеспечивая высокую суммарную его конверсию при низкой степени превращения за один проход. При сернокислотной гвдратации рециркуляция направлена на многократное использование серной кислоты катализатора процесса. Общим для технологических решений является рецикл, связывающий подсистемы разделения и реакционную. Он дает возможность не только полностью использовать воду как химический реагент, но и реализовать принцип реализации технологии с минимальньш расходованием воды и использованием ее кругооборота. [c.438]

    При употреблении в качестве катализатора серной кислоты характер полимеризации зависит от концентрации кислоты смешанная полимеризация происходит при концентрации кислоты выше 90%, тогда как при болео низких концентрациях идет обычная (истинная) полимеризация [26]. В присутствии фосфорной кислоты характер полимеризации зависит от температуры. Смешанная полимеризация в этом случае происходит при температурах выше 250—300° С [27]. С хлористым алюминием только в особых условиях, например, при использовании металлического алюминия в качестве нромотирующего реагента, может происходить полимеризация обычного типа. [c.226]

    В группу химических методов входят обработка бензинов теми или иными реагентами (серной кислотой, хлоридом алюминия, хлоридом цинка, едким натром, известью, плумбитом натрия, гипохлоритом л т. д.), термическая полимеризация, термическое обессеривание, прямое окислеиие кислородом воздуха и т. п. При полимеризации или обессериваппи (очистка бокситами), а также в других процессах очистки бензина могут и1 иользоваться катализаторы, в связи с чем появились методг.1, которые иел1..1Я охватить классификацией, исходя из понимания очистки как процесса, связанного обязательно с удалением из состава бензина веществ, ухудшающих его качество. [c.72]

    При планировании себестоимости в калькуляционном разрезе следует иметь в виду, что в статью Сырье и материалы включаются исчисленные по прогрессивным нормам затраты на все материалы (в том числе топливо, используемое как сырье, и покупные полуфабрикаты), как составляюи не основу вырабатываемой иродукции, например, сера в производстве серной кислоты, так и служащие необходимыми комиопеитамн или реагентами (за исключением катализаторов) для изменения или придания продукции требуемых свойств. [c.245]


    Силикат-глыба, гидроокись алюминия, сернокислый глинозем и сульфат магния являются тем1Е основными веществами, которые непосредственно входят в состав катализаторов и адсорбентов в виде окиси кремния, окиси алюминия п окиси магния. Содержание их в сухих катализаторах и адсорбентах составляет 97—98% и более. Серная кислота, едкий натр, минеральные масла, хлористый натрий, аммиак и другие реагенты являются материалал1и вспомогательными, но крайне необходимыми в различных стадиях производства. [c.26]

    На катализаторных фабриках серную кислоту применяют и как сырье и как реагент. Например, при производстве катализаторов из природных глин и синтетических катализаторов она является реагентом, а в производстве силикагелей — сырьем. Качество серной кислоты должно отвечать требованию по содержанию железа (не более 0,03%). В зимний перпод (с 1 ноября по 15 апреля) по треб ова- 1ию потребителе заводы-изготовители обязаны отгружать серную кислоту с содержанием 74—75% Н2804. [c.30]

    Жидкофазная дегидратация используется в тех случаях, когда продукт или исходные реагенты недостаточно стабильны при повьи ленных температурах газофазного процесса. Это относится к синтезу хлорекса, диоксана и морфолина, но в жидкой фазе часто дегидратируют также нитроспирты, оксиальдегиды и оксикетоны, которые можно превращать в соответствующие ненасыщенные ве-щестпа и в газовой фазе. В качестве катализаторов используют серною кислоту (концентрацией до 70%), фосфорную кислоту, кислые фосфаты кальция или магния, сульфокатиониты (последние при температуре до 150°С). Процесс ведут при температуре от 100 до 160—200 °С и обычном давлении. [c.201]

    Из папориого бака 1 исходная смесь реагентов, содержащая уксусную кислоту, этиловый спирт и серную кислоту в качестве катализатора, непрерывно поступает на реакцию через расходомер. Она вначале проходит тенлообмеиник 2, в котором нагревается за счет паров, выходящих нз реакционной колонны, н затем поступает иа верхнюю тарелку эфирнзатора 4. Благодаря обогре- [c.214]

    До недавнего времени этот процесс осуществляли с 80—85%-ной серной кислотой, что приводило к излишнему расходу реагентов и образованию отходов сульфата аммония. Недавно было обнаружено, что эффективным катализатором является металлическая медь. Синтез осуществляют в водном растворе прн 70—120 °С из реакцноиион массы отфильтровывают медь п отгоняют иепревра-щенпый акрилонитрил, рецир (улируя их в реактор. Водный раствор акриламида упаривают до концентрации 30—50% или до получения кристаллического акриламида. [c.226]

    Реакционная масса представляет собой двухфазную систему, которзю эмульгируют с помощью мешалок или питающих насосов. Гри использовании серной кислоты существенное значение имеет ее концентрация. Лучшие результаты получаются с 98— 100%- ой кислотой, но она постепенно разбавляется влагой, присутствующей в исходных реагентах. Минимально допустимой считается концентрация 88—90%, поэтому часть кислоты приходится все время отводить из системы и добавлять свежую. Расход серной кг слоты составляет обычно 5—7 кг на 100 л алкилата. В самом реакторе объемное отношение кислоты и углеводородов примерно 1 1 и даже доходит до 70% (об.) кислоты. Избыточный катализатор отделяют от углеводородов в сепараторе возвращают на реакцию. [c.265]

    Механизм сульфатирования спиртов серной кислотой в общем аналогичен рассмотренным ранее процессам этерификации. При этом кислота выполняет одновременно роль и реагента и катализатора, а реакция протекает с разрывом связи S—О, что обусловливает отсутствие изомеризации в алкильной группе  [c.318]

    Первая стадия состоит в конденсации изобутилена с формальдегидом в присутствии серной кислоты в качестве катализатора [1 —1,5% (масс.) по отношению к изобутнлену]. Мольное отношение С4Н8 НСНО в исходной смеси составляет 0,73 1, причем в реакционной массе должен всегда находиться свободный формальдегид, чтобы препятствовать полимеризации изобутилена. Последний можно применять в виде чистого изобутилена или в смеси с бутанами он может содержать н-бутилены, которые менее реакционноспособны и остаются непревращенными. Формальдегид используют в виде 37%-ного водного раствора (формалин), который перед входом в реактор разбавляют рециркулятом. Процесс проводят при 85—95°С и 1,5—2 МПа, когда все реагенты находятся в жидком состоянии. Таким образом, реакционная масса представляет собой жидкую двухфазную систему, и интенсивность реакции во многом зависит от развития поверхности контакта фаз. [c.556]

    Алкилированием аренов лактонами и непредельными кислотами получены ЖАК арилмасляные, арилвалериановые, анизил и фенолстеариновые. В качестве катализаторов использовались хлористый цинк, хлористый алюминий, серная кислота и катионит в Н -форме КУ-2. Выходы ЖАК составили 50-96% от теоретических, в расчете на алкилирующие реагенты. [c.121]

    Как показано в работах [10, 27], скорость превращения тио-нафтеиа возрастает в ряду процессов сульфирование— -алкилирование— -конденсация. И в таком же цррядке уменьшаются относительные потери нафталина. В двух последних процессах необходимо проводить очистку в две стадии на первой нафталин обрабатывать серной кислотой, а на второй —в реакционную смесь вводить алкилирующее непредельное соединение либо формалин (при ином порядке введения реагентов скорость процесса значительно меньше). Вероятно [10, 27], катализаторами обоих процессов. являются не столько се рная кислота, сколько нафталин-сульфокислоты, т. е. их можно рассматривать как сочетание сернокислотной очистки, протекающей с образованием нафталинсульфокислот, и алкилирования либо конденсации при каталитическом действии сульфокислот. Дело, очевидно, не в изменении механизма процесса, а в том, что нафталинсульфокислоты лучше серной кислоты растворимы в нафталине, и скорость процесса увеличивается из-за повышения концентрации катализатора в реакционной массе. [c.290]

    При гидролизе сложных эфиров применяют как кислоты, так и основания. В производстве мыла из жирюв и масел в качестве катализатора и реагента чаше всего используется едкий натр. Вероятно, наиболее известным кислотным каталитическим гидролизом жиров в жирные кислоты и глицерины является процесс Твитчела. Жир с 25-50% воды, 0,75-1,25% катализатора Твитчела и 0,5% серной кислоты кипятят в течение 20-48 ч. Образующийся глицерин растворяется в избытке воды и отделяется от расплавленных жирных кислот /34/. [c.341]

    Успехи катализа неразрывно связаны с развитием теории каталитических процессов, хотя и сейчас еще практические его достижения значительно опережают наши теоретические познания и представления. Первые представления о сущности каталитических явлений относятся к началу XIX в. Уже в 1833 г. Е. Митчерлих пытался объяснить схему реакции получения эфира из спирта в присутствии серной кислоты тем, что под влиянием последней спирт разлагается в эфир так же, как сахар при брожении под действием ферментов или как перекись водорода под действием металлов . Все аналогичные каталитические явления он объединил под названием контактных реакций, при которых вещества химически изменяются лишь в присутствии контактов (катализаторов), остающихся (по Е. Митчерлиху) неизл4ененными. Примерно в это же время была обоснована теория промежуточных соединений, т. е. учение о том, что катализатор принима ет активное участие в катализируемом им процессе, образуя с реагентами нестойкие промежуточные соединения, которые получаются и распадаются, облегчая протекание каталитических реакций. Это особенно ясно было сформулировано Л. Плэйфейром в 1848 i . и окончательно развито П. Сабатье и другими в XX в. [c.16]

    В ранней литературе по катализу имеется много указаний на повышение активности катализаторов от различных добавок. Так, отмечено было повышение активности иридия следами осмия, повышение обесцвечивающей силы угля от добавок солей имеется также указание, что достаточно загрязнить золото одной пылинкой платины, чтобы оно раскалилось в токе водорода установлено повышение активности Си504 (при получении хлора из НС1) примесями Ма2804 или Кз504. Оказалось, что окисление нафталина концентрированной серной кислотой сильно ускоряется от прибавления Н , Зе или НзВОд. Очень изящным опытом является ускорение окисления анилина бертолетовой солью при добавлении меди. Добавление 0,5% СеОа к никелевому катализатору повышает скорость реакции в 10 раз, хотя в катализаторе на ИЗО атомов N1 приходится лишь 1 молекула СеОа. Разложение НоОз в присутствии солей закиси железа резко ускоряется от добавки 1 миллимоля медной соли на 1. ] реагента. В биохимических процессах роль активаторов играют ко-ферменты. [c.62]

    Реакцию ароматических субстратов с диолами и диоксанами проводили в традиционных для алкилирования по Фриделю-Крафтсу условиях, Б качестве катализатора использовали хлорид алюминия или концентрированную серную кислоту. Варьировали время реакции (3-24 ч), температуру (25-100°С), соотношение реагентов. Реакционную смесь анализировали методом ГЖХ. Во всех опытах были получены сложные смеси продуктов, из которых пока не удалось выделить индивидуальные соединения, однако некоторые из них идентифицированы хромато-массч пектральным методом. [c.46]

    Ацилирование нуклеофильных реагентов карбоновыми кислотами требует активации карбонильной группы кислотным катализатором (серной кислотой, толуолсульфокислотой, ионообменной смолой — катионитом). Для смещения равновесия вправо образующуюся воду отгоняют (часто в виде азеотропной смеси) или связывают сильным водоотнимающим средством (РзОд, H.SOJ, Например  [c.177]

    Этерификация кислот спиртами [524] представляет собой реакцию, обратную реакции 10-12, и ее можно осуществить только тогда, когда равновесие удается сместить вправо. Для этой цели имеется много способов, среди которых 1) прибавление одного из реагентов (обычно спирта) в избытке 2) удаление эфира или воды отгонкой 3) азеотропная отгонка воды и 4) удаление воды, используя водоотнимающие средства или молекулярные сита (см., например, [525]). Если R = метил, то наиболее общий способ смещения равновесия — это добавление избытка МеОН, а если К = этил, то предпочтительнее удалять воду азеотропной отгонкой [526], В качестве катализаторов чаще всего используются серная кислота и TsOH, хотя в случае некоторых активных кислот (например, муравьиной [527] или трифтороуксусной [528]) катализатора не требуется. Группа R может быть не только метильной или этильной, но также и другой первичной или вторичной алкильной группой, однако третичные спирты обычно образуют карбокатионы и происходит элиминирование. Для получения эфиров фенолов можно использовать сами фенолы, но выходы, как правило, очень низки. [c.127]

    Много ванадия как такового, а также в виде феррованадия используется для улучшения свойств специальных сталей, идущих на изготовление паровозных цилиндров, автомобильных и авиационных моторов, осей и рессор вагонов, пружин, инструментов и т. д. Малое количество ванадия подобно титану и марганцу способствует раскислению, а большое количество увеличивает твердость сплавов. Ниобий и тантал, как дорогие металлы, применяют для легирования сталей только в тех случаях, когда необходима устойчивость по отношению к высокой температуре и активным реагентам. Сплавы алюминия с присадкой ванадия используются как твердые, эластичные и устойчивые к действию морской воды материалы в конструкциях гидросамолетов, глиссеров, подводных лодок. Ниобий и ванадий — частые компоненты жаропрочных сплавов. Ниобий применяют при сварке разнородных металлов. VjOg служит хорошим катализатором для получения серной кислоты контактным методом. Свойства Та О., используются при приготовлении из него хороших электролитических танталовых конденсаторов и выпрямителей, лучших, чем алюминиевые (гл. XI, 3). [c.335]

    В задачи технического анализа в нефтегазонерерабатывающей промышленности входит также определение состава и свойств катализаторов, технической воды и ряда вспомогательных материалов и реагентов (серная кислота, едкие ш елочи, селективные растворители, отбеливающие глины и многие другие). [c.10]

    Алкилирование фенолов используется в промышленности в значитель ных масштабах. Катализаторами алкилирования являются минеральные кислоты, сульфокислоты, хлориды металлов, фтористый бор и другие соединения кислотного характера [58—63]. На практике применяют главным образом серную кислоту и фтористый бор. Обычными реагентами, служащими для введения боковых цепей в ароматическое ядро, являются спирты, галоидные алкилы и непредельные углеводороды. К таким углеводородам относятся изобутилен, втор- и трет-амилены, диизобутилен, нонилены и додецилены. [c.518]

    Весьма иерсиективным является второй путь повышения содержания серы в коксе, позволяющий вовлекать в кокс кислые гудроны, отработанную кислоту и получать ВОС с 8—10% серы. Создание безотходной технологии в нефтеперерабатывающей и нефтехимической промышленности, широко использующей ироцессы и методы очистки нефтепродуктов, основанные на применении в качестве катализатора и реагента серной кислоты, является важной народнохозяйственной проблемой. Утилизация сернокислотных отходов (около 7з ресурсов отработанной кислоты и 4 кислых гудронов) важна не только с точки зрения рационального использования сырья, содержащего серу,— особенно большое значение имеет ликвидация сбросов стоков, содержащих серу, в открытые водоемы. [c.231]

    Как правило, прежде чем направить заводские газы на разделение, их подвергают очистке. Целью очистки чаще всего является удаление сернистых соединений, представленных в нефтяных газах в основном сероводородом. Присутствие сероводорода в газе недопустимо вследствие 1) корродирующих и токсичных свойств сероводорода и 2) отравляющего действия на многие катализаторы. Поскольку при переработке сернистого сырья концентрация сероводорода в газе может быть весьма значительна, необходимо не только удалять его из газа, но и использовать для получения серы или серной кислоты. Если тяжелые газовые компоненты получают с технологической установки в жидком виде (под давлением), их иногда подвергают только промывке щелочью для удаления сернистых и кислотных соединений. Для очистки углеводородов, находящихся в газовой фазе, используют водные растворы этаноламн-нов, фенолятов и других реагентов. Наиболее распространена очистка этаноламинами  [c.277]

    Сернистые соединения можно удалять из топлив при помощи селективных растворителей и твердыми адсорбентами. При очистке необходимо учитывать, что во время удаления неразрушенных сернистых соединений различными реагентами (серной кислотой, селективными растворителями, адсорбентами и т. п.) происходят большие потери углеводородной части нефтепродуктов. Наиболее эффективный метод очистки топлив от сернистых соединений — каталитическое гидрирование. При гидроочистке сернистые соединения разрушаются водородом в присутствии катализатора с образованием углеводородов и сероводорода. Большая часть сероводорода удаляется из топлива при перегонке, а остатки его — после щелочной (этаноламинной или фенолятной) очистки. При гидроочистке удаляются кислородные и азотистые соединения. При этом образуются углеводороды, вода и аммиак. [c.123]


Смотреть страницы где упоминается термин Серная кислота катализатор реагент : [c.253]    [c.321]    [c.140]    [c.587]    [c.372]    [c.128]    [c.334]    [c.351]    [c.72]    [c.314]    [c.417]    [c.118]    [c.446]    [c.315]   
Справочное руководство по эпоксидным смолам (1973) -- [ c.77 , c.82 , c.121 , c.122 , c.127 , c.137 , c.142 , c.143 , c.144 , c.147 , c.154 , c.199 , c.299 , c.309 , c.326 , c.327 , c.347 , c.351 ]




ПОИСК





Смотрите так же термины и статьи:

Серная кислота как катализатор



© 2025 chem21.info Реклама на сайте